
Chapter 1

Introduction

1.1 Learning Paradigms

Based on the methodology used in the training and testing phases, the learning paradigms

can be broadly classified into eager learning and lazy learning, whereas ensemble learning

can be considered as midway between these two extremes. In this study, we draw attention

to the shortcomings of the existing learning paradigms and propose a novel paradigm

EaZy Learning, which can be considered as an adaptive midway between eager and lazy

learning.

1.1.1 Eager Learning

Eager learning aims to build a single functional model that captures the entire set of oper-

ating conditions underlying the dataset. As eager learning maintains only one hypothesis

or a hypotheses space, it fails to provide reasonable local approximations in its target

function.

The working mechanism of eager learning is illustrated in Figure 1.1. The training

phase in this paradigm takes training data as input and generates a hypothesis or a

hypothesis space that acts as a trained model. This model is supplied to the testing phase,

where the correct discrete class/continuous value for the query instance xq is determined.

Since eager learning tries to build a general, explicit description of the target function

in the training phase, it fails to provide reasonable local approximations in its target

function [9]. Eager learning aims to build a single functional model that captures the
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Figure 1.1: Schematic Representation of Eager Learning.

entire set of operating conditions underlying the dataset. As eager learning maintains only

one hypothesis or a hypotheses space, it fails to provide reasonable local approximations

in its target function. Eager learning approaches are suitable for datasets where most

of the records are similar to each other, i.e. their similarity quotient should be high.

These approaches perform inefficiently when encountering a dataset where all records are

dissimilar to each other [10].

1.1.2 Lazy Learning

Lazy learning is a memory-based learning approach that delays all the computations until

it encounters a new query instance. It stores all the training examples in the memory

and locates relevant data in response to a query instance. Lazy learning approaches suffer

from high storage requirements and inefficiency in the classification phase.

Lazy learning or instance-based learning delays the generalization beyond the train-

ing data until a query is made to the system [11]. Therefore, it does not perform any

operations in the training phase, apart from storing the training examples. As illustrated

in Figure 1.2, this learning paradigm has substantial storage requirements. Few difficulties

of instance-based learning are as follows:

• These approaches are sensitive to the choice of the algorithm’s similarity function.

• Lazy learning provides little insight into what has already been learned.

• Since the paradigm focuses on storing all the training examples, it is slow for large

datasets.

Lazy learning approaches are suitable for datasets where records are highly dissimilar, i.e.

their similarity quotient is very low.
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Figure 1.2: Schematic Representation of Lazy Learning.

1.1.3 EaZy Learning

Our proposed work EaZy Learning uses the same foundation as ensemble learning, i.e.,

instead of taking one expert’s opinion, let several experts discuss and come up with a deci-

sion. In Multiple Classifier Systems (MCSs), our goal is to generate a set of k hypotheses

that are accurate and diverse [12]. The generated hypotheses should be consistent with

the subset of data on which they are trained and disjoint from each other. EaZy Learning

does not restrict itself to a particular type of data; it is flexible enough to adapt to the

problem behaviour.

As represented in Figure 1.3, EaZy learning examines the properties intrinsic to the

dataset while generating a pool of hypotheses. Unlike eager learning, EaZy learning yields

better local approximations in its target function, and unlike lazy learning, it requires

lesser space to store the hypotheses.

EaZy learning is similar to ensemble learning as it generates an ensemble of base

classifiers and integrates them to make a prediction. Still, it differs in the way it gen-

erates the base classifiers. EaZy learning generates an ensemble of entirely disjoint base

classifiers, which positively influences the underlying ensemble’s diversity. Also, it inte-

grates the predictions made by these base classifiers based on their performance on the

validation data.

1.1.4 Incremental Learning

Incremental learning enables the learner to accommodate new knowledge without retrain-

ing the existing model. It is a challenging task that requires learning from new data and

preserving the knowledge extracted from the previously accessed data. This challenge

is known as the stability-plasticity dilemma. We propose AILearn, a generic model for

incremental learning that overcomes the stability-plasticity dilemma by carefully inte-
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Figure 1.3: Conceptual model of EaZy learning.

grating the ensemble of base classifiers on new data with the current ensemble without

retraining the model from scratch using entire data. We demonstrate the efficacy of the

proposed AILearn model on spoof fingerprint detection application. One of the significant

challenges associated with spoof fingerprint detection is the performance drop on spoofs

generated using new fabrication materials.

AILearn is an adaptive incremental learning model that adapts to the features of the

“live” and “spoof” fingerprint images and efficiently recognizes the new spoof fingerprints

and the known spoof fingerprints when the new data is available. To the best of our

knowledge, AILearn is the first attempt in incremental learning algorithms that adapts

to the properties of data for generating a diverse ensemble of base classifiers. From the

experiments conducted on standard high-dimensional datasets LivDet 2011, LivDet 2013

and LivDet 2015, we show that the performance gain on new fake materials is significantly

high. On average, we achieve 49.57% improvement in accuracy between the consecutive

learning phases.
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1.1.5 Ensemble Based Models

Stacking and bagging are widely used ensemble learning approaches that make use of

multiple classifier systems. Stacking focuses on building an ensemble of heterogeneous

classifiers, while bagging constructs an ensemble of homogeneous classifiers. There exist

some applications where it is essential for learning algorithms to be adaptive towards the

training data.

We propose A-Stacking and A-Bagging, adaptive versions of stacking and bagging,

respectively, that take into consideration the similarity inherently present in the dataset.

One of the main motives of ensemble learning is to generate an ensemble of multiple

“experts” that are weakly correlated. We achieve this by producing a set of disjoint

experts where each expert is trained on a different subset of the dataset.

We show the working mechanism of the proposed algorithms on spoof fingerprint

detection and automatics hate speech detection. The proposed versions of these algo-

rithms are adaptive as they conform to the features extracted from the fingerprint images

or the features extracted from text. We establish that A-Stacking and A-Bagging give

competitive results on both balanced and imbalanced datasets from our experimental

results.

1.2 Spoof Fingerprint Detection

A fingerprint liveness detector is a pattern classifier that is used to distinguish a live finger

from a fake (spoof) one in the context of an automated fingerprint recognition system. As

liveness detectors or presentation attack detectors are vulnerable to presentation attacks,

fingerprint recognition’s security and reliability are compromised. Therefore, it is essential

to perform liveness detection of a fingerprint before authenticating it.

To enhance the fingerprint spoof detectors’ efficiency, the learning models need to

be adaptive towards the data. We propose a generic model, EaZy learning, that can be

considered an adaptive midway between eager learning and lazy learning. We show the

usefulness of this adaptivity for spoof fingerprint detection when fingerprints generated

using unknown fabrication materials are introduced to the spoof detector.

Fingerprint liveness detection mechanisms perform well under the within-dataset

environment but fail miserably under cross-sensor (when tested on a fingerprint acquired
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by a new sensor) and cross-dataset (when trained on one dataset and tested on another)

settings. To enhance the generalization abilities, robustness and interoperability of the

fingerprint spoof detectors, the learning models need to be adaptive towards the data. We

show the usefulness of this adaptivity under cross-sensor and cross-dataset environments.

Experiments conducted on the standard high dimensional datasets LivDet 2011, LivDet

2013 and LivDet 2015 prove the model’s efficacy under cross-dataset and cross-sensor

environments.

Presentation attack detection mechanisms rely on handcrafted or deep features to

classify an image as live or spoof. In addition, to strengthen the security, fingerprint

liveness detectors should be robust to presentation attacks fabricated using unknown

fabrication materials or fingerprint sensors. In this study, we conduct a comprehensive

study on the impact of handcrafted and deep features from fingerprint images on the

classification error rate of the fingerprint liveness detection task. We use LBP, LPQ and

BSIF as handcrafted features and VGG-19 and Residual CNN as deep feature extractors

for this study. As the problem is targeted as an open-set problem, the emphasis is on

achieving better robustness and generalization capability. In our observation, handcrafted

features outperformed their deep counterparts in two of the three cases under the within-

dataset environment. In the cross-sensor environment, deep features obtained a better

accuracy, and in the cross-dataset environment, handcrafted features obtained a lower

classification error rate.

1.3 Automatic Hate Speech Detection on SMPs

Social media platforms generate an enormous amount of data every day. Millions of users

engage themselves with the posts circulated on these platforms. Despite these platforms’

social regulations and protocols, it is difficult to restrict some objectionable posts carrying

graphic content. Automatic hate speech detection on social media platforms is an essential

task that has not been solved efficiently despite various researchers’ multiple attempts.

It is a challenging task that involves identifying hateful content from social media posts.

These posts may reveal hate outrageously, or they may be subjective to the user or a

community. Relying on manual inspection delays the process, and the hateful content

may remain available online for a long time.
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The current state-of-the-art methods for tackling hate speech perform well when

tested on the same dataset but fail miserably on cross-datasets. Therefore, we propose an

ensemble learning-based adaptive model for automatic hate speech detection, improving

the cross-dataset generalization. The proposed expert model for hate speech detection

works towards overcoming the strong user-bias present in the available annotated datasets.

We conduct our experiments under various experimental setups and demonstrate the

proposed model’s efficacy on the latest issues such as COVID-19 and US presidential

elections. In particular, the loss in performance observed under cross-dataset evaluation

is the least among all the models. Also, while restricting the maximum number of tweets

per user, we incur no drop in performance.

To deal with large-scale data efficiently and accurately, we need a simple, scalable

and robust framework. Therefore, we propose parallelization to the standard ensemble-

based algorithms so that they can be used for speeding up the automatic hate speech

detection on SMPs. This study parallelizes bagging, A-stacking, and random sub-space

algorithms and tests both serial and ‘parallel versions on the standard high-dimensional

datasets for hate speech detection. We observe a significant speedup with high efficiency

that claims that the proposed models are suitable for the considered application. We

observed that the accuracy is not affected while parallelizing the algorithms compared

with serial algorithms executing on a single machine.

The central motivation of this dissertation is to highlight the need for considering

the inherent characteristics of data for generating the base learners of the ensemble. We

emphasize that the learning models must conform to the underlying dataset to achieve

better local approximation for the pattern mining applications. In these applications,

where the task is to find a specific pattern in a massive amount of data, models’ adap-

tiveness towards data properties plays an important role.

We evaluate our proposed models’ performance on two different pattern mining appli-

cations: spoof fingerprint detection and automatic hate speech detection on social media

platforms. As these applications are different in nature, they show the generalization

abilities of our proposed models.

In addition, our focus is on cross-dataset evaluation of the models. We claim that

for the chosen applications, it is always required to test the models’ performance under

various test scenarios. Therefore, to test the robustness and reliability of the proposed
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models in real-world situations, we test them under a cross-dataset environment.

1.4 Structure of the Thesis

This thesis is arranged into eight different chapters. A brief description of the chapters is

as follows:

Chapter 2 presents a survey on various learning models and the current state-of-

the-art for the two pattern mining applications.

Chapter 3 gives an introduction to our proposed model EaZy learning. Here, we

discuss the architectural details of the model along with experimental results and analysis.

Chapter 4 discusses the importance of incremental learning and introduces the pro-

posed model AILearn, an adaptive incremental learning model.

Chapter 5 introduces A-Stacking and A-Bagging, the adaptive versions of the ex-

isting ensemble based models stacking and bagging respectively.

Chapter 6 presents a comprehensive study on the impact of handcrafted and deep

features on spoof fingerprint detection. We conduct a rigorous analysis of various types

of features when used under different test scenarios.

Chapter 7 discusses automatic hate speech detection on social media platforms and

its importance during the global pandemic COVID-19. It also presents the parallelized

versions of various ensemble based models.

Chapter 8 brings the concluding remarks and suggestions for future work.
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