
Chapter 4

AILearn: An Adaptive Incremental

Learning Model for Fingerprint

Liveness Detection

Incremental learning is a process of learning in the presence of new data while retain-

ing the knowledge acquired from previously seen data. Incremental learning is useful for

applications that require accessing a huge amount of data in regular chunks because it

does not need to retrain the model on the entire data when the model needs to expand

progressively. For instance, in spoof fingerprint detection, where the task is to classify

the fingerprint images as “live” and “spoof”, the learning model is expected to learn

incrementally from fingerprint images generated using novel fabrication materials. There-

fore, the learning model must preserve the knowledge Ht extracted from previously seen

data DTraint of live and spoof fingerprint images while learning from the upcoming data

DTraint+1 without accessing DTraint . After learning from DTraint+1 , the knowledge Ht+1

must be carefully integrated with Ht. Therefore,

Ht+1 ← DTraint+1 ∪Ht (4.1)

Polikar et al. [16] define a set of properties that an efficient incremental learning

algorithm must possess: 1) it must learn new knowledge from upcoming data, 2) it should

not require to access old training data, 3) it should preserve the previously acquired

knowledge, and 4) it should be able to accommodate new concepts that may be available in

28

the novel data. To address these properties, we propose AILearn, an adaptive incremental

learning algorithm based on ensemble learning, which learns from the new data while

retaining the previous knowledge without requiring to access the old data.

The major challenge in incremental learning is to overcome the stability-plasticity

dilemma, where stability signifies retaining the previously acquired knowledge, and plas-

ticity signifies learning from new data [16]. Therefore, an ideal approach for incremental

learning must find a balance between stability and plasticity. Focusing only on plas-

ticity may lead to a situation, called catastrophic forgetting where the learning model

forgets the previously acquired knowledge while learning from new data [70]. At the same

time, concentrating only on stability may lead to the inability of capturing comprehensive

knowledge from the latest data [26].

Another challenge in incremental learning is learning in the presence of concept

drift [17, 83, 84]. Concept drift is a situation where the underlying data distribution

changes over time, such that

pt+1(x,w) 6= pt(x,w) (4.2)

where, x represents an instance, w is the class label associated with x, and t is the

timestamp.

Incremental learning can be applied in various applications such as credit card fraud

detection [85, 86], object recognition in image processing [87], video surveillance in com-

puter vision [88], interactive kinesthetic teaching in robotics [89], automated annotation

for video and speech tagging [90], science article recommendation [91], image recogni-

tion [92], text classification [93], object learning [94], social network analysis [95], crypto-

ransomware detection [96] and similar applications. It is particularly useful in applications

where it is required to learn from data in multiple phases one chunk at a time or the ap-

plications where the size of data is so vast that it requires to be broken into numerous

parts and accessed in multiple phases. In addition, incremental learning is also useful in

applications where the old data is no longer available. Therefore the model cannot be

retrained from the entire data; instead, it has to be incrementally updated.

The learning behaviour varies depending on the application to which it has been

applied. Learning methods can be grouped into three categories based on applications

with different data requirements:

1. Applications that require access to the previously seen data. Predicting the stock

29

exchange is one of these applications where we need yesterday’s data and today’s

data to predict for tomorrow [97].

2. Applications that need access only to the knowledge extracted from the previously

accessed data but not the actual data itself. Cancer diagnosis belongs to such an

application where we need only the knowledge extracted from the previous bunch

of data along with the current data [98].

3. Applications that require discarding the previous data and building a new model

strictly based on the current data. Analysing the current trends on social media such

as Twitter is one of these applications where the previously accessed data become

insignificant over time, and the learning model must be built entirely on the current

data [99].

Presentation attack detection is an emerging research domain, which involves fin-

gerprint or face spoof detection [6, 100–102]. Existing studies suggest that fingerprint

recognition systems are vulnerable to attacks by spoof fingerprints made of different ma-

terials such as gelatin, silicone, latex etc. [39,103]. As represented by Figure 3.1, it is not

possible for us to manually distinguish between live and spoof fingerprints generated using

these materials. Further, the performance of the spoof fingerprint detector substantially

degrades on the novel spoof materials [4,5]. Incremental learning is one of the solutions to

mitigate performance degradation due to evolving spoofing techniques by using novel fab-

rication materials. Therefore, the spoof fingerprint detection application has been chosen

for demonstrating the efficacy of incremental learning.

In spoof fingerprint detection, our adaptive incremental learning model AILearn

yields a robust spoof detector that can identify spoof fingerprints generated from fab-

rication materials unknown to the current model. We exploit the incremental learning

scenario by considering two learning phases. In the first phase, the model learns images

from live category and spoof images of two fabrication materials. In the later phase, the

model learns the spoof images of the remaining fabrication materials. The idea is to test

the ability of the model to maintain stability and plasticity while obtaining performance

gain on novel spoof materials in multiple phases. In an ideal scenario, the incremental

learner must not observe a significant performance degradation on the known data while

improving its performance on new data in subsequent learning phases [104].

30

The contributions made by this study are as follows:

1. We propose a novel incremental learning model AILearn, which is adaptive towards

the similarity inherently present in the data and is capable of overcoming the clas-

sic stability-plasticity dilemma. The proposed model produces lower performance

degradation and higher performance improvement while learning in multiple phases.

• We perform clustering on the training data to generate clusters of instances

and use these clusters to train RBF SVMs as base classifiers which results in

an ensemble of diverse classifiers. In our observations, these base classifiers are

free from catastrophic forgetting, i.e. while learning from new data, there is

no significant performance loss concerning the previously trained instances.

2. Our proposed AILearn does not need to retrain the model from the scratch while

introducing new data to it. As we use an ensemble of base classifiers, it offers us a

high degree of reliability and robustness. The new knowledge is added by carefully

integrating another ensemble to the model.

3. AILearn for spoof fingerprint detection does not need to access the previously seen

fingerprints while learning the new fingerprints, which results in low memory require-

ments. In addition, it discards the poorly performing base classifiers and uses only

the relevant ones to save the storage as well as improve the classification accuracy.

4.1 AILearn: A Generic Model for Incremental Learn-

ing

The generic model of AILearn for incremental learning is described in Algorithm 2. This

model is application-independent and can be applied to various applications. In this

chapter, we consider an application where we fix the number of base classifiers to be

generated in every learning phase. Therefore we consider the number of base classifiers n

as an input to the algorithm. Also, the proposed algorithm is independent of the choice

of clustering and classification algorithms.

To show the incremental behaviour of AILearn, we need to partition the original

training datasetDTrain into p parts to be accessed in p learning phases (step 1 in Algorithm

31

Algorithm 2: Learning Incrementally using AILearn Algorithm.

Data: training data DTrain =< xs, ys >,

test data DTest =< xt, yt >,

validation data DV alid =< xu, yu >,

a clustering algorithm C,

a classification algorithm K,

number of base classifiers n,

number of learning phases p.

Result: ensemble classifier Zf

1 partition DTrain and DTest into p parts each;

2 Z0= NULL;

3 for i= 1 to p do

4 {c1, c2, .., cn} ← C(DTraini
);

5 for j=1 to n do

6 kj ← K(cj);

7 Check the accuracy aj of kj on DV alid;

8 Zi ← {k1, k2, .., kn}i;

9 Zi ← Zi + Zi−1;

10 Zf ← Zi;

2). We partition the test dataset DTest as well accordingly. The target is to demonstrate

the incremental behaviour by adding a new batch of training data in each learning phase

and testing the performance of the learned model on DTesti+1
as well as on DTesti .

Later, we perform clustering on each of the partitioned training set DTraini
that

yields a set of clusters c1, c2, .., cn. Next, we train base classifiers on each of the generated

clusters cj by using a classification algorithm K (steps 4-6 of the algorithm). Therefore,

we generate an ensemble of base classifiers where the diversity among the base classifiers

is high due to clustering. As pointed out by Polikar et. al. [16], if each classifier is trained

on a different subset of training data based on some distribution, then it is highly probable

that a misclassified instance is classified correctly by another classifier. Therefore, it is

always advantageous to have a diverse set of base classifiers.

After learning in every phase, first, we test the accuracy of the ensemble of base

32

classifiers generated in the current phase on validation data which was held-out from

training (step 7 of the algorithm). The purpose of using validation data is to assign

weights to the base classifiers based on their performance. We use Equations 4.3 and 4.4

to assign weights to the classifiers.

wxy =
n∑
i=1

axiy (4.3)

where, wxy is the total weight associated with the class label y for an instance x. n is the

number of base classifiers and axiy is the accuracy of ith base classifier which has predicted

the class label y for instance x on validation data. The final class label yxf determined by

the weighted majority is given by Equation 4.3:

yxf = argmaxy(w
x
y) (4.4)

We test the accuracy of the ensemble Zi generated in ith learning phase (step 8) by

classifying the instances of test data using Equations 4.3 and 4.4. Based on a threshold

on the performance, the poorly performing classifiers are discarded so that they do not

participate in the voting process. Similarly, in the next phase, we generate another

ensemble of base classifiers Zi+1, trained on the newly added data DTraini+1
. We test the

performance of individual base classifiers on validation data and merge the qualifying base

classifiers with the existing ensemble from the previous phase (step 9). All the qualifying

classifiers are tested on the test data to demonstrate the performance improvement. The

idea is to highlight that as the model proceeds to learn DTraini+1
; its performance is

increased as tested on the new data without considerable performance loss on DTraini
.

4.2 AILearn for Spoof Fingerprint Detection

The incremental ability of the proposed algorithm is achieved by considering multiple

learning phases. The performance degradation for the previously known knowledge and

the performance improvement for the newly learned data are observed while moving to

subsequent learning phases.

The schematic diagram explaining the working mechanism of AILearn on spoof fin-

gerprint detection is given in Figure 4.1. In this study, we have used LivDet 2011 [1],

LivDet 2013 [2], and LivDet 2015 [3] datasets. We partition each of the training data in

33

two parts: Known Fake (KF) and New Fake (NF). KF consists of 1000 live instances and

400 spoof instances belonging to two of the spoof subcategories. NF consists of 600 spoof

instances of the remaining subcategories. Test data is partitioned in the same manner

(i.e., Test1: 1000 Live + 400 Spoof, Test2: 600 Spoof).

In the first phase, when the model is trained on KF, we test its accuracy on both

Test1 and Test2. The idea is to see the difference in both accuracies as in the first phase,

the model is trained only on KF, it must yield good accuracy on it but poor accuracy on

NF. In the second phase, when new fake data is introduced to the training model, we need

to accommodate it by managing two challenges: first, the knowledge acquired in the first

phase must not be lost. Therefore, the accuracy of the updated model must not decrease

drastically when tested on KF test data. This shows that the model possesses better

stability. Second, the model must be able to learn from the new fake data added to the

training model. Therefore the accuracy on NF must increase significantly, which shows

that the model possesses better plasticity. The components of the proposed framework

are explained as follows:

4.2.1 Feature Extraction

1. Local Binary Patterns (LBP) are a local texture descriptor which is widely used

for fingerprint liveness detection [30,105]. LBP is an illumination invariant descrip-

tor which determines the texture of an image by labelling each pixel with a binary

value based on the thresholds on the neighbouring pixels. It considers the central

pixel as the threshold and based on that it assigns the binary values to the neigh-

bouring pixels. LBP value of the pixel is calculated by adding up the element-wise

multiplications of the binary values with their weights.

2. Local Phase Quantization (LPQ) can be an effective method for detecting liveness

of a fingerprint image as it is insensitive to the blurring effect [74,106]. LPQ features

consider the spectral differences between live and spoof fingerprint images.

3. Binarized Statistical Image Features (BSIF) is a method of constructing local image

features to encode the texture information from the images [107]. The descriptors are

determined by the statistical properties of natural image patches. For a particular

image, BSIF computes a binary string for the pixels and use it as a local descriptor

34

Cluster 1 Cluster 2 Cluster n

Classifier 1 Classifier 2 Classifier n

Ensemble 1

Known Fake

Cluster n+1 Cluster n+2 Cluster n+m

Classifier
n+1

Classifier
n+2

Classifier
n+m

Ensemble 2

New Fake

Updated Ensemble

Known Fake +New Fake

Test Data

.......

.......

.......

.......

Figure 4.1: Schema of the proposed AILearn incremental learning algorithm for Spoof

Fingerprint Detection.

of the image intensity pattern in the pixel’s surroundings.

4. ResNet-50 [76] is a deep Residual Network originally designed for object recogni-

tion. ResNet-50 has been pretrained on ImageNet database [108]. By extracting

the features using ResNet-50 we utilize transfer learning for spoof fingerprint de-

tection. ResNet architecture is used for deep feature extraction as it is among the

efficient Convolutional Neural Networks introduced till now. ResNet utilizes skip

connections, or shortcuts to jump over layers to avoid the problem of vanishing

gradients.

35

4.2.2 Ensemble Generation

After feature extraction, the proposed incremental learning algorithm generates the en-

semble of base classifiers. The ensemble is created by using the following components:

• Training data DTrain = (x1, y1),(xn, yn) contains training examples belonging to

both “live” and “spoof” classes, where xi is a set of attributes generated from an

image feature extraction algorithm and yi is the corresponding class label.

• A clustering algorithm C is used to cluster the training examples based on the

similarity of records in the data. The target is to create a group of clusters c1, .., cn

where the examples belonging to one cluster possess similar values of attributes

whereas the examples belonging to different clusters possess different values of the

attributes defined by image features. We strongly recommend using a clustering

algorithm which does not require to define the number of clusters n apriori, so that

the clusters are naturally formed based on the similarities, but depending upon the

application, the number of base clusters may be known apriori.

• A classification algorithm K to train the base classifiers on each cn. K uses each cn

to generate a base classifier which is used to make a decision individually. In this

way, the decision boundary of each base classifier is different from others, resulting

in an ensemble of diverse base classifiers [109]. Later these decisions are integrated

by using weighted majority voting to decide for the whole ensemble.

4.3 Experimental Results and Discussion

4.3.1 Experimental Settings

The description of the datasets used in this study is given in Table 3.1. We use LivDet

datasets of three years: LivDet 2011 [1], LivDet 2013 [2] and LivDet 2015 [3], which were

used in fingerprint liveness detection competition conducted in consecutive years.

We partition each of the training and testing data belonging to a particular sensor

(e.g. Biometrika, DigitalPersona, etc.) into two parts: I. Known Fake (KF) and II. New

Fake (NF). In LivDet 2011 [1] and LivDet 2013 [2], we have five subcategories in the spoof

class; therefore, we have ten possible combinations of training datasets for the known fake.

36

Table 4.1: Partitioning of the datasets in Phase I and Phase II for evaluation of the

AILearn algorithm.

Sr. No.

LivDet2011 [1], LivDet2013 [2] LivDet2011 [1] LivDet2015 [3]

Biometrika, ItalData Digital, Sagem Biometrika, Digital

Phase I Phase II Phase I Phase II Phase I Phase II

1 Live+Ecoflex+Gelatin Latex+Silgum+Woodglue Live+Gelatin+Latex Playdoh+Silicone+Woodglue Live+Ecoflex+Gelatin Latex+Woodglue

2 Live+Ecoflex+Latex Gelatin+Silgum+Woodglue Live+Gelatin+Playdoh Latex+Silicone+Woodglue Live+Ecoflex+Latex Gelatin+Woodglue

3 Live+Ecoflex+Silgum* Gelatin+Latex+Woodglue Live+Gelatin+Silicone Latex+Playdoh+Woodglue Live+Ecoflex+Woodglue Gelatin+Latex

4 Live+Ecoflex+Woodglue Gelatin+Latex+Silgum Live+Gelatin+Woodglue Latex+Playdoh+Silicone Live+Gelatin+Latex Ecoflex+Woodglue

5 Live+Gelatin+Latex Ecoflex+Silgum+Woodglue Live+Latex+Playdoh Gelatin+Silicone+Woodglue Live+Gelatin+Woodglue Ecoflex+Latex

6 Live+Gelatin+Silgum Ecoflex+Latex+Woodglue Live+Latex+Silicone Gelatin+Playdoh+Woodglue Live+Latex+Woodglue Ecoflex+Gelatin

7 Live+Gelatin+Woodglue Ecoflex+Latex+Silgum Live+Latex+Woodglue Gelatin+Playdoh+Silicone

8 Live+Latex+Silgum Ecoflex+Gelatin+Woodglue Live+Playdoh+Silicone Gelatin+Latex+Woodglue

9 Live+Latex+Woodglue Ecoflex+Gelatin+Silgum Live+Playdoh+Woodglue Gelatin+Latex+Silicone

10 Live+Silgum+Woodglue Ecoflex+Gelatin+Latex Live+Silicone+Woodglue Gelatin+Latex+Playdoh

In LivDet 2015 [3], there are four sub-categories of spoof class, therefore we have six such

combinations. In the first experimental setting, we partition the training data into two

parts and learn each one of them in two learning phases (e.g., I. Live + Ecoflex + Gelatin,

II. Latex + Silicone + Woodglue). The description of the partitioning of these datasets

is given in Table 4.1. In every phase, the trained model is tested on two test datasets

created using the same setup. In the second experimental setting, we retrain the model in

the second learning phase using the entire training data. We use the second experimental

setting as the benchmark for the proposed model. Therefore, the motivation is to have

competitive performance without the need for retraining the model using the entire data.

This study can also be used for comparing the performance of spoof detectors with

deep features and with hand-crafted local features. We use ResNet-50 [76] for extracting

deep features from the fingerprint images. LBP, LPQ and BSIF features were extracted

using MATLAB. The extracted features are converted into arff files to make them WEKA

compatible. We use Waikato Environment for Knowledge Analysis (Weka) [110] to classify

the images into “live” and “spoof” classes.

The proposed AILearn is not restricted to any particular clustering or classification

algorithm. In our experiments, we use SimpleKMeans [111] clustering algorithm with

k=2. We use SMO (John Platt’s sequential minimal optimization algorithm for training

37

a support vector classifier) [79] as the classification algorithm. SVMs have been an appro-

priate choice for classifying fingerprint images as live and spoof [4–6]. For every dataset,

we report the overall accuracy of the model on known fake (KF) and new fake (NF) data

as well as the bonafide presentation classification error rate (BPCER) and attack pre-

sentation classification error rate (APCER), where bonafide presentation = “live”, and

attack presentation = “spoof”.

4.3.2 Results

In this section, we provide the experimental results conducted on three high dimensional

datasets. To demonstrate the incremental behaviour of the proposed model, we learn

the data in two phases. In the first phase, the model is trained over instances of “Live”

category and instances belonging to two sub-categories of “Spoof” class. In the first phase,

when the learned model is tested using the known sub-categories of spoof class, we call

it “I. Known Fake”. We also test the learned model on the remaining sub-categories on

which the model is not yet trained, we call it “I. New Fake”. In the second phase, we

train the model on the remaining sub-categories of spoof fingerprints and integrate the

hypotheses with the existing model. Now, again we test the performance of this updated

model on the same test sets, we call them “II. Known Fake” and “II. New Fake”. As

AILearn does not require to access the whole training data in the second phase, the count

of “Live” instances in the second training data is 0; therefore in place of BPCER in New

Fake, we have written N/A.

Tables 4.2 and 4.3 describe the experimental results for AILearn on various datasets

of LivDet database while using LBP, LPQ, BSIF and ResNet-50 features1. Table 4.2

represents the average of AILearn’s stability-plasticity values for all combinations of

LivDet2011 [1] datasets as described in Table 4.1. In Table 4.2, we report the average

performance of all features for a particular sensor (e.g., Biometrika, DigitalPersona, etc.).

The feature-level comparison for individual sensors is given in Figure 3. As a baseline for

comparison, we report the performance of the learning model while retraining it using the

entire data (e.g., Bio-RT). As we retrain the model in the second phase of learning, the

1Note that Sagem dataset has 1036 spoof images in the test set and Digital-Persona dataset has 1004

live images in the train set. For LBP, LPQ and BSIF features we have considered the original quantity

of images, but for ResNet, we have considered 1000 images from each category.

38

performance values for the first phase are same as without retraining.

While using LBP features on Biometrika, the average performance degradation for

Known Fake (KF) from the first phase to the second phase is 3.34%, whereas the perfor-

mance improvement for New Fake (NF) is 29.75%. On LPQ features, the average per-

formance degradation for KF from the first phase to the second phase is 5.57%, whereas

the performance improvement for NF is 28.03%. AILearn performs reasonably well on

LivDet2011 [1] Biometrika dataset using ResNet-50 features, with which it yields 57.23%

performance improvement from the first phase to the second phase. Also, it is evident

that on Biometrika dataset, the best local feature is BSIF, which yields only 1.86% per-

formance degradation on KF whereas 32.69% performance improvement on NF.

On DigitalPersona dataset while using LBP features, the performance of the model

on KF is increased by 8.97% in the second phase, the performance on NF is improved

by 15.8% in the second phase. The results of the LPQ feature are significantly well on

KF. There is no performance degradation while moving to the second phase; rather, the

performance is improved by 2.65%. Also, the performance is improved by 39.86% on NF

in the second phase. The results on the BSIF feature are adequate as the performance

degradation on KF is only 7.05%, and the performance improvement is 34.83% with

decent overall accuracy. While using ResNet-50 features on DigitalPersona dataset, the

performance is improved on KF by 3.19%, whereas on NF in the second phase, it is

improved by 32.31%.

On ItalData dataset, using LBP features, the model yields satisfying stability and

reasonable plasticity but the accuracy on NF is not adequate. Using LPQ features the

performance degradation on KF is only 2.59%, and the performance improvement on NF

is 6.55%. Using BSIF features, we get outstanding results with only 3.71% performance

degradation on KF but 56.37% performance improvement on NF. While using ResNet-50

features on ItalData 2011 dataset, the performance drop on KF from the first phase to

the second phase is 4.99%, whereas the performance improvement on NF is 2.49%.

On Sagem dataset while using LBP features, we get slightly higher performance

degradation (13.71%) on KF, which affects the stability of the model, but the plasticity

is significantly well with 49.88% performance improvement on NF. While using LPQ

features, we get 7.71% performance improvement on KF with 92.67% average accuracy

and 47.30% improvement on NF, which results in sound plasticity. The best results

39

we achieve while using BSIF features. We get 3.84% improvement on KF and 50.45%

improvement on NF, which results in high plasticity with no compromise on stability.

While using ResNet-50 features, the performance of AILearn on KF increases by 5.88%

in the second phase, and on NF the performance is increased by 45.99%.

We test the performance of AILearn on some samples of LivDet2013 [2] and

LivDet2015 [3] datasets. On LivDet2013 Biometrika dataset, using BSIF features, we

get a performance improvement of 2.87% on NF with adequate overall performance. Us-

ing LPQ features, we get an improvement of 11.95% on NF in the second phase. Using

ResNet-50 features on LivDet2013 Biometrika dataset, we get an improvement by 187.68%

on NF with 99.02% average performance on NF in the second phase.

On LivDet2013 ItalData dataset, while using BSIF feature, the performance im-

provement is not significant, but the overall performance is reasonably well. While using

LPQ features, we get an improvement of 2.45% with an excellent overall performance.

While using ResNet-50 features, we get 34.38% increase in the performance on NF in the

second phase.

On LivDet2015 Biometrika dataset, using BSIF features, we get an increase of 4.47%

on NF in the second phase with an excellent overall performance. Using LPQ features, the

performance is increased by 34.11% in the second phase. While using ResNet features,

the performance is increased by 35.56% on NF in the second phase. On LivDet2015

DigitalPersona dataset, using BSIf features, there is no significant improvement, but the

performance is 90.4% in the second phase. Using LPQ features, there is an increase of

13.07% on NF in the second phase. Using ResNet-50 features, we get an increase of 4.25%

on NF in the second phase.

4.3.3 Feature-Level Comparison

Figure 4.2 represents the comparison among various features used with AILearn on LivDet

2011 [1] datasets. We emphasise on the percentage gain on NF and percentage loss on

KF in subsequent phases. Ideally, the features on which the percentage gain is high and

percentage loss is low are the most suited for application. From the Figure 4.2, we can

see on Biometrika, using ResNet features we get a performance gain of 57.23%, whereas

40

0 10 20 30 40 50 60

BSIF

LBP

LPQ

ResNet-50

32.69

35.42

28.02

57.23

1.86

3.34

5.57

−3.29

Biometrika

%Gain
%Loss

−10 −5 0 5 10 15 20 25 30 35 40

BSIF

LBP

LPQ

ResNet-50

34.83

15.8

39.86

32.31

7.05

−8.97

−2.65

−3.19

DigitalPersona

%Gain
%Loss

0 10 20 30 40 50 60

BSIF

LBP

LPQ

ResNet-50

56.35

14.17

6.55

2.49

3.7

−0.49

2.59

4.99

ItalData

%Gain
%Loss

−10 0 10 20 30 40 50

BSIF

LBP

LPQ

ResNet-50

49.83

49.87

47.28

45.99

−3.82

13.71

−7.69

−5.88

Sagem

%Gain
%Loss

Figure 4.2: Comparison of the performance of AILearn when used with different features

shown on Y axis. Percentage Gain on NF and percentage Loss on KF while learning in

second phase are shown on X axis.

41

Table 4.2: Stability-Plasticity calculation on LivDet 2011 [1].

DataSet

AILearn

I. KF I. NF II. KF II. NF

Acc

(%)

BPCER

(0-1)

APCER

(0-1)

Acc

(%)

BPCER

(0-1)

APCER

(0-1)

Acc

(%)

BPCER

(0-1)

APCER

(0-1)

Acc

(%)

BPCER

(0-1)

APCER

(0-1)

Bio 80.23 0.15 0.31 55.39 N/A 0.45 78.87 0.4 0.13 76.18 N/A 0.23

Bio-RT 80.23 0.15 0.31 55.39 N/A 0.45 84.58 0.12 0.22 67.56 N/A 0.32

Dig 89.24 0.02 0.31 26.46 N/A 0.73 90.88 0.07 0.11 35.02 N/A 0.64

Dig-RT 89.24 0.02 0.31 26.46 N/A 0.73 90.72 0.02 0.26 33.51 N/A 0.66

Ital 80.45 0.11 0.37 49.35 N/A 0.51 78.16 0.18 0.31 56.7 N/A 0.43

Ital-RT 80.45 0.11 0.37 49.35 N/A 0.51 81.38 0.11 0.36 52.22 N/A 0.46

Sag 81.3 0.14 0.29 35.62 N/A 0.64 83.08 0.22 0.04 52.96 N/A 0.47

Sag-RT 81.3 0.14 0.29 35.62 N/A 0.64 84.31 0.14 0.19 42.23 N/A 0.56

the loss in performance on KF is −3.29%. The ′−′ symbol represents that instead of

performance loss on KF, we observe a gain of −3.29%. Among the handcrafted features,

LBP yields the highest percentage gain and BSIF yields the lowest percentage loss.

On Digital Persona dataset, the highest performance gain is observed using LPQ

features and the lowest performance loss is observed using LBP features. On an average,

performance of LPQ features is the most adequate on this dataset.

On Ital Data dataset, we observe the highest performance gain using BSIF features

and the lowest performance loss by using LBP features. Overall, the performance of BSIF

features is the most adequate.

On Sagem dataset, we observe the highest gain while using LBP features and the

lowest loss while using LPQ features. The performance of ResNet is close to LPQ, but

on an average LPQ is the most suited for this dataset. Similar observations has been

obtained for the same features on LivDet 2013 [2] and LivDet 2015 [3].

4.3.4 Comparison with State-of-the-art

In this section, we compare the performance of AILearn with the current state-of-the-

art. To evaluate the performance of AILearn along with the existing work in incremental

42

Table 4.3: Stability-Plasticity calculation on LivDet 2013 [2]-LivDet 2015 [3] dataset.

DataSet

AILearn

I. KF I. NF II. KF II. NF

Acc

(%)

BPCER

(0-1)

APCER

(0-1)

Acc

(%)

BPCER

(0-1)

APCER

(0-1)

Acc

(%)

BPCER

(0-1)

APCER

(0-1)

Acc

(%)

BPCER

(0-1)

APCER

(0-1)

2013-Bio 98.03 0.02 0.02 93.82 N/A 0.06 97.6 0.03 0 96.52 N/A 0.03

2013-Ital 97.8 0 0.07 84.23 N/A 0.16 95.10 0 0.07 84.25 N/A 0.16

2015-Bio 83.26 0.15 0.03 89.4 N/A 0.11 81.34 0.27 0 93.4 N/A 0.07

2015-Dig 83.64 0.22 0.06 89.37 N/A 0.11 81.33 0.25 0.05 90.4 N/A 0.1

setting, we compare BPCER of AILearn on New Fake (NF) and Known Fake (KF) men-

tioned in the tables given in Section 4.3.2 with ferrfake when ferrlive=10% from [4] and

the results of [5] mentioned in the paper. The comparison results on LivDet2011 datasets

are given in Table 4.4. As can be seen from the Table 4.4, performance is evaluated based

on two metrics: percentage loss in FPR (or ferrfake) on NF and percentage change in FPR

on KF. We emphasize that for an incremental learning algorithm, it is essential to have

a decent percentage loss in FPR on NF, and the percentage change in FPR on KF must

always be negative. As AILearn makes use of three hand-crafted features and one type of

deep features, we report the best performance yielded by any type of feature (indicated

in parentheses). It is evident from the Table 4.4, that none of the state-of-the-art models

produce all negative values in percentage change in FPR on KF, but AILearn does that

while maintaining a good percentage loss in FPR on NF. Similar observations have been

noted for LivDet 2013 [2] and LivDet 2015 [3].

4.3.5 Discussion on Results

We describe the results for AILearn by the Tables 4.2-4.3. We conduct the experiments

with the motivation of exploiting the incremental ability of AILearn. For that, our em-

phasis is on reporting the stability and plasticity of the proposed model. We highlight

the performance degradation on the known spoof fingerprints and the performance im-

provement on the new spoof fingerprints before and after learning the new fake data. Our

experimental results justify our motivation as we are able to achieve high plasticity with

43

Table 4.4: Performance evaluation of AILearn in comparison to the state-of-the-art [4, 5]

on LivDet2011 [1] datasets. In this table, FPR, NF and KF denotes false positive rate,

new fake and known false, respectively.

Dataset
Kho. et. al. [4] Rattani et. al. Feature level [5] Rattani et. al. Score level [5] AILearn

%loss in

FPR on NF

%change in

FPR on KF

%loss in

FPR on NF

%change in

FPR on KF

%loss in

FPR on NF

%change in

FPR on KF

%loss in

FPR on NF

%change in

FPR on KF

Biometrika 62.72 -10.50 64.20 4.44 70.27 -25.48 53.85(ResNet) -74.36

DigitalPersona 93.95 57.94 89.15 37.78 72.20 91.29 25.86(BSIF) -57.14

ItalData 67.90 -7.54 55.55 3.18 39.32 19.88 60.00(ResNet) -100

Sagem 89.49 44.61 89.49 39.66 89.09 13.87 60.00(LBP) -86.67

no or negligible loss in stability. As a baseline, we consider a model which requires to be

retrained using the entire data in the second learning phase. Ideally, such a model must

not encounter performance drop on KF in the second phase and then there must be a

significant performance improvement on NF. As we compare the results of AILearn with

and without retraining the model with entire data, our results without retraining seem to

be satisfying the motivation of the study.

In some cases, we get better stability but lesser plasticity while using a particular

feature and vice-versa. In some cases, we get reasonable stability and plasticity, but the

overall accuracy of the model is not adequate with that feature. This kind of results

supports the famous no-free-lunch theorem [112], which states that no one model works

best for every problem. Therefore, it is advised in machine learning to try multiple

models with different settings and find one that works best for a particular problem. On

an average, AILearn performs reasonably well on all the datasets with high performance

gain on NF and low/negligible performance loss on KF. In addition, the overall accuracy

of the proposed model is also high, with highest accuracy approaching 96.52% on NF.

Performance of AILearn in Comparison with Baseline and State-of-the-art

AILearn performs well both in respect of stability and plasticity. Table 4.2 shows that

AILearn yield better plasticity than the baseline where we retrain the model from the

scratch. AILearn without retraining the model gives better stability in two of the four

cases of LivDet2011 [1] datasets, which encourages the motivation for incremental learn-

44

ing. In addition, the performance on LivDet2013 [2] and LivDet2015 [3] is reasonable well

with the highest accuracy reaching 96.52% on NF and 97.6% on KF.

Performance of AILearn using Various Features

As described in Section 4.3.3, AILearn performs well on every type of features. This fea-

ture level comparison provides useful insights on the performance of handcrafted features

and deep features. Most often, it is argued that the deep features outperform handcrafted

features in almost every case, therefore handcrafted features must be discarded. On con-

trary, this study proves that handcrafted features give neck to neck competition and in

some cases outperform the deep features. Therefore, a single type of features can not be

trusted to perform well in every case.

45

