
Chapter 5

A-Stacking and A-Bagging

5.1 Introduction

Ensemble learning is useful in overcoming the problems of single classifier systems, i.e.

computational problems: when the learning process of a weak classifier is imperfect,

statistical problems: when learning data is too small to capture the entire hypotheses

space and representational problems: when the true target function cannot be found by

any of the hypothesis from the hypotheses space [113]. One of the active areas of research

in supervised learning has been to study methods for constructing good ensembles of

classifiers [114].

Multiple classifier systems (MCS) sometimes referred to as a committee of classifiers

or a mixture of experts have been exploited by various algorithms [72]. Bagging, boosting,

stacking and random forest are the popular methods based on MCS paradigm. Multiple

variants of these ensemble methods have been proposed and used in the past, such as

Ubagging [115], AdaBoost [116, 117], AveBoost [118], conservative boosting [119], GA-

stacking [120], cooperative ensemble learning system (CELS) [121], etc.

Stacking [122] and bagging [123] are two popular ensemble learning approaches ap-

plied in various real-world scenarios such as intrusion detection, spam classification, credit

scoring etc. [124–129].

Stacking uses a meta-classifier to fuse the ensemble outputs, whereas voting, weighted

majority voting etc. are the common ways to combine ensemble outputs in bagging.

Also, the diversity in stacking is achieved by using heterogeneous classifiers on the same

training set, whereas in bagging we try to gain diversity by using the same base classifier

46

on different training sets [130]. However, as these different training sets are bootstrapped

from a single dataset, they are not entirely disjoint with each other, which results in low

diversity [12]. Several modified versions of popular ensemble learning approaches have

been proposed in the past [131–133], but to the best of our knowledge the adaptiveness

of the algorithm towards the dataset has not been explored yet.

Although ensemble learning is well-known for this particular application, stacking

has not been used for spoof fingerprint detection. We claim that for such applications,

instead of straightforward usage of base classifiers, it is crucial to adapt to the features of

the dataset and to adjust the learning model accordingly.

Christopher Merz [134] argues that having a disjoint set of classifiers is advantageous

in the ensemble learning as it yields weakly correlated predictions. This motivated us to

maintain the diversity of the ensemble by dividing the original training set into multiple

subsets using clustering. In that way, we are able to generate a diverse set of classifiers by

considering the features extracted from live and spoof fingerprint images of the dataset.

The models for fingerprint recognition are vulnerable to attacks by spoof fingerprints

made of different moulds of substances like silicon, wood glue, latex, gelatin, etc. There-

fore, it is required to perform liveness detection before fingerprint recognition to ensure

that fabricated moulds are not used for authentication.

Local Binary Patterns (LBP) is an efficient way to determine the texture of an image

by labelling each pixel with a binary value based on the thresholds on the neighbouring

pixels [103, 135]. LBP considers the central pixel as the threshold and based on that it

assigns the binary values to the neighbouring pixels. LBP value of the pixel is calculated

by summing up the element-wise product of the binary values with their weights. LBP

histograms are robust in terms of grayscale variations, making them suitable for spoof

fingerprint detection, as they can easily incorporate fingerprints with skin distortions,

different skin qualities, dry, moist or dirty skin.

5.1.1 Contributions

• We explore the behaviours of stacking and bagging with various base classifiers on

spoof fingerprint detection problem.

• We emphasize that the learning algorithms must be adaptive towards the properties

47

inherent in the dataset.

• We establish that the diversity among the ensemble of classifiers can be achieved by

performing clustering on the original training set and forming subsets of it.

• We propose adaptive models of stacking and bagging for spoof fingerprint detection

and show their competitiveness on class balanced and imbalanced datasets.

5.2 Stacking

Stacking [122] is a learning approach based on ensemble learning which combines the pre-

dictions made by multiple base classifiers generated by using different learning algorithms

L1, L2, ...Ln. These classifiers are trained on the same training data DTrain containing

examples in the form si =< xi, yi >, where xi is the input vector, and yi is the class label

associated with it.

In the first phase, base classifiers l1, l2, ...ln make predictions for the query instance

xq. In the second phase, the meta-classifier M combines the predictions made by base

classifiers and predicts the final class label. A critical issue in stacking is the choice of

meta-classifier. Comparative studies have been presented in the past [136] to analyse the

performance of different learning algorithms as the meta-classifier. Logistic regression

[137] is the current most popular learning scheme used in stacking as a meta-classifier.

The effort of using a meta-classifier is justified only when the performance of the

ensemble of classifiers is better than the best individual base classifier [136]. Therefore,

it is advised to consider the performance of the best individual base classifier to be the

baseline for the performance of the ensemble.

5.2.1 A-Stacking

Algorithm 3 explains the methodology of A-Stacking and the conceptual model is illus-

trated in Figure 5.1. The first step is to perform clustering on the original training data

DTrain to form n clusters (c1, c2, ..., cn) of instances. Instances belonging to the same clus-

ter are similar to each other and dissimilar to the instances belonging to other clusters.

By performing clustering, we are able to generate disjoint bags of instances. These bags

of instances are used as individual training datasets. For each cluster ci, we generate base

48

Figure 5.1: Conceptual model of A-Stacking.

classifiers l1i , l
2
i , .., l

n
i by applying different classifiers L1, L2, .., Ln. These base classifiers

are tested on the validation data Dvalid to select the best base classifier for each cluster.

The individual accuracies of base classifiers are calculated using 10-fold cross-validation,

and the best performing individual base classifier from each cluster is chosen and sent

to the meta-classifier M . In the second phase, we combine the predictions made by the

qualified base classifiers by using the meta-classifier. Therefore, for a query instance xq

from the test data DTest, first we consider predictions from the base classifiers, and later

we combine these predictions using the meta-classifiers to get the final class label.

5.3 Bagging

Bagging [123] is a method of generating multiple versions of a base classifier by making

bootstrap replicates of training data and using them to get an aggregated predictor. The

performance of Bagging improves if used with an unstable learner, i.e. if the learner causes

significant changes by perturbing the training set.

Let the size of the original training set DTrain is N . Our task is to generate n bags

of size N each by sampling DTrain with replacement. These n bags of instances may have

duplicate instances, and the union of all these bags is a subset of DTrain. Each bag is

used by the learning algorithm L to generate a base classifier li. These n base classifiers

l1, l2, ..., ln are combined using majority voting to get the final predicted class label.

49

5.3.1 A-Bagging

Figure 5.2: Conceptual model of A-Bagging.

Algorithm 4 explains the working mechanism of A-Bagging and the conceptual model

is illustrated in Figure 5.2. We use the same idea as A-Stacking in A-Bagging. The first

step is to use the original training data DTrain for clustering to form n clusters. These

clusters act as n bags of instances to be used for training and testing of individual base

classifiers. In that way, we are able to generate disjoint bags of instances. The union

of these bags of instances is the original training data DTrain. Therefore A-Bagging is

different from traditional Bagging, which uses bootstrap samples of training data to train

the base classifiers.

Later, these predictions are combined using weighted majority voting. The weights

are assigned to the individual classifiers according to their performance on the validation

data. Higher weight is assigned to the classifier having better performance. For classifying

a query instance xq, we associate the weight of the base classifier with its predicted class

label. For the query instance xq, the class label with the highest coefficient (i.e. the sum

of weights of the base classifiers) is assigned. We use Equations 5.1 and 5.2 to assign

weights to the classifiers.

wxy =
n∑
i=1

axiy (5.1)

where, wxy is the total weight associated with the class label y for an instance x. n is the

number of base classifiers and axiy is the accuracy of ith base classifier which has predicted

the class label y for instance x on validation data. The final class label yf determined by

50

Algorithm 3: A-Stacking Algorithm.

Data:

training data DTrain,

test data DTest,

validation data DV alid,

a clustering algorithm C,

a set of classification algorithms < L1, L2, .., Ln >,

a meta-classifier M ,

number of base classifiers n.

Result: ensemble classifier Z

1 {c1, c2, .., cn} ← C(DTrain);

2 for i= 1 to n do

3 < l1i , l
2
i , .., l

n
i >←< L1, L2, .., Ln > (ci);

4 Check the accuracies < a1
i , a

2
i , .., a

n
i > of < l1i , l

2
i , .., l

n
i > on DV alid;

5 Select the best performing base classifier li from < L1, L2, .., Ln > and send

it to M ;

6 Integrate the qualified base classifiers < l1, l2, .., ln > using the meta-classifier M ;

7 return the ensemble classifier Z integrated by M to classify the instances in

DTest;

the weighted majority is given by Equation 5.2:

yxf = argmaxy(w
x
y) (5.2)

The proposed models use the concept of multiple classifier systems by generating a

set of base classifiers, pruning them based on their performance on validation data and

integrating them using logistic regression or weighted majority voting. The idea of using

multiple classifier systems is justified to reduce the false predictions made by a single

classifier system that is untrained on the class of a given test instance.

The first part of the proposed models is to generate the ensemble of base classifiers.

The ensemble is created by using the following components: (i) Training data DTrain =

(x1, y1),(xn, yn) contains n training examples belonging to both live and spoof classes,

where xi is a set of attributes generated from an image feature extraction algorithm (in

51

Algorithm 4: A-Bagging Algorithm.

Data:

training data DTrain,

test data DTest,

validation data DV alid,

a clustering algorithm C,

a classification algorithm L,

number of base classifiers n.

Result: ensemble classifier Z

1 {c1, c2, .., cn} ← C(DTrain);

2 for i= 1 to n do

3 li ← L(ci);

4 Check the accuracy ai of li on DV alid;

5 return the ensemble Z of < l1, l2, .., ln > to classify the instances in DTest;

6 Classify instances in DTest using the weight co-efficients generated by Equation

5.2;

our case, LBP) and yi is the corresponding class label. (ii) A clustering algorithm C is

used to cluster the training examples based on the similarity inherently present in the

data. The target is to create a group of clusters c1,, ck where the examples belonging

to one cluster possess similar values of attributes whereas the examples belonging to

different clusters possess different values of the attributes defined by LBP feature. (iii) A

classification algorithm L (in A-Stacking L = {L1, L2, .., Ln}) to train the base classifiers

on each ci. L uses each ci to generate a base classifier li, which is used to make a

decision individually. In this way, the decision boundary of each base classifier is different

from others, resulting in an ensemble of diverse base classifiers. Later these decisions

are integrated by logistic regression or weighted majority voting to decide for the whole

ensemble. In this section, we present our experimental results and give a performance

analysis of A-Stacking and A-Bagging.

52

5.4 Results and Discussion

5.4.1 Experimental Setup

We use python Weka wrapper to use clustering and classification functionalities of Weka

[110]. All the original datasets have been randomized and divided into 80:20 ratio for

training DTrain and validation DV alid, so that the validation set remains disjoint from

the training set. We use Simple-kMeans [111] as our clustering algorithm which performs

reasonably well on the chosen datasets with k=3. We encourage the readers to experiment

with various values of k and choose the optimal value empirically.

In this study, we compare A-Stacking and A-Bagging with the traditional stack-

ing and bagging respectively with three base classifiers: SMO (Implements John Platt’s

sequential minimal optimization algorithm for training a support vector classifier) [79],

Random Forest (RF) [80] and Voted Perceptron (VP) [138]. These classifiers have been

applied and proven to be efficient in various applications related to image classification.

SVMs were used in fingerprint spoof detection in the recent literature [4,5], whereas ran-

dom forest and voted perceptron have also been a preferred choice of classifiers in spoof

fingerprint and other image classification applications [139,140]. We report the accuracy

of the classifiers as well as their false positive rate and emphasize that both of these mea-

sures must be used simultaneously to evaluate the performance of the classifier. Accuracy

(Acc) signifies the overall performance of the classifier on both classes; however, the false

positive rate (FPR) is crucial in such applications because of the high misclassification

cost. A spoof fingerprint being classified as the live fingerprint may have a considerable

impact, therefore for a classifier to be used in a real-world domain, it is necessary to

maintain high accuracy and low false positive rate.

For stacking, we use the above-mentioned three base classifiers along with logistic

regression [137] as the meta-classifier. The meta-classifier is responsible for integrating

the individual decisions of the base classifiers. As the meta-classifier brings overhead to

the system, the effort is only justified when the overall accuracy of the ensemble is greater

than the best performing base classifier SelectBest.

A variety of schemes have been proposed for combining the ensemble outputs [141],

such as majority vote [114], weighted majority vote [114], average [114], weighted average

[114], the Bayes approach [142], the probabilistic schemes [143], combination by a neural

53

network [142], etc. Majority voting has been a popular way of combining the ensemble

outputs in bagging, whereas stacking requires the presence of a meta-classifier. In this

study, for a fair comparison, we consider majority voting for both A-Bagging and bagging

and logistic regression as a meta-classifier for both A-Stacking and stacking.

5.4.2 Datasets and Pre-processing

The description of the datasets used in this study is given in Table 3.1. We use livdet2011

dataset [1], which was used in fingerprint liveness detection competition 2011.

The image features need to be transformed into numeric attributes to perform classi-

fication on the fingerprint images. We do that by using LBP feature extraction on Weka.

We use Binary Patterns Pyramid LBP from the imageFilter package of Weka1. It is a

batch filter for extracting a pyramid of rotation-invariant local binary pattern histograms

from images. Each local binary pattern represents an intensity pattern (e.g. an edge or

a corner) around a point. A histogram of local binary patterns, therefore, encodes the

larger-scale patterns that occur across regions of images. Local binary patterns are useful

for texture and face recognition.

The fingerprint image features are transformed into 756 numeric attributes and one

nominal class attribute making a high dimensional dataset.

5.4.3 Results

The results of the comparison between A-Stacking and stacking along with SelectBest on

the class-balanced datasets measured by accuracy and false positive rate are described in

Table 5.1.

It can be seen from Table 5.1 that the performance of stacking on DigitalPersona

is lower than both A-Stacking and SelectBest. Therefore, the effort of using the meta-

classifier in stacking is not justified. The performance of the proposed model is slightly

lesser than its counterpart, but yet the performance is better than SelectBest, which

supports the usage of meta-classifier. On average, A-Stacking performs well and yields

competitive results to its counterparts.

The performance of A-Bagging is shown in Table 5.2. A-bagging performs well on

1https://github.com/mmayo888/ImageFilter

54

Table 5.1: Performance evaluation of A-Stacking on class-balanced datasets.

Dataset

Stacking

(SMO+RF+VP)

SelectBest
A-Stacking

(SMO+RF+VP)

Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1)

Biometrika 82.35 0.23 78.85(RF) 0.25 82.55 0.23

DigitalPersona 82.85 0.23 85.30(SMO) 0.18 85.35 0.18

ItalData 66.75 0.16 70.00(SMO) 0.15 70.05 0.15

Sagem 86.24 0.10 84.23(SMO) 0.14 85.11 0.10

Average 79.54 0.17 79.59 0.18 80.76 0.16

±Std Error 4.35 0.03 3.49 0.02 3.62 0.03

class-balanced datasets, but the performance is marginally below the rivals in some cases.

The performance of A-Stacking on imbalanced class datasets of Biometrika sensor is

given in Table 5.3. It is evident that A-Stacking performs better than its counterparts in

most of the cases, and it is always superior to the best individual base classifier SelectBest,

which makes it more effective than conventional stacking.

The results of the comparison between A-Stacking and conventional stacking on class-

imbalanced datasets of DigitalPersona sensor are given in Table 5.4. A-Stacking performs

better than SelectBest in every case, however stacking is outperformed by SelectBest in

three cases, which proves that the role of meta-classifier is fully justified in A-Stacking

but not in stacking.

Table 5.5 shows the performance comparison on class-imbalanced datasets of Ital-

Data sensor. It is evident that A-Stacking gives better performance than stacking in every

case and its performance is always competitive with SelectBest, but it is never below the

accuracy of SelectBest. It is worthwhile to note that SMO is the best individual base

classifier in all the cases making it an excellent choice for spoof fingerprint detection.

55

Table 5.2: Performance evaluation of A-Bagging on class-balanced datasets.

Dataset

Bagging

(SMO)

Bagging

(RF)

Bagging

(VP)

ABagging

(SMO)

ABagging

(RF)

ABagging

(VP)

Acc (%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1)

Biometrika 79.10 0.29 80.15 0.23 78.05 0.33 78.60 0.31 78.85 0.25 77.15 0.29

DigitalPersona 85.25 0.17 81.75 0.26 78.10 0.34 85.30 0.18 79.75 0.27 77.70 0.34

ItalData 68.55 0.17 57.15 0.12 56.15 0.12 70.00 0.15 58.80 0.13 52.45 0.13

Sagem 85.36 0.12 83.05 0.16 77.70 0.16 84.23 0.14 83.10 0.16 78.97 0.20

Average 79.56 0.19 75.52 0.19 72.50 0.24 79.53 0.19 75.12 0.20 71.57 0.24

±Std Error 3.95 0.04 6.15 0.03 5.45 0.06 3.50 0.04 5.52 0.03 6.38 0.05

Table 5.3: Performance evaluation of A-Stacking on class imbalanced Biometrika datasets.

Dataset
Stacking(SMO+RF+VP) SelectBest A-Stacking(SMO+RF+VP)

Accuracy(%) FPR(0-1) Accuracy(%) FPR(0-1) Accuracy(%) FPR(0-1)

Live+Ecoflex+Gelatin 71.05 0.53 68.75(SMO) 0.57 70.30 0.55

Live+Ecoflex+Latex 73.90 0.49 71.80(SMO) 0.54 74.30 0.47

Live+Ecoflex+Silgum 74.80 0.44 71.45(SMO) 0.51 74.95 0.44

Live+Ecoflex+WoodGlue 67.00 0.62 67.15(SMO) 0.59 67.15 0.59

Live+Gelatin+Latex 79.25 0.35 76.25(SMO) 0.41 79.50 0.35

Live+Gelatin+Silgum 78.85 0.33 75.80(SMO) 0.39 80.20 0.30

Live+Gelatin+WoodGlue 73.60 0.46 72.25(SMO) 0.48 73.70 0.46

Live+Latex+Silgum 77.05 0.39 73.60(SMO) 0.47 76.55 0.41

Live+Latex+WoodGlue 69.80 0.55 70.95(SMO) 0.50 71.15 0.52

Live+Silgum+WoodGlue 69.25 0.53 67.40(VP) 0.56 69.35 0.50

Average 73.45 0.47 71.54 0.50 73.71 0.46

±Std Error 1.32 0.03 1.00 0.02 1.36 0.03

56

Table 5.4: Performance evaluation of A-Stacking on class imbalanced DigitalPersona

datasets.

Dataset
Stacking(SMO+RF+VP) SelectBest A-Stacking(SMO+RF+VP)

Accuracy(%) FPR(0-1) Accuracy(%) FPR(0-1) Accuracy(%) FPR(0-1)

Live+Gelatin+Latex 71.70 0.52 69.65(SMO) 0.54 72.15 0.49

Live+Gelatin+Playdoh 69.10 0.61 68.05(SMO) 0.63 68.90 0.61

Live+Gelatin+Silicone 66.90 0.63 68.35(SMO) 0.61 68.35 0.61

Live+Gelatin+WoodGlue 69.00 0.56 67.65(SMO) 0.57 69.90 0.54

Live+Latex+Playdoh 72.90 0.50 71.20(SMO) 0.55 72.60 0.51

Live+Latex+Silicone 71.90 0.51 71.80(SMO) 0.52 72.80 0.49

Live+Latex+WoodGlue 65.95 0.63 70.00(SMO) 0.54 70.05 0.54

Live+Playdoh+Silicone 67.75 0.61 67.80(SMO) 0.61 67.80 0.61

Live+Playdoh+WoodGlue 75.95 0.44 75.40(SMO) 0.44 76.25 0.43

Live+Silicone+WoodGlue 74.30 0.46 73.60(SMO) 0.47 73.95 0.46

Average 70.54 0.55 70.35 0.55 71.27 0.53

±Std Error 1.05 0.02 0.83 0.02 0.86 0.02

57

Table 5.5: Performance evaluation of A-Stacking on class imbalanced ItalData datasets.

Dataset
Stacking(SMO+RF+VP) SelectBest A-Stacking(SMO+RF+VP)

Accuracy(%) FPR(0-1) Accuracy(%) FPR(0-1) Accuracy(%) FPR(0-1)

Live+Ecoflex+Gelatin 63.40 0.46 69.95(SMO) 0.31 69.95 0.31

Live+Ecoflex+Latex 67.35 0.41 68.10(SMO) 0.39 68.35 0.40

Live+Ecoflex+Silgum 60.00 0.44 61.90(SMO) 0.40 61.90 0.40

Live+Ecoflex+WoodGlue 69.80 0.28 70.25(SMO) 0.28 70.65 0.29

Live+Gelatin+Latex 68.35 0.28 69.95(SMO) 0.25 69.95 0.25

Live+Gelatin+Silgum 59.40 0.42 64.35(SMO) 0.27 64.35 0.27

Live+Gelatin+WoodGlue 67.95 0.31 70.20(SMO) 0.24 70.20 0.24

Live+Latex+Silgum 63.60 0.38 66.05(SMO) 0.32 66.05 0.32

Live+Latex+WoodGlue 70.80 0.33 71.45(SMO) 0.30 71.45 0.30

Live+Silgum+WoodGlue 63.85 0.38 69.60(SMO) 0.32 69.60 0.32

Average 65.45 0.37 68.18 0.31 68.24 0.31

±Std Error 1.26 0.02 0.98 0.02 0.99 0.02

58

Table 5.6: Performance evaluation of A-Stacking on class imbalanced Sagem datasets.

Dataset
Stacking(SMO+RF+VP) SelectBest A-Stacking(SMO+RF+VP)

Accuracy(%) FPR(0-1) Accuracy(%) FPR(0-1) Accuracy(%) FPR(0-1)

Live+Gelatin+Latex 76.91 0.38 79.76(SMO) 0.30 79.76 0.30

Live+Gelatin+Playdoh 66.89 0.62 66.20(SMO) 0.61 66.20 0.61

Live+Gelatin+Silicone 69.15 0.56 68.02(SMO) 0.56 70.87 0.54

Live+Gelatin+WoodGlue 73.13 0.51 78.48(SMO) 0.35 78.48 0.35

Live+Latex+Playdoh 80.10 0.32 80.84(SMO) 0.29 81.18 0.29

Live+Latex+Silicone 76.62 0.40 75.63(SMO) 0.40 76.12 0.40

Live+Latex+WoodGlue 68.95 0.58 69.84(SMO) 0.56 69.89 0.55

Live+Playdoh+Silicone 66.55 0.59 67.63(SMO) 0.59 67.68 0.59

Live+Playdoh+WoodGlue 75.04 0.43 76.71(SMO) 0.38 76.71 0.38

Live+Silicone+WoodGlue 72.98 0.48 72.69(SMO) 0.48 72.69 0.48

Average 72.63 0.49 73.58 0.45 73.96 0.45

±Std Error 1.45 0.03 1.71 0.04 1.65 0.04

The performance evaluation of A-Stacking on class-imbalanced Sagem datasets is

given in Table 5.6. The performance is consistent and always better than SelectBest. The

overall accuracy and false positive rate are better than its counterparts.

The performance of A-Bagging on class-imbalanced Biometrika datasets is evaluated

in Table 5.7. We compare the accuracies and false positive rates of A-Bagging with

traditional bagging on respective base classifiers. Here, the highlighted values show the

better performance of A-bagging on its bagging counterpart. It is evident from Table 5.7

that A-Bagging performs better than bagging in most of the cases irrespective of the base

classifier.

Table 5.8 shows the performance comparison between A-Bagging, and it’s counter-

parts on class-imbalanced datasets of DigitalPersona sensor. Here, the performance is

marginally lesser with SMO and VP as base classifiers in some cases, but the average

performance is better with RF base classifier.

Table 5.9 shows the results on imbalanced-class datasets of ItalData sensor. The

59

Table 5.7: Performance evaluation of A-Bagging on class imbalanced Biometrika datasets.

Dataset

Bagging

(SMO)

Bagging

(RF)

Bagging

(VP)

ABagging

(SMO)

ABagging

(RF)

ABagging

(VP)

Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1)

Live+Ecoflex+Gelatin 67.25 0.61 62.30 0.74 60.65 0.75 68.75 0.57 64.65 0.69 64.50 0.67

Live+Ecoflex+Latex 69.15 0.58 67.20 0.64 67.10 0.63 71.80 0.54 68.80 0.60 68.20 0.61

Live+Ecoflex+Silgum 67.20 0.60 71.00 0.53 69.70 0.57 71.45 0.51 71.05 0.53 70.60 0.55

Live+Ecoflex+WoodGlue 67.45 0.59 56.10 0.87 61.65 0.75 67.15 0.59 57.60 0.84 56.05 0.86

Live+Gelatin+Latex 75.15 0.44 73.45 0.49 73.75 0.48 76.25 0.41 74.00 0.48 75.15 0.44

Live+Gelatin+Silgum 74.95 0.41 74.00 0.45 72.25 0.50 75.80 0.39 74.65 0.44 72.85 0.50

Live+Gelatin+WoodGlue 70.55 0.50 60.90 0.76 66.50 0.63 72.25 0.48 60.70 0.76 59.10 0.80

Live+Latex+Silgum 71.55 0.51 72.05 0.50 69.85 0.55 73.60 0.47 72.20 0.50 72.85 0.48

Live+Latex+WoodGlue 71.15 0.50 64.70 0.67 65.05 0.64 70.95 0.50 63.95 0.68 69.00 0.55

Live+Silgum+WoodGlue 66.25 0.59 65.95 0.60 60.55 0.72 67.05 0.58 66.70 0.59 67.40 0.56

Average 70.06 0.53 66.76 0.62 66.70 0.62 71.50 0.50 67.43 0.61 67.57 0.60

±Std Error 1.00 0.02 1.87 0.04 1.49 0.03 1.01 0.02 1.81 0.04 1.94 0.04

Table 5.8: Performance evaluation of A-Bagging on class imbalanced DigitalPersona

datasets.

Dataset

Bagging

(SMO)

Bagging

(RF)

Bagging

(VP)

ABagging

(SMO)

ABagging

(RF)

ABagging

(VP)

Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1)

Live+Gelatin+Latex 72.05 0.50 61.40 0.76 57.55 0.84 69.65 0.54 61.55 0.75 56.20 0.87

Live+Gelatin+Playdoh 68.15 0.63 65.75 0.68 66.25 0.66 68.05 0.63 65.45 0.68 67.40 0.64

Live+Gelatin+Silicone 68.95 0.59 62.40 0.73 65.45 0.68 68.35 0.61 62.35 0.72 67.70 0.61

Live+Gelatin+WoodGlue 69.10 0.55 53.05 0.93 60.90 0.76 67.65 0.57 60.95 0.76 52.45 0.94

Live+Latex+Playdoh 71.95 0.52 66.80 0.65 59.90 0.80 71.20 0.55 66.95 0.64 60.75 0.78

Live+Latex+Silicone 72.20 0.50 64.40 0.69 62.50 0.74 71.80 0.52 65.35 0.68 62.85 0.72

Live+Latex+WoodGlue 70.40 0.55 60.60 0.75 59.90 0.77 70.00 0.54 60.90 0.74 55.60 0.87

Live+Playdoh+Silicone 68.70 0.59 64.00 0.70 63.60 0.70 67.80 0.61 63.70 0.71 63.80 0.71

Live+Playdoh+WoodGlue 74.65 0.46 66.10 0.66 58.15 0.83 75.40 0.44 67.15 0.63 56.95 0.85

Live+Silicone+WoodGlue 73.50 0.45 64.60 0.69 58.40 0.82 73.60 0.47 65.00 0.68 61.10 0.76

Average 70.96 0.53 62.91 0.72 61.26 0.76 70.35 0.55 63.93 0.70 60.48 0.77

±Std Error 0.70 0.02 1.27 0.02 0.97 0.02 0.83 0.02 0.75 0.01 1.62 0.03

60

Table 5.9: Performance evaluation of A-Bagging on class imbalanced ItalData datasets.

Dataset

Bagging

(SMO)

Bagging

(RF)

Bagging

(VP)

ABagging

(SMO)

ABagging

(RF)

ABagging

(VP)

Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1)

Live+Ecoflex+Gelatin 67.30 0.31 56.75 0.75 58.40 0.40 69.95 0.31 59.85 0.66 57.90 0.24

Live+Ecoflex+Latex 66.90 0.42 59.35 0.73 63.15 0.35 68.10 0.39 62.55 0.67 59.50 0.31

Live+Ecoflex+Silgum 62.65 0.39 56.25 0.73 56.00 0.30 61.90 0.39 58.20 0.67 57.40 0.45

Live+Ecoflex+WoodGlue 71.00 0.25 59.85 0.67 58.75 0.26 70.25 0.28 62.15 0.60 62.60 0.21

Live+Gelatin+Latex 70.70 0.25 64.00 0.58 63.00 0.33 69.95 0.25 66.40 0.53 66.35 0.22

Live+Gelatin+Silgum 67.55 0.25 57.85 0.63 60.80 0.41 64.35 0.27 59.30 0.58 58.15 0.32

Live+Gelatin+WoodGlue 72.50 0.23 62.10 0.59 60.20 0.24 70.20 0.24 62.90 0.56 61.95 0.25

Live+Latex+Silgum 64.70 0.38 61.30 0.63 61.20 0.23 66.05 0.32 61.75 0.57 55.10 0.37

Live+Latex+WoodGlue 71.35 0.29 64.00 0.58 60.00 0.24 71.45 0.30 66.35 0.52 69.10 0.29

Live+Silgum+WoodGlue 66.40 0.32 54.05 0.69 56.75 0.21 69.60 0.32 59.30 0.61 60.85 0.34

Average 68.10 0.31 59.55 0.66 59.82 0.30 68.18 0.31 61.87 0.60 60.89 0.30

±Std Error 1.01 0.02 1.06 0.02 0.75 0.02 0.98 0.02 0.90 0.02 1.35 0.02

performance is competitive with traditional bagging in most of the cases. However, there

is a room for improvement in the false positive rate with SMO and VP base classifiers.

The performance of different bagging predictors on class-imbalanced datasets of

Sagem sensor is given in Table 5.10. It is evident that A-Bagging produces competi-

tive results both in terms of accuracy and false positive rate.

5.4.4 Discussion on Results

As we are proposing the adaptive versions of the ensemble learning algorithms, it is vital

to consider an application where this adaptiveness is essential. We take spoof fingerprint

detection problem to show the working mechanism of the proposed models. Livdet 2011

is a high dimensional dataset which makes it easier to provide a thorough analysis of

the performance of the proposed models. In addition to that, it is important to show

the models’ behavior on class-imbalanced datasets. We accomplished this by taking the

whole “live” class along with two subcategories of the “spoof” class.

As it is mentioned earlier, having an ensemble of weakly correlated base classifiers

increases the diversity of the ensemble which results in better performance. We take this

as our motivation and build classifiers on different subsets of training data. We perform

clustering on the training data to form subsets of data. In this study, we considered

61

Table 5.10: Performance evaluation of A-Bagging on class imbalanced Sagem datasets.

Dataset

Bagging

(SMO)

Bagging

(RF)

Bagging

(VP)

ABagging

(SMO)

ABagging

(RF)

ABagging

(VP)

Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1) Acc(%) FPR(0-1)

Live+Gelatin+Latex 80.59 0.28 70.92 0.56 58.15 0.81 79.76 0.30 70.72 0.56 61.73 0.72

Live+Gelatin+Playdoh 68.56 0.57 62.72 0.73 65.91 0.66 66.20 0.61 61.59 0.75 65.07 0.67

Live+Gelatin+Silicone 69.49 0.54 66.99 0.64 67.19 0.59 68.02 0.56 66.01 0.65 67.42 0.61

Live+Gelatin+WoodGlue 77.55 0.35 66.25 0.67 63.26 0.69 78.48 0.35 65.61 0.69 62.42 0.72

Live+Latex+Playdoh 80.35 0.31 71.31 0.54 62.27 0.72 80.84 0.29 73.72 0.48 60.70 0.75

Live+Latex+Silicone 75.39 0.41 72.93 0.50 67.97 0.51 75.63 0.41 73.37 0.49 67.23 0.55

Live+Latex+WoodGlue 68.90 0.57 63.45 0.69 61.83 0.68 69.84 0.56 64.34 0.68 61.24 0.66

Live+Playdoh+Silicone 67.63 0.59 65.76 0.65 65.91 0.63 67.63 0.59 65.52 0.65 66.11 0.62

Live+Playdoh+WoodGlue 77.21 0.38 69.74 0.59 69.44 0.54 76.71 0.38 69.44 0.59 68.36 0.59

Live+Silicone+WoodGlue 72.29 0.48 70.57 0.56 65.76 0.57 72.69 0.48 70.67 0.56 65.81 0.56

Average 73.79 0.45 68.06 0.61 64.76 0.64 73.58 0.45 68.10 0.61 64.61 0.64

±Std Error 1.59 0.03 1.11 0.02 1.06 0.02 1.71 0.04 1.28 0.03 0.90 0.02

Simple-kMeans as the clustering algorithm, but the models are independent of the choice

of the clustering algorithm. In A-Stacking, we use multiple base classifiers on the subsets

of data, and the performance on both class-balanced and imbalanced datasets as given in

Tables5.1,5.3,5.4,5.5,5.6 is competitive to its counterparts. We compared the results with

the traditional stacking approach as well as with the best individual base classifier of the

ensemble. As our results are always better than SelectBest, we justify the effort of using a

meta-classifier. It is evident from our experimental results that traditional stacking often

gives lower accuracy than the SelectBest, which is against the argument.

In A-Bagging, we worked with the same motivation, and here also, the results are

competitive. We used a weighted majority voting scheme to combine the predictions made

by the base classifier on different subsets of data. We compared the performance of A-

Bagging with conventional bagging with corresponding base classifiers on class balanced

and imbalanced spoof detection datasets and showed that the results are equally well on

both types of datasets.

We claim that the proposed adaptive algorithms are generic and can be applied in

various applications. The motivation is to draw attention towards the properties intrin-

sic to the datasets, which makes the proposed algorithms different from the traditional

ensemble learning algorithms. Therefore, A-Stacking and A-Bagging are not restricted

62

to fingerprint spoof detection and can be exploited for applications where stacking and

bagging have been used, i.e., network intrusion detection [124], credit scoring [144–146],

bio-informatics [147], Nosiheptide fermentation product concentration prediction [148],

wireless sensor network target localization [149], predicting high performance concrete

compressive strength [150], bankruptcy prediction [151], etc.

63

