
Chapter 3

EaZy Learning: An Adaptive

Variant of Ensemble Learning

Spoof detectors benefit fingerprint authentication systems in terms of increased security

and user confidence [69, 70]. Spoof detection becomes a challenging task when spoof

fingerprints fabricated using new materials (that were not used in training) or sensed

using unknown sensors are introduced to the detectors. Thus, making the fingerprint

liveness detection an open set problem [5]. Spoof detectors behave inadequately in the

presence of fingerprints generated using fabrication materials that are currently unknown

to the detectors [38].

Spoof detectors are majorly categorized into hardware-based and software-based

mechanisms [70]. In hardware-based mechanisms, a specialized hardware device moni-

tors the additional life characteristics such as blood pressure, temperature, dry, moist

or wet skin. Hardware-based solutions are useful in a static environment, but when the

attacker finds a way to crack the system, it becomes difficult to upgrade the hardware

device. Also, these devices are unprotected to attacks using new fabrication materials.

Software-based spoof detection mechanisms rely on the representational features of

fingerprint images to predict the class labels and are more appropriate for dynamic en-

vironments [71]. Various features have been used and proved to be efficient in training

the spoof detectors for accurate classification. Still, the spoof detectors have a room for

improvement in their performance while testing under cross-dataset and cross-sensor en-

vironments. The current state-of-the-art methods suffer from poor generalizability when

tested under these environments.
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Therefore, the spoof detector must be robust to the changing environment and must

perform reasonably well on cross-sensor and cross-dataset settings.

3.0.1 Learning Paradigms for Spoof Fingerprint Detection

Spoof fingerprint detection is an application of biometrics and forensic science where the

task is to classify fingerprint images into “live” or “spoof”. Ensemble learning has proved

to be an adequate solution to this problem, but it does not provide adaptiveness towards

the data. We claim that applications like spoof detection require the learning model to be

adaptive to the properties intrinsic to the dataset. Therefore, we propose a novel learning

scheme, EaZy learning which is midway between eager and lazy learning.

Eager learning compiles the training data greedily and generates a concise hypothesis

from the input samples and uses it for decision making. In contrast, lazy learning [11] uses

the input samples for decision making. Lazy learning is suited for applications where it is

required to have good local approximations. Still, lazy learning requires to store the entire

training data and defer the process of prediction until a query appears, which causes high

memory consumption and low prediction efficiency. Thus making it challenging to use

with practical applications. Lazy learning incurs low computational cost during training

but the high cost in responding to the queries.

Therefore, we propose a novel learning model EaZy learning to overcome the chal-

lenges in learning paradigms. EaZy learning overcomes the high storage requirements

and low prediction efficiency while maintaining good local approximations. The proposed

model can be considered as a variant of ensemble learning which considers the properties

of data and moves towards the eager or lazy nature of the learning paradigms.

EaZy learning differs from ensemble learning in the way it generates the ensemble

and the way it integrates the outputs of the members of the ensemble. One of the major

requirements of ensemble learning is to have a pool of diverse base classifiers [72]. We

achieve this by performing clustering on the training set and training the base classifiers

on each cluster. In that way, we deliver diversity, which results in different generalization

capabilities of base classifiers in the ensemble. EaZy learning is a plug-in solution capable

of working with various base classifiers on any application.

In general, spoofs sensed using new sensors (i.e., unknown to the learning model)

may appear as test instances. Therefore, it is challenging for the spoof detector to keep
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(a) Live (b) Ecoflex (c) Gelatin (d) Latex (e) Silgum (f) WoodGlue

Figure 3.1: Visual comparison between live and spoofs created using various spoof mate-

rials.

on updating itself. Figure 3.1 shows the visual comparison between live and spoof finger-

prints. As can be observed, the human eye can not identify presentation attacks made on

biometric systems.

Software-based solutions require extracting the features from the fingerprint images

and classifying the image based on the learning model trained over those features [4–6,27,

31]. In this study, we propose an adaptive model which considers the spoof detection as

a binary classification problem. In the past, the study of spoof fingerprint detection has

targeted it as an application of closed-set supervised classification. We claim that cross-

sensor and cross-dataset performances are of utmost importance, and the research in this

field must try to tackle these difficulties. Therefore, we solve this problem by considering

it as an open-set problem and make sure that the performance of the spoof detector is

minimally compromised. The contributions made in this chapter are as follows:

1. We propose an adaptive learning model EaZy learning which generates an ensemble

of diverse base classifiers.

2. We evaluate the performance of various ensemble learning models and EaZy learning

for spoof fingerprint detection under cross-sensor and cross-datasets environments.

3. We emphasize on adapting to the properties of data while generating the hypotheses

and show robustness against the fingerprints generated using unknown fingerprint

sensors.
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3.1 EaZy Learning

Our proposed work EaZy Learning uses the same foundation as ensemble learning, i.e.,

instead of taking one expert’s opinion, let several experts discuss and come up with a

decision. In Multiple Classifiers Systems (MCSs), our goal usually is to generate a set Π

containing n hypotheses that are accurate and diverse [12]. Therefore,

Π = {ψ1, .., ψn} (3.1)

where Π is an ensemble of base classifiers ψi, and ψ is defined as,

ψ : H × T → Y (3.2)

where H is a hypothesis which operates on a set T of instances and results in a class

label belonging to a set Y . Ideally, ensemble learning is expected to generate a pool of

classifiers Π, such that it exploits the unique competencies of each base classifier ψi.

The generated hypotheses should be consistent with the subset of data Dψi
on which

they are trained and disjoint from each other, such that:

Dψ1 ∪Dψ2 ... ∪Dψn = D (3.3)

and,

Dψi
∩Dψj

= φ (3.4)

EaZy learning satisfies Equations 3.3 and 3.4 by performing clustering on the training data

D and training base classifier ψi on each Di. It accommodates the nature of the given

data and works well irrespective of its similarity quotient. It is capable of overcoming the

drawback of eager learning, i.e., poor local approximations, the drawback of lazy learning,

i.e. inefficiency in the classification phase, and the drawback of ensemble learning, i.e.

lack of adaptiveness towards the data. To achieve an adaptive midway by maintaining

more than one hypothesis, we need to extract the common features of the examples and

group them according to the similarity inherently present in them.

As represented in Figure 3.2, we start with passing the training data into the training

phase where data is partitioned into n clusters based on the similarity present in the data.

Later, we use base learners to generate hypotheses from these clusters. Each cluster ci

yields one hypothesis ψi, which is trained only on records belonging to that cluster. The
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Algorithm 1: EaZy learning for training a classifier Π.

1 Input: Training dataset D, validation data V , classifier learning algorithm K,

clustering algorithm C

2 Output: A set of classifiers Π, a set W containing the weights for the classifiers

in Π

1: {c1, c2, .., cn} ← C(D).

Perform clustering on training set D.

2: for i =1 to n do

3: ψi ← K(ci).

4: Acci ← Performance of ψi on V

5: end for

6: Π← {ψ1, ψ2, .., ψn}

7: W ← {w1, w2, .., wn}

Weights determined by Equation 3.5

8: return Π

9: return W

Clustering Base classifier
for each cluster

Weighted base 
classifiers

Weighted 
Majority Voting

Training Data

Validation Data

Query Instance
Live/ Spoof

Figure 3.2: Conceptual Model of Adaptive Ensemble Learning [6].
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output of the training phase is n hypotheses (ψ1, ψ2, .., ψn) that are accurate and diverse.

The procedure of generating hypotheses for classification is given in Algorithm 1. These

hypotheses are given to the testing phase, where a query instance xq is assigned a discrete

class by using weighted majority voting scheme defined by Equation 3.5.

Algorithm 1 is used for training a classifier Π. The inputs to the training phase

are a training dataset D, a base classifier K and a clustering algorithm C. We start

by generating a validation set V by randomly picking the instances from D. From our

experiments, we found that the ideal size of V is 20% of D, but it may be changed

depending on the application.

Unlike Ensemble Learning, EaZy learning handles the training data in a different

way. As explained in Figure 3.2 and Algorithm 1, EaZy learning generates a number of

sub-datasets from the training data after performing clustering on it (Step 1 in Algorithm

1). By performing clustering on the training data, it takes the similarity inherently present

in the dataset into consideration. Therefore, we do not require to define the number of

classifiers apriori. In the best case, where we encounter a dataset containing all similar

records, the proposed method converges itself to the eager learning paradigm and result

in one hypothesis only. In the worst case, where we have a dataset containing dissimilar

records, the proposed method converges itself to the lazy learning paradigm because the

number of hypotheses is close to the number of training examples. On these generated sub-

datasets, we use a base learning algorithm to generate the base classifiers or hypotheses

(Step 3 in Algorithm 1). These hypotheses are used for predicting the values for query

instances.

These classifiers are consistent with the data belonging to the respective cluster. The

performance of these classifiers may not be equally good. Therefore, we use V to test the

performance of each classifier ψi in Π and learn the weightage wi for each ψi as given in

Equation 3.5. The validation set V is passed to every ψi to check its accuracy Ai. We

determine the accuracy Ai as a fraction of the number of instances correctly classified by

ψi to the total number of instances in V .

A high value of Ai indicates the effectiveness of ψi. Therefore its weightage Wi must

be directly proportional to Ai. We use the Equation 3.5 to determine the weightage of

each ψi:
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Wi =
Ai

(
∑

i(Ai))
(3.5)

We conclude the training phase of our model by generating a set of classifiers H with a set

of weights W representing the weightage that should be given to the respective classifier

while making a decision.

3.2 Experimental Setup

The experimental setting is designed to demonstrate the working mechanism of EaZy

learning and to explore the problem behaviour of spoof fingerprint detection under various

environments. With our experiments, we aim to answer the following research questions:

• RQ1: How does EaZy learning perform under cross-sensor environment?

• RQ2: EaZy learning adapts to the properties of data while generating multiple base

classifiers in the ensemble. How is it useful under cross-dataset environment?

3.2.1 Datasets

The description of the datasets used in this study is given in Table 3.1. We use LivDet 2011

[73], LivDet 2013 [74], and LivDet2015 [3] datasets used in fingerprint liveness detection

competition held in subsequent years [75]. The goal of this competition is to compare

software-based fingerprint liveness detection methodologies and fingerprint systems that

are useful in identifying presentation attacks. Each of these datasets consists of live

and spoof fingerprint images. These fingerprints are tested on biometric sensors such as

Biometrika, DigitalPersona, ItalData, Sagem, CrossMatch etc. For each sensor, we have

approximately 1000 fingerprint images belonging to the “live” category and the same

number of images belonging to the “spoof” class. We have same number of images in

training and testing. Further, the images belonging to the spoof class can be categorized

in multiple sub-categories based on the fabrication material used for creating the spoof or

fake fingerprint. These materials are gelatin, latex, playdoh, wood glue, silicone etc. The

datasets have approximately 200 images, belonging to each of these sub-categories.
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Table 3.1: Description of datasets.

Database Live (Train/Test) Spoof (Train/Test)

LivDet2011 Biometrika 1000/1000 1000/1000 (ecoflex, gelatin, latex, silgum, wood glue)

DigitalPersona 1000/1000 1000/1000 (gelatin, latex, playdoh, silicone, wood glue)

ItalData 1000/1000 1000/1000 (ecoflex, gelatin, latex, silgum, wood glue)

Sagem 1000/1000 1000/1000 (gelatin, latex, playdoh, silicone, wood glue)

LivDet2013 Biometrika 1000/1000 1000/1000 (ecoflex, gelatin, latex, modasil, wood glue)

ItalData 1000/1000 1000/1000 (ecoflex, gelatin, latex, modasil, wood glue)

CrossMatch 1250/1250 1000/1000 (body double, latex, playdoh, wood glue)

LivDet2015 Biometrika 1000/1000 1000/1500 (ecoflex, gelatin, latex, RTV, wood glue)

DigitalPersona 1000/1000 1000/1500 (ecoflex, gelatin, latex, RTV, wood glue)

CrossMatch 1510/1500 1446/1448 (body double, ecoflex, gelatin, playdoh, oomoo)

3.2.2 Features

We use ResNet-50 model [76] to extract the features from fingerprint images. ResNet-50

is a deep Residual Network originally designed for object recognition. ResNet-50 has been

pre-trained on ImageNet database. By extracting the features using ResNet-50, we utilize

transfer learning for spoof fingerprint detection. Due to space constraints, we refrain from

discussing the ResNet-50 architecture in detail.

3.2.3 Setup

The motivation for proposing EaZy learning is to be able to generate an ensemble of

base classifiers while considering the properties of data. Therefore, we use EM clustering

algorithm [77] to generate clusters of training instances. In that way, we get a pool of n

disjoint base classifiers at the end of the training phase without defining n apriori. We

consider a validation set V which is a hold-out set of the original training data. In this

study, we take 20% of the original training data for validation. The remaining 80% data

is used as the actual training data. Therefore, we have three separate sets: test, train

and validation. The number of clusters obtained in every experiment for EaZy learning

is written in parentheses. Experiments were conducted 10 times and the average results

are reported.

For applications like spoof fingerprint detection where the false negatives have a huge

cost, it is important to report the accuracy of the model along with Attack Presentation
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Classification Error Rate (APCER). APCER is defined as:

“proportion of attack presentations using the same PAI (Presentation Attack

Instruments, e.g., spoof material) species incorrectly classified as bona fide

presentations in a specific scenario.”

The conventional ensemble algorithms used for comparison are listed below:

• Random Sub-Space Method: Random Sub-Space Method (RSM) [78] is also

called attribute bagging because of its nature of bootstrapping the attributes of a

dataset to generate new sets. It is a popular ensemble learning approach which

attempts to reduce the correlation between estimators in an ensemble by training

them on random samples of features instead of the entire feature set. In this study,

we use RSM along with SMO [79] as the base classifier.

• Random Forest: Random Forest (RF) [80] is a popular ensemble learning algo-

rithm that operates by constructing a multitude of decision trees at training time

and outputting the class that is the mode of the classes (classification) or mean

prediction (regression) of the individual trees.

• Ada-Boost: Ada-Boost or Adaptive Boosting [81] is also an ensemble learning

algorithm that can be used in conjunction with many types of weak learners to

boost their performance.

• Bagging: Bagging or Bootstrapped Aggregating [82] is an ensemble approach

where the dataset is partitioned to create bootstrapped samples. Base classifiers

are trained on these samples, and final prediction is made by majority voting. In

this study, we use it with SMO base classifier.

In this study, we have considered two experimental settings to explore the behaviour

of the proposed model.

1. Category-1: inter sensor, same material performance evaluation-

In Category-1, we evaluate the ability of the spoof detector in the cross-sensor

environment. Therefore, we train the model on images acquired from one sensor

and test it on images belonging to another sensor. For example, the model is

trained on Biometrika 2011 train dataset and tested on ItalData 2011 test dataset.

Cross sensor setting evaluates the generalization ability of the model appropriately.
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Table 3.2: Performance evaluation of EaZy learning on Category-1.

Dataset
EaZy RSM(SMO) Bagging(SMO) AdaBoost RF

Acc. APCER Acc. APCER Acc. APCER Acc. APCER Acc. APCER

Bio-Ital2011 54.05(13) 0.08 50.5 0.97 51.3 0.91 50.45 0.94 53.5 0.49

Ital-Bio2011 50.5(10) 0.79 51.2 0.41 53.55 0.21 52.55 0.33 47.85 0.94

Sag-Dig2011 50.55(9) 0.83 54.95 0.29 53.9 0.26 54.9 0.25 50.5 0.36

Dig-Sag2011 67.96(16) 0.47 57.35 0.03 56.66 0.02 56.81 0.04 62.01 0.32

Bio-Ital2013 95.4(11) 0.06 83.1 0 82.75 0 72.6 0 74.65 0.48

Ital-Bio2013 57.9(6) 0.83 93.05 0.03 86.75 0.02 91.6 0.02 71.05 0.43

Bio-Dig2015 78.6(7) 0.19 73.16 0.2 73.72 0.16 72.48 0.21 72.8 0.26

Dig-Bio2015 72.16(12) 0.24 62.8 0.56 60 0.61 61.6 0.58 62.68 0.45

Average 65.89 0.44 65.76 0.31 64.83 0.27 64.12 0.3 61.88 0.47

2. Category-2: inter dataset, same sensor, same material performance evaluation-

Category-2 is designed to evaluate the model’s capability under cross-dataset envi-

ronment. These experiments demonstrate the model’s robustness against unknown

data. Therefore, it is trained on LivDet 2011 and tested on LivDet 2013 and vice-

versa.

3.3 Results and Discussion

Next, we answer the research questions raised in Section 3.2 on the basis of our experi-

mental results:

As we mentioned earlier, the problem of fingerprint liveness detection must be pro-

jected as an open-set problem, where the test set may contain instances of unknown type,

i.e., test-set may have attack presentations generated using various sensors that are not

known to the training model. We claim that the proposed model EaZy learning is adap-

tive to the properties of the dataset. This adaptive nature is useful in cross-sensor and

cross-dataset environment. As in real-world scenario, new sensors are used for authenti-

cation; a spoof detector needs to detect the new spoofs without requiring to be trained
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Table 3.3: Performance evaluation of EaZy learning on Category-2.

Dataset
EaZy RSM(SMO) Bagging(SMO) AdaBoost RF

Acc. APCER Acc. APCER Acc. APCER Acc. APCER Acc. APCER

Bio2011-13 67.1(10) 0.49 59.8 0.56 58.8 0.55 58.6 0.53 51.8 0.72

Bio2013-11 60.7(11) 0.21 52.8 0.94 52.9 0.94 53.35 0.93 53.85 0.91

Ital2011-13 80.55(5) 0.04 67.9 0.63 67.4 0.63 68.65 0.6 63.8 0.59

Ital2013-11 51.15(9) 0.04 51.15 0.98 51.15 0.98 51.4 0.97 54.35 0.89

Bio2013-15 72.68(12) 0.18 63.8 0.46 64.12 0.44 69.36 0.17 40.88 0.98

Bio11-15 46.48(17) 0.03 45.16 0.91 46.56 0.88 48 0.85 40.42 0.93

Bio2015-13 51.5(14) 0.32 49 0.93 49.15 0.88 49.95 0.93 53.85 0.68

Bio2015-11 53.75(7) 0.15 56 0.5 53.85 0.62 52.15 0.49 48.6 0.66

Average 60.49 0.18 55.7 0.74 55.49 0.74 56.43 0.68 50.94 0.79

on those sensors. Table 3.2 and Table 3.3 demonstrate the algorithm’s ability to adjust

in cross-sensor and cross-dataset environment. In category-1, the performance of EaZy

learning is better than its counterparts. The highest accuracy is 95.4% on Bio-Ital 2013

datasets. Similarly, in category-2, EaZy learning outperforms its rivals with the highest

accuracy of 80.55% on ItalData 2011-13 datasets.

3.3.1 Discussion

We positioned this study as an adaptive midway between eager and lazy learning. Based

on its similarity with ensemble learning (EL), EaZy learning can also be considered as

a different variant of Multiple Classifier Systems (MCS) paradigm. Following the moti-

vation, we conducted our experiments under various settings. We focused on the adap-

tiveness towards the data while deciding the number of base classifiers constituting the

ensemble. We emphasized that a spoof detector must learn from the similarity inherently

present in the data. Therefore, for a spoof detector to be robust towards the presentation

attacks made using unknown biometric sensors, adaptiveness plays an important role.

We demonstrated that EaZy learning is best suited for this task. From Table 3.2 and

Table 3.3, it is evident that EaZy learning is the best choice for such environments. We
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performed Friedman significance test on category-2 APCER values. It is observed that

EaZy learning performs significantly better than the rivals where p-value is 0.00112 and

χ2
r value is 18.225. The significance level was set at 0.05. Since p-value is less than the

significance lever α, the null hypothesis can be rejected. From these tests we can con-

clude that the proposed model is significantly better than the rival models under these

environments.
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