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Abstract

This dissertation investigates various learning paradigms’ behaviour on two pattern

mining applications: spoof fingerprint detection and automatic hate speech detection

on social media platforms. It argues that learning paradigms must consider properties

inherently present in the data while deciding the number of hypotheses to be used for

classification. These data properties are vital in applications that require finding a specific

pattern in a massive amount of data. In our study, spoof fingerprint detection is regarded

as an open-set classification task, and the generalization abilities of hate speech detectors

are explored rigorously. Therefore, the emphasis is on the performance under cross-sensor,

cross-material and cross-dataset environments.

The dissertation’s central claim is that pattern mining applications require the learn-

ing model to be adaptive to the properties intrinsic to the dataset. Therefore, we propose

a novel learning model, EaZy learning which is midway between eager and lazy learning.

EaZy learning overcomes the high storage requirements and low prediction efficiency while

maintaining good local approximations. The proposed model can be regarded as a variant

of ensemble learning that considers the properties of data and moves adaptively towards

the eager or lazy nature of the underlying problem. EaZy learning differs from ensemble

learning in the way it generates the ensemble and how it integrates the outputs of the

ensemble members. One of the critical ensemble learning requirements is to have a pool

of diverse base classifiers. It achieves this by performing clustering on the training set

and training the base classifiers on each cluster. In that way, the model delivers diversity,

which results in different generalization capabilities of base classifiers in the ensemble.

EaZy learning is a plug-in solution capable of working with various base classifiers on any

application.

Later, an incremental model is proposed, which accommodates new knowledge with-

out having to retrain the model from scratch. Incremental learning enables the learner
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to accommodate new knowledge without retraining the existing model. It is a challeng-

ing task that requires learning from new data and preserving the knowledge extracted

from the previously accessed data. This challenge is known as the stability-plasticity

dilemma. We propose AILearn, a generic model for incremental learning that overcomes

the stability-plasticity dilemma by carefully integrating the base classifiers’ ensemble on

new data with the current ensemble without retraining the model from scratch using en-

tire data. One of the significant challenges associated with spoof fingerprint detection

is the performance drop on spoofs generated using new fabrication materials. Also, it is

beneficial in automatic hate speech detection on social media, where the narratives change

continuously over time. To the best of our knowledge, AILearn is the first attempt in

incremental learning algorithms that adapts to data properties for generating a diverse

ensemble of base classifiers.

Next, we propose A-Stacking and A-Bagging: the adaptive versions of ensemble

learning approaches Stacking and Bagging, respectively. One of the main motives of en-

semble learning is to generate an ensemble of multiple weakly correlated experts. The

proposed models achieve this by producing a set of disjoint experts where each expert is

trained on a different subset of the dataset. A-Bagging applies the same base learner to

different subsets of data and combines their predictions using weighted majority voting.

A-Stacking uses logistic regression as the meta-classifier, which resulted in better perfor-

mance than the best individual base classifier. This justifies the extra effort of employing

a meta-classifier.

Based on the analysis of the influence of various types of features on different classi-

fiers, we conducted a comprehensive study on the impact of using handcrafted and deep

features on presentation attack detection. We conduct a comprehensive study on the im-

pact of handcrafted and deep features from fingerprint images on the classification error

rate of the fingerprint liveness detection task. We use LBP, LPQ and BSIF as handcrafted

features and VGG-19 and Residual CNN as deep feature extractors for this study. As

the problem is targeted as an open-set classification task, the emphasis is on achieving

better robustness and generalization capability. In our observation, handcrafted features

outperformed their deep counterparts in two of the three cases under the within-dataset

environment. In the cross-sensor environment, deep features obtained a better accuracy,

and in the cross-dataset environment, handcrafted features brought a lower classification
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error rate.

Using a case study on hate speech propagation during the ongoing global pandemic,

we show the usefulness of automatic hate speech detection and propose adaptive ensemble

models to address it. Automatic hate speech detection on social media platforms is an

essential task that has not been solved efficiently despite various researchers’ multiple

attempts. It is a challenging task that involves identifying hateful content from social

media posts. Relying on manual inspection delays the process, and the hateful content

may remain available online for a long time. The current state-of-the-art methods for

tackling hate speech perform well when tested on the same dataset but fail miserably on

cross-datasets. Therefore, we propose an ensemble learning-based adaptive model for au-

tomatic hate speech detection, improving the cross-dataset generalization. The proposed

expert model for hate speech detection works towards overcoming the strong user bias

present in the available annotated datasets. We conduct our experiments under various

experimental setups and demonstrate the proposed model’s efficacy on the latest issues

such as COVID-19 and US presidential elections. In particular, the loss in performance

observed under cross-dataset evaluation is the least among all the models. Also, while

restricting the maximum number of tweets per user, we incur no drop in performance.

Later, hate speech detection performance is accelerated by parallelizing the mod-

els and achieving reasonable speedup and efficiency. To deal with large-scale data effi-

ciently and accurately, we need a simple, scalable and robust framework. Therefore, we

propose parallelization to the standard ensemble-based algorithms so that they can be

used to speed up automatic hate speech detection on SMPs. We parallelize bagging, A-

stacking and random sub-space algorithms and test both serial and ‘parallel versions on

the standard high-dimensional datasets for hate speech detection. We observe a signifi-

cant speedup with high efficiency that claims that the proposed models are suitable for

the considered application. We observed that the accuracy is not affected by parallelizing

the algorithms compared with serial algorithms executing on a single machine.

The study is significant as it addresses the fundamental requirements of an ensem-

ble model (i.e., diversity and accuracy) by generating disjoint base classifiers trained on

subsets of the original training data. The dissertation concludes with a discussion on

the proposed models’ impact on the applications mentioned above under various test

scenarios.
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