
Observations on Software Defect
Prediction

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

by

Sushant Kumar Pandey

COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU

UNIVERSITY), VARANASI, INDIA

2021



Chapter 7. Summary of the Thesis 151

2. Cross-version defect count vector prediction estimates the bug count vector

(column vector consists of bug information) of the next version of a software

system. It mainly employs the information of all prior versions of the same

software system. BCV-Predictor is an approach that estimates the bug count

vector of the next version software system. It consists of two main steps; first,

the data amalgamation process that leads to meta data creation, and second,

model training. We have employed long short term memory architecture as

a learning technique. We trained the model using meta data and estimated

the bug count vector over the test/development set. We found the proposed

model produces unbiased results over existing techniques and avoid overfit-

ting and class imbalance problem. Moreover, the proposed model significantly

outperforms existing methods. The BCV-Predictor is more suitable for large

software projects, and it takes reasonable training costs. The model is stable

for substantial projects and moderately stable for a small software system.

3. Cross-project defect number prediction is one step ahead of cross-project de-

fect prediction. It also estimates the number of faults in every module in the

target project. We proposed a method called DNNAttention using attention

and LSTM layer to predict a number of the defect in the target project using

training over diverse projects (cross-project). The DNNAttention contains two

phases. In the first phase, the data is created (source project) using the data

amalgamation process; it uniquely amalgamates 44 different projects. In the

second phase, deep features are extracted using the attention layer and train the

model using the LSTM network. We train the proposed model using 44 diverse

projects of the PROMISE repository and test over the individual project (tar-

get project). The results found the proposed model significantly outperforms

existing methods. It also avoids class imbalance and overfitting problems. We

discovered that DNNAtention is more suitable for large and moderate-sized

projects, whereas it produces a high loss for small-sized projects. The model

is stable over large and moderate size projects.

4. Prediction of the entire version of a software system will reduce the enor-

mous amount of effort in software development. We have proposed a novel

approach to estimate the entire next version of a software system. In the hy-

brid regression analysis, we applied deep learning and eight projects of the

PROMISE repository for the experiments. Our approach is divided into two

phases: the first is the data augmentation phase, and the second is the entire



Chapter 7. Summary of the Thesis 152

version prediction phase. The proposed model significantly outperforms other

state-of-the-art methods.

The proposed methodologies can help to produce high-quality software products at

a lower cost.



Chapter 8

Conclusion and Future Direction

“A conclusion is simply the place where you got tired of thinking.”- Dan Chaon

The list of main contributions of this thesis are summarized below, followed by

possible directions for future work.

8.1 Conclusion

Software defect prediction is an emerging and fast-growing field of research. How-

ever, we also considered possible aspects of many defect prediction directions. Sev-

eral works have been done in classification-based defect prediction methods. We

found that software features extracted from deep neural networks (deep features)

can be more useful in defect prediction and demonstrate better defect prediction

approaches; some initial work has been done in this direction. This thesis is devoted

to developing a better classification based SDP approach, cross-version de-

fect count vector prediction, cross-project defect number prediction and

hybrid regression analysis. We have investigated and studied three main tasks:

software defect prediction, software defect count estimation (cross-version, cross-

project), and hybrid regression analysis (entire software prediction). The scope of

this thesis is limited to the following defect prediction issues: class imbalance, over-

fitting, cost-effectiveness, the stability of a model, and training cost. We have tried

to address these challenges using various techniques. The list of the conclusion of

the thesis is given below:

153



Chapter 8. Conclusion and Future Direction 154

(i) SDP plays an important role in ensuring high-quality software products with re-

liability. We proposed a novel SDP model (BPDET) by utilizing deep learning

to extract deep features and heterogeneous ensemble learning techniques. The

proposed architecture has two stages, i.e., deep learning and ensemble learning

phases. Stacked denoising autoencoder employed in deep learning phase to ex-

tract a deep representation of features over traditional matrices. We employed

12 different NASA projects for the experiments. We also found that deep learn-

ing and ensemble learning phases meaningfully address the class imbalance and

overfitting problems. We also found that performance metrics (MCC, ROC,

PRC, and F-Measure) on most of the datasets produced by BPDET model

are significantly higher than existing baseline techniques. The stability of the

model over k-fold cross-validation to measure the stability is also tested, and

found the proposed model is adequately stable till the 15-fold cross-validation.

Based on earlier understanding and our observation, it can safely be concluded

that deep learning is helpful to extract a deep representation of software met-

rics and also able to avoid class imbalance and overfitting problems. Deep

representation combined with ensemble learning builds a better SBP model

concerning baseline and traditional techniques.

(ii) Estimating the number of bugs in every module of a software system and pre-

dicting the bug count vector of the upcoming version of a software project helps

the software project manager to suitably allocate developers and testers in the

software development process. Cross-version defect count vector prediction is

a possible way to estimate the bug count vector for the upcoming version of

a software project. We amalgamate different versions of the same software to

create a more extensive dataset and proposed LSTM based architecture to es-

timate the bug count vector for the successive version of a software project the

technique called BCV-Predictor. The different versions of the software are used

as time steps in the architecture. Results concluded that deep learning-based

architecture is effective over existing machine learning-based approaches and

also found that dropout regularization and multi-label random oversampling

are more suitable to conquer overfitting and class imbalance problems in such

aspects. Out of seven PROMISE datasets, we found that five meta-datasets

have more than 80% accuracy, and six & five out of seven projects have MAE

less than 0.9 and MSE less than 3, respectively. We also discovered that BCV-

Predictor significantly outperforms baseline methods in terms of MAE, MSE,



Chapter 8. Conclusion and Future Direction 155

and accuracy. We conclude that BCV-Predictor is more efficient for an exten-

sive software system; it takes lesser computational cost than baseline methods

and gives better results.

(iii) Cross-project defect number estimation is the process of estimating the number

of defects in every module of a software system by training the model using a

diverse, distributed set of projects. It is one step ahead of cross-project defect

prediction; it is a combination of two SDP domains, i.e., cross-project defect

prediction and software fault number prediction. The proposed architecture

includes the unique amalgamation of various software projects using 44 differ-

ent PROMISE repository projects. It employed LSTM and attention layer in

the learning algorithm and named it DNNAttention. We train the model using

the amalgamated dataset and test over the target project using transfer learn-

ing. After comparing existing baseline methods, we found that the proposed

model significantly outperforms bigger and moderate-sized projects. Random

oversampling and dropout regularization are applied in the preprocessing step,

results conclude that DNNAttention overcomes class imbalance and overfitting

problems. The results indicate that the proposed model can more precisely

generalize software properties over new projects. We found the performance of

DNNAttention is significantly better than existing baseline methods over most

of the project. We found that the proposed architecture is more suitable for

large and moderate-sized projects, whereas it gets a high loss for small-sized

projects. Moreover, we also discovered the training time of the DNNAttention

is high compared with baseline methods because of various matrix operations

at different layers. Due to a lack of adequate training data, DNNAttention

underperformed over small-sized projects. While inspecting 20% of the lines

of code in each target project, we found significant improvement; it has large

effect sizes across all 44 datasets.

(iv) Cross-project or cross-version bug prediction only predicts or estimates the

bugs in every module. But in the entire version prediction method, we estimate

the number of defects and the metrics values of every module in the upcoming

version of a software system. The proposed approach employed two different

deep learning architectures and utilized eight public PROMISE datasets in ex-

periments. We found the proposed approach obtained more than 60% accuracy

over five projects. The results obtained by the proposed model are significantly



Chapter 8. Conclusion and Future Direction 156

better than other deep learning or machine learning regression methods. We

found this method can enormous reduces the software development cost.

8.2 Future Direction

This section presents the possible directions for exploration based on the consequent

work done. The following are the future directions that are identifiable.

BPDET: Classification Based Software Defect Prediction Model

Deep learning can also be applied in the ensemble learning phase, leading to a bet-

ter result and addressing the class imbalance problem. Other suitable optimization

techniques, vectorization, and broadcasting method can be applied to reduce train-

ing costs. A possible application for different deep learning methods may also be

intuitive and exciting. The BPDET model’s architecture can be used for a number

of fault count problems in software reliability.

BCV-Predictor: Cross-Version Defect Count Vector Predictor

In the future, the possible extensions of the research work are possible. First, the

applicability of a similar model in cross-project bug count prediction in the version

of a software project. It can be effective in a cross-project defect prediction scenario.

Second, adding an attention layer along with LSTM to enhance the performance.

Third, it can be helpful to estimate the testing effort for a module by identifying the

size of a bug. Integrating testing methodologies over design metrics. Fourth, similar

experiments can be conducted on other open-source software systems with substan-

tial data instances and several versions. Fifth, hyperparameters tuning can lead to

much better results. Sixth, use of transfer learning over design metrics to predict a

number of bugs in the successive version of a software system. Organizations should

avail their datasets for research purposes to make a much better prediction model.

To achieve more robust results, different sequence models with optimal hyperparam-

eter settings can also be applied to this problem.

DNNAttention: Cross-Project Defect Number Prediction

The following possibilities are identifiable to extend our work. First, DNNAttenion

can be applied over other domain software projects and adding more data instances

in the cross-heap. We are also planning to use the DNNAttention in software defect

number prediction and software cost estimation. Hyperparameters tuning is always

a scope of improvement in the deep learning model, and we are planning to re-tune



Chapter 8. Conclusion and Future Direction 157

the model for more optimal results. N-gram and skip-gram techniques can be added

to the proposed model; it can enhance the performance of the DNNAttention model.

Predicting the next version of the Software Systems: A Hybrid Regres-

sion Analysis

A possible future direction could be involving more extensive training data and com-

bining software datasets from multiple industries. We also extend the experiments

to improved accuracy in the data augmentation phase. To achieve better results, we

can employ transfer learning and other complex deep learning architectures in the

next version prediction phase. The proposed model can be used to generate sequence

data by employing existing sequences. Hyperparameter tuning always provides the

scope of better results.


