
Chapter 6

Handcrafted V/S Deep Features

6.1 Introduction

The increasing applications of fingerprint authentication systems demand attention to

Presentation Attack Detection (PAD) mechanisms. Fingerprint recognition systems are

vulnerable to Presentation Attacks (PAs) created using simple fabrication materials or

Presentation Attack Instruments (PAIs). These attacks invade one’s own identity by

using easily accessible and cheap materials. The current research on software-based PAD

relies on various types of representation encodings or features extracted from fingerprint

images [4,6,36]. In general, these features are used to train a classifier or an ensemble of

base classifiers to predict the class label for the given fingerprint image. Representation

codings of the fingerprint images are based on either handcrafted or deep learning-based

features.

The texture-based feature extraction algorithms have proved to be useful for the

liveness detection task. The handcrafted features acquired from these algorithms encode

the given fingerprint’s texture into a feature vector using a set of filters [152]. LBP

[153], LPQ [106] and BSIF [152,154] are the popular handcrafted feature descriptors that

provide a promising solution to the liveness detection task. LBP combines structural

and statistical information to process the fingerprint images, LPQ collects the phase

information into a histogram to be used as a feature vector and BSIF studies the natural

images to learn a fixed set of filters.

Deep learning-based features such as ResNet-50 [76] and VGG-19 [155] have been

extensively used for image classification tasks [156–158]. These deep models can be used
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for the feature extraction task making use of transfer learning, i.e. the models are pre-

trained on ImageNet database [159] and are used for extracting deep feature vectors from

input fingerprint images.

The current state-of-the-art PAD systems consider a particular type of features and

train classifiers based on them. Focusing only on a specific type of features may result

in low robustness. To simulate a real-world scenario, it is essential to develop PAD al-

gorithms that are based on multiple types of features and are prone to variations across

acquisition sensors and multiple PAIs. Therefore, in this study, we conduct an exten-

sive set of experiments to provide a comparison between handcrafted and deep features

for the fingerprint liveness detection task. In addition, we emphasize the importance of

evaluating the performance of liveness detectors under cross-sensor and cross-dataset en-

vironments. By doing so, we evaluate the robustness and generalization abilities of the

liveness detectors.

The major contributions made by this study are:

1. We present a comparative study on the performance of handcrafted features and

deep features for fingerprint liveness detection.

2. We evaluate the performance of various features along with different classifiers under

within-dataset, cross-sensor, and cross-dataset environments.

3. We analyze the achieved results and present a generic framework suitable for real-

world fingerprint liveness detection.

6.2 Feature Representation

The efficiency of many image classification task depends highly on the representational

coding of the images. These codings may either be local textural details or learned

features. While handcrafted features are manually designed to overcome specific issues like

illumination and variation in scale, deep features identify multiple levels of representation

so that higher-level features can represent the semantics of the data. LBP is the most

popular handcrafted feature because of its lower computational cost and ability to code

fine details [160]. In other comparative studies of fingerprint spoof detection [161], LBP,

LPQ and BSIF were observed to be better features than other features such as pores,

65



valleys wavelet, and curvelet GLCM. Therefore, these features are used for comparison

in this study. On the other hand, ResNet-50 and VGG-19 are a popular choice for deep

feature extractors. These models have been employed in various past studies and obtained

better performance than other feature extraction models [162–164].

6.2.1 Handcrafted Features

1. LBP: Local Binary Pattern (LBP) is a local feature descriptor which uses texture

as identification information for the perception of images [165]. LBP is a widely

used descriptor for its robustness to monotonic illumination changes and low com-

putational complexity. LBP characterizes a local region by considering a N dimen-

sional difference vector dn between the central pixel pc and its neighbours pn, where

dn = {p0−pc, p1−pc, .., pN−1−pc} and N is the sampling number of neighbours [64].

2. LPQ: Local Phase Quantization (LPQ) is a local descriptor that embeds all spec-

trum information of the fingerprint in a small feature vector. LPQ is beneficial to

use for its robustness against redundant and blurred information [74]. LPQ uses the

blur invariance property of the Fourier phase spectrum. It is based on a short-term

Fourier transform (STFT) computed over a rectangular N -by-N neighbourhood Nx

for each pixel position x of the image f(x) [106].

3. BSIF: Binarized Statistical Image Features (BSIF) projects local image patches

linearly onto a subspace to compute binary code for each pixel of the image [107,154].

The binary codes are useful for representing the image regions conveniently by using

histograms. BSIF is constructed by binarizing the responses to linear filters learnt

from natural images using independent component analysis (ICA) [166].

6.2.2 Deep Features

1. VGG-19: VGG-19 is a pre-trained convolutional neural network with 19 weight

layers [155]. The model is trained on over a million images from the ImageNet

dataset with around 1000 object categories. This variant of VGG-19 architecture

contains sixteen convolution layers, three fully connected layers, five max pool layers

and a final softmax layer. From the input layer to the last max pooling layer, the

network is used for feature extraction, while the rest of the network is used for
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classification [167]. In this study, we use VGG-19 for extracting features from the

fingerprint images.

2. ResNet-50: We use ResNet-50 [76] as one of the deep feature extraction meth-

ods for its lower complexity and high performance. ResNet-50 is pre-trained on

ImageNet database and was fine-tuned for PAD classification.

6.3 Experimental Study

6.3.1 Feature Extraction

We extracted the handcrafted features using MATLAB. For LBP, LPQ and BSIF descrip-

tors, we obtained feature vectors of size 10, 256 and 4096, respectively, for each image.

We used Keras library of Python for ResNet-501 and VGG-192 implementation, training

and validation. The deep feature vector of size 2048 and 512 was obtained for ResNet-50

and VGG-19, respectively, for each image.

6.3.2 Dataset

In this study we use LivDet 2017 [168] and LivDet 2015 [3, 169] datasets for evaluating

the performance of various features with different classifiers. LivDet 2017 comprises ap-

proximately 3000 live and 3600 spoof images acquired from DigitalPersona, Orcanthus

and Greenbit sensors for training and 5100 Live and 6100 Spoof images for testing. We

use images acquired only from the DigitalPersona sensor of the LivDet 2015 dataset for

cross-dataset evaluation. The complete description of the datasets used in this study is

given in Table 6.1.

6.3.3 Classifiers

1. SVM: Support Vector Machines (SVMs) are efficient and robust learning models

for the classification task. SVMs represent the instances as points in a vector space,

separated based on their class. SVMs are widely used for various image classifica-

1https://keras.io/api/applications/resnet/
2https://keras.io/api/applications/vgg/
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Table 6.1: Description of the LivDet datasets used in this study.

Dataset Sensor
Train Test

#Live #Spoof
Fabrication

Materials

#Live #Spoof
Fabrication

Materials

LivDet 2017

Digital

Persona

999 1199
Body double,

ecoflex, woodglue

1692 2028
Gelatin, latex,

liquid ecoflex

Orcanthus 1000 1180
Body double,

ecoflex, woodglue

1700 2018
Gelatin, latex,

liquid ecoflex

Greenbit 1000 1200
Body double,

ecoflex, woodglue

1700 2040
Gelatin, latex,

liquid ecoflex

LivDet 2015
Digital

Persona

1000 1000
Ecoflex, gelatin,

latex, woodglue

1000 1000
Ecoflex, gelatin,

latex, woodglue

tion applications, like fingerprint liveness detection [4,5,170], remote-sensing image

classification [171], etc.

2. Bagging: Bootstrapped Aggregating (Bagging) is an ensemble-based classifier that

works on a group of base classifiers. These base classifiers are trained on a boot-

strapped version of the original training data. The final prediction is made by fusing

the base classifiers’ individual outcomes using majority voting [172,173].

3. Random Subspace: Random Subspace is an ensemble-based method which con-

stitutes a pool of classifiers by selecting subset of the feature vector pseudo-randomly

[78].

4. A-Stacking: A-Stacking is an adaptive classifier based on ensemble learning. It

focuses on generating a set of disjoint classifiers by considering the properties of

data [6]. We use the same choice of base classifiers and clustering algorithm as

used by [6], i.e., SVM, Voted Perceptron and Random Forest as base classifiers and

K-means with k = 3 as the clustering algorithm.
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6.3.4 Experimental Protocol

Accuracy: Accuracy is a general performance metric to test the correctness of the clas-

sification and is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP= number of Live fingerprints classified as Live; FP= number of Live fingerprints

classified as Spoof; FN= number of Spoof fingerprints classified as Live; and, TN= number

of Spoof fingerprints classified as Spoof.

APCER: In applications like spoof fingerprint detection, where false negatives (FN) have

a huge impact on the performance and the cost of misclassification is high; it is essential

to report the performance based on FN. Therefore, we report the Attack Presentation

Classification Error Rate (APCER), which is defined as:

APCER =
FN

FN + TN

In other words, APCER is defined as:

”proportion of attack presentations using the same PAI species incorrectly

classified as bonafide presentations in a specific scenario”.

Category-1: In this category, we evaluate the performance of various classifiers

trained on the handcrafted and deep features under the within-dataset environment, i.e.,

the models are trained and tested on the instances captured from the same fingerprint

sensor. Since LivDet 2017 was assembled for evaluating cross-material generalization abil-

ity, the test sets contain fingerprint images fabricated using new materials that are not

used in the training set. Therefore, Category-1 inherently tests the models’ robustness to

the cross-material environment.

Category-2: This category is designed to demonstrate the performance under the

cross-sensor environment. In this category, the models are trained and tested on images ac-

quired using a different sensor. Category-2 is useful in evaluating the sensor-generalization

ability of the models, which plays an important role in real-world scenarios.
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Category-3: In this category, the performance of the model is evaluated under

the cross-dataset environment. The models are trained on LivDet 2015 and tested on

LivDet 2017 and vice-versa. As two different datasets are used for training and testing,

Category-3 is useful for cross-dataset generalization.

6.3.5 Results

Table 6.2 shows the result under the within-dataset category, where the models are trained

and tested on fingerprint images acquired using the same sensor in the same dataset. It

is evident from Table 6.2 that ResNet-50 outperforms all other feature types by ∼ 3%

on Orcanthus sensor. Among handcrafted features, BSIF is the most efficient, and its

performance is close to VGG-19.

In our experiments, for the images acquired from the Greenbit sensor, BSIF was

most suitable, and it outperformed deep features by ∼ 3 − 4%. On the Digital-Persona

sensor, BSIF handcrafted features are the most efficient as their performance is better

than all of the deep features by ∼ 2%.

Table 6.3 shows the results obtained using various features along with different clas-

sifiers under the cross-sensor environment. For open-set evaluation, we train and test the

models on images acquired using different sensors (e.g., training on Orcanthus and testing

on DigitalPersona). As shown in Table 6.3, for the Orcanthus-DigitalPersona combina-

tion, VGG-19 outperforms all other feature types in terms of accuracy. BSIF obtained the

lowest APCER. Also, LBP is the most efficient handcrafted feature in terms of accuracy.

For the Greenbit-DigitalPersona combination, BSIF outperforms both the deep feature

types and its handcrafted counterparts by a huge margin (∼ 5− 15%). LPQ is the most

efficient in terms of APCER. For the Orcanthus-Greenbit combination, VGG-19 is the

most efficient in terms of accuracy and outperforms the handcrafted features but obtains

low APCER.

Table 6.4 shows the performance of various features under the cross-dataset envi-

ronment, e.g., training on LivDet 2015 and testing on LivDet 2017. ResNet-50 performs

most efficiently and outperforms the handcrafted features by the margin of ∼ 4 − 9%

when the models are trained on LivDet 2015 and tested on LivDet 2017. On the other

hand, when the models are trained on LivDet 2017 and tested on LivDet 2015, BSIF is

the most efficient type of features in terms of accuracy and APCER.
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Table 6.2: Performance evaluation of hand-crafted and deep features in combination with

different classifiers under Category-1.

Orcanthus

Feature

Type

SVM Bagging (SVM) RSM(SVM) A-Stacking

Accuracy APCER Accuracy APCER Accuracy APCER Accuracy APCER

LPQ 82.73 0.22 82.33 0.22 83.22 0.2 82.87 0.21

LBP 84.1 0.12 84.13 0.11 79.93 0.17 83.83 0.13

BSIF 87.76 0.13 87.79 0.14 87.84 0.13 86.9 0.15

ResNet-50 90.16 0.12 90.67 0.11 90.53 0.11 90.91 0.10

VGG-19 87.29 0.17 86.62 0.18 87.46 0.17 87.81 0.16

Greenbit

Feature

Type

SVM Bagging (SVM) RSM (SVM) A-Stacking

Accuracy APCER Accuracy APCER Accuracy APCER Accuracy APCER

LPQ 89.04 0.15 89.14 0.15 87.75 0.17 89.84 0.12

LBP 77.89 0.08 78.56 0.08 78.45 0.07 79.06 0.13

BSIF 92.11 0.07 91.68 0.07 91.74 0.07 91.79 0.07

ResNet-50 87.11 0.12 87.59 0.12 88.56 0.11 86.28 0.12

VGG-19 87.30 0.11 87.21 0.10 88.32 0.09 87.65 0.10

Digital Persona

Feature

Type

SVM Bagging (SVM) RSM (SVM) A-Stacking

Accuracy APCER Accuracy APCER Accuracy APCER Accuracy APCER

LPQ 88.74 0.15 89.19 0.13 89.92 0.12 90.19 0.11

LBP 78.41 0.09 78.06 0.09 74.03 0.14 80.35 0.17

BSIF 92.2 0.06 92.12 0.06 92.04 0.05 92.15 0.05

ResNet-50 90.87 0.10 90.84 0.09 90.97 0.09 90.31 0.11

VGG-19 80.59 0.26 81.48 0.25 80.78 0.26 80.24 0.27
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Table 6.3: Performance evaluation of hand-crafted and deep features in combination with

different classifiers under Category-2. The experiments are performed by considering

different sensors for training and testing and viceversa. The average of both experiments

is reported.

Orcanthus- Digital Persona

Feature

Type

SVM Bagging (SVM) RSM (SVM) A-Stacking

Accuracy APCER Accuracy APCER Accuracy APCER Accuracy APCER

LPQ 54.02 0.17 52.12 0.27 54.50 0.27 62.14 0.22

LBP 59.94 0.16 60.82 0.07 57.31 0.39 67.52 0.10

BSIF 53.24 0.03 53.53 0.02 53.63 0.02 64.64 0.08

ResNet-50 47.23 0.27 47.33 0.27 51.10 0.28 69.91 0.14

VGG-19 65.29 0.33 63.24 0.29 65.60 0.44 69.61 0.35

Greenbit- Digital Persona

Feature

Type

SVM Bagging (SVM) RSM (SVM) A-Stacking

Accuracy APCER Accuracy APCER Accuracy APCER Accuracy APCER

LPQ 73.01 0.08 74.07 0.08 70.78 0.01 70.17 0.04

LBP 54.92 0.39 56.52 0.35 45.52 1.00 66.08 0.09

BSIF 84.90 0.19 84.00 0.18 85.36 0.17 80.54 0.06

ResNet-50 69.77 0.11 70.86 0.09 69.71 0.20 74.57 0.18

VGG-19 62.15 0.45 59.70 0.43 62.47 0.44 65.92 0.21

Orcanthus- Greenbit

Feature

Type

SVM Bagging RSM (SVM) A-Stacking

Accuracy APCER Accuracy APCER Accuracy APCER Accuracy APCER

LPQ 49.81 0.04 48.87 0.12 50.02 0.53 54.73 0.04

LBP 56.11 0.26 52.84 0.24 55.40 0.29 62.20 0.27

BSIF 53.10 0.19 53.65 0.18 53.99 0.13 61.40 0.07

ResNet-50 55.84 0.31 55.63 0.26 56.54 0.35 70.06 0.07

VGG-19 59.51 0.45 56.38 0.51 59.84 0.41 68.39 0.07
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Table 6.4: Performance evaluation of hand-crafted and deep features in combination with

different classifiers under Category-3.

Train: LivDet2015, Test: LivDet2017

Feature

Type

SVM Bagging (SVM) RSM(SVM) A-Stacking

Accuracy APCER Accuracy APCER Accuracy APCER Accuracy APCER

LPQ 54.46 0 54.46 0 54.46 0 61.5 0.06

LBP 54.54 0 54.54 0 54.49 0 54.54 0

BSIF 55.21 0 55.08 0 55.19 0 58.68 0.04

ResNet-50 61.66 0.04 63.60 0.08 59.02 0.05 69.41 0.03

VGG-19 49.11 0.92 46.21 0.98 50.05 0.88 71.24 0.04

Train: LivDet2017, Test: LivDet2015

Feature

Type

SVM Bagging (SVM) RSM (SVM) A-Stacking

Accuracy APCER Accuracy APCER Accuracy APCER Accuracy APCER

LPQ 68.95 0.08 60.85 0.04 66.05 0.08 63.60 0.04

LBP 55.80 0.43 55.75 0.43 50.00 1.00 55.80 0.43

BSIF 78.45 0.03 79.85 0.04 78.05 0.03 74.85 0.22

ResNet-50 72.80 0.19 72.16 0.15 71.68 0.20 73.48 0.22

VGG-19 69.12 0.17 66.00 0.15 71.36 0.29 69.80 0.28
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6.3.6 Discussion

In this section, we analyze the obtained results by considering various features along

with different classifiers. A thorough analysis is required to infer the results carefully.

We present a pictorial interpretation of the comparative results of handcrafted and deep

features in Figure 6.1.

It is evident that BSIF outperformed other handcrafted features in Category-1. In

Category-2, LBP is better in two of the three cases (i.e., Orca+Green and Orca+Dig)

and BSIF in the remaining (i.e., Green+Dig). In Category-3, BSIF outperforms other

handcrafted features on the 2017-15 combination by a significant margin, and on 2015-17,

it lags behind LPQ by a small margin. LBP and LPQ describe each pixel’s neighbourhood

by a binary code obtained by first convolving the image with a manually pre-defined set of

linear filters and then binarising the filter responses. However, BSIF computes a binary

code for each pixel by linearly projecting local image patches onto a subspace, whose

basis vectors are learnt from natural images via independent component analysis, and

by binarizing the coordinates on this basis via thresholding. Therefore, BSIF could have

better efficacy over other descriptors in image representation.

Whereas ResNet-50 promises to be a more suitable type among deep features for

this particular application, it performs better than VGG-19 in two of the three cases (i.e.,

Digital and Orcanthus sensors) in Category-1, in one of the three cases under Category-2

and both the cases for Category-3. The superiority of ResNet-50 could be due to its unique

architecture involving skip connections that avoid the problem of vanishing gradients. We

evaluated these features’ performances under various complex environments to test the

robustness and observed a significant drop in performance during open-set evaluation.

The performance drop is consistent across all the studied features, but BSIF and ResNet-

50 obtain the lowest drop and perform reasonably well.
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Figure 6.1: Accuracy comparison of various handcrafted and deep features under three

environments. The accuracy is averaged across various classifiers used in the study.
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