
Appendix A

Publications

A.1 Journal Papers

(i) Pandey, S. K., & Triphathi, A. K. Predicting the next version of the Soft-

ware System. DNNAttention: A Deep Neural Network and Attention based

architecture for Cross Project Defect Number prediction. Knowledge-Based

Systems, 197, 105924. (SCI, IF: 8.03).

(ii) Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2020). BPDET: An effective

software bug prediction model using deep representation and ensemble learning

techniques. Expert Systems with Applications, 144, 113085. (SCI, IF: 6.95).

(iii) Pandey, S. K., & Tripathi, A. K. (2020). BCV-Predictor: A bug count vector

predictor of a successive version of the software system. Knowledge-Based

Systems, 197, 105924. (SCI, IF: 8.03).

(iv) Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2021). Machine Learning

Based Methods for Software Fault Prediction: A Survey. Expert Systems with

Applications, 114595. (SCI, IF: 6.95).

(v) Pandey, Sushant Kumar, and Anil Kumar Tripathi. ”An empirical study to-

ward dealing with noise and class imbalance issues in software defect predic-

tion.” Soft Computing (2021): 1-28. (SCI, IF: 3.64).

(vi) Pandey, Sushant Kumar, Deevashwer Rathee, and Anil Kumar Tripathi. ”Soft-

ware defect prediction using K-PCA and various kernel-based extreme learning

158

Chapter 8. Conclusion and Future Direction 159

machine: an empirical study.” IET Software 14.7 (2020): 768-782. (SCI, IF:

1.258).

A.2 Conference Papers

(i) Pandey, Sushant Kumar, and Anil Kumar Tripathi. ”Class Imbalance Issue in

Software Defect Prediction Models by various Machine Learning Techniques:

An Empirical Study.” 2021 8th International Conference on Smart Computing

and Communications (ICSCC). IEEE, 2021.

(ii) Pandey, S. K., Mishra, R. B., & Triphathi, A. K. (ICCIDS-2018). Software

bug prediction prototype using bayesian network classifier: A comprehensive

model. Procedia computer science, 132, 1412-1421.

A.3 Communicated Papers

(i) Pandey, S. K., Agarwal, Adit., & Triphathi, A. K. Predicting the next version

of the Software System. ACM Transactions on Knowledge Discovery from Data

(Under Review).

Bibliography

[1] Abaei, G., Selamat, A., and Fujita, H. (2015). An empirical study based on semi-

supervised hybrid self-organizing map for software fault prediction. Knowledge-

Based Systems, 74:28–39.

[2] Abdi, H. (2007). Bonferroni and šidák corrections for multiple comparisons.

Encyclopedia of measurement and statistics, 3:103–107.

[3] Abdi, L. and Hashemi, S. (2015). To combat multi-class imbalanced problems by

means of over-sampling techniques. IEEE transactions on Knowledge and Data

Engineering, 28(1):238–251.

[4] Afzal, W., Torkar, R., and Feldt, R. (2008). Prediction of fault count data using

genetic programming. In 2008 IEEE International Multitopic Conference, pages

349–356. IEEE.

[5] Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning

algorithms. 6(1):37–66.

[6] Al Shalabi, L., Shaaban, Z., and Kasasbeh, B. (2006). Data mining: A prepro-

cessing engine. Journal of Computer Science, 2(9):735–739.

[7] Aljamaan, H. I. and Elish, M. O. (2009). An empirical study of bagging and

boosting ensembles for identifying faulty classes in object-oriented software. In

2009 IEEE Symposium on Computational Intelligence and Data Mining, pages

187–194. IEEE.

[8] Allen, E. (2002). Bug patterns in Java. APress.

[9] Altinger, H., Herbold, S., Schneemann, F., Grabowski, J., and Wotawa, F.

(2017). Performance tuning for automotive software fault prediction. In 2017

IEEE 24th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), pages 526–530. IEEE.

160

Bibliography 161

[10] Aman, H., Amasaki, S., Sasaki, T., and Kawahara, M. (2015). Lines of com-

ments as a noteworthy metric for analyzing fault-proneness in methods. IEICE

TRANSACTIONS on Information and Systems, 98(12):2218–2228.

[11] Amasaki, S. (2018). Cross-version defect prediction using cross-project defect

prediction approaches: Does it work? In Proceedings of the 14th International

Conference on Predictive Models and Data Analytics in Software Engineering,

pages 32–41.

[12] Arar, Ö. F. and Ayan, K. (2015). Software defect prediction using cost-sensitive

neural network. Applied Soft Computing, 33:263–277.

[13] Arar, Ö. F. and Ayan, K. (2017). A feature dependent naive bayes approach and

its application to the software defect prediction problem. Applied Soft Computing,

59:197–209.

[14] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

[15] Basili, V. R. and Zelkowitz, M. V. (1978). Analyzing medium-scale software

development. In Proceedings of the 3rd international conference on Software en-

gineering, pages 116–123. IEEE Press.

[16] Bell, R. M., Ostrand, T. J., and Weyuker, E. J. (2006). Looking for bugs in all

the right places. In Proceedings of the 2006 international symposium on Software

testing and analysis, pages 61–72. ACM.

[17] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-

wise training of deep networks. In Advances in neural information processing

systems, pages 153–160.

[18] Bennin, K. E., Keung, J., Monden, A., Phannachitta, P., and Mensah, S. (2017).

The significant effects of data sampling approaches on software defect prioriti-

zation and classification. In Proceedings of the 11th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, pages 364–373.

IEEE Press.

[19] Biçer, M. S. and Diri, B. (2015). Predicting defect prone modules in web appli-

cations. In International Conference on Information and Software Technologies,

pages 577–591. Springer.

Bibliography 162

[20] Biçer, M. S. and Diri, B. (2016). Defect prediction for cascading style sheets.

Applied Soft Computing, 49:1078–1084.

[21] Boehm, B. and Basili, V. R. (2007). Software defect reduction top 10 list.

Software engineering: Barry W. Boehm’s lifetime contributions to software devel-

opment, management, and research, 34(1):75.

[22] Bowes, D., Hall, T., Harman, M., Jia, Y., Sarro, F., and Wu, F. (2016).

Mutation-aware fault prediction. In Proceedings of the 25th International Sympo-

sium on Software Testing and Analysis, pages 330–341. ACM.

[23] Bowes, D., Hall, T., and Petrić, J. (2018). Software defect prediction: do

different classifiers find the same defects? Software Quality Journal, 26(2):525–

552.

[24] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

[25] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[26] Buyukyilmaz, M. and Cibikdiken, A. O. (2016). Voice gender recognition using

deep learning. In 2016 International Conference on Modeling, Simulation and

Optimization Technologies and Applications (MSOTA2016). Atlantis Press.

[27] Cao, X., Wipf, D., Wen, F., Duan, G., and Sun, J. (2013). A practical transfer

learning algorithm for face verification. In Proceedings of the IEEE international

conference on computer vision, pages 3208–3215.

[28] Catal, C. (2011). Software fault prediction: A literature review and current

trends. Expert systems with applications, 38(4):4626–4636.

[29] Catal, C. and Diri, B. (2009a). Investigating the effect of dataset size, met-

rics sets, and feature selection techniques on software fault prediction problem.

Information Sciences, 179(8):1040–1058.

[30] Catal, C. and Diri, B. (2009b). A systematic review of software fault prediction

studies. Expert systems with applications, 36(4):7346–7354.

[31] Charte, F., Rivera, A. J., del Jesus, M. J., and Herrera, F. (2015). Addressing

imbalance in multilabel classification: Measures and random resampling algo-

rithms. Neurocomputing, 163:3–16.

Bibliography 163

[32] Chatterjee, S. and Maji, B. (2016). A new fuzzy rule based algorithm for

estimating software faults in early phase of development. Soft Computing,

20(10):4023–4035.

[33] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002).

Smote: synthetic minority over-sampling technique. Journal of artificial intelli-

gence research, 16:321–357.

[34] Chen, D., Chen, X., Li, H., Xie, J., and Mu, Y. (2019a). Deepcpdp: Deep

learning based cross-project defect prediction. IEEE Access, 7:184832–184848.

[35] Chen, M. and Ma, Y. (2015). An empirical study on predicting defect numbers.

In SEKE, pages 397–402.

[36] Chen, X. and Lawrence Zitnick, C. (2015). Mind’s eye: A recurrent visual

representation for image caption generation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 2422–2431.

[37] Chen, X., Zhang, D., Zhao, Y., Cui, Z., and Ni, C. (2019b). Software de-

fect number prediction: Unsupervised vs supervised methods. Information and

Software Technology, 106:161–181.

[38] Chen, X.-W. and Lin, X. (2014). Big data deep learning: challenges and per-

spectives. IEEE access, 2:514–525.

[39] Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented

design. IEEE Transactions on software engineering, 20(6):476–493.

[40] Christodoulidis, S., Anthimopoulos, M., Ebner, L., Christe, A., and

Mougiakakou, S. (2016). Multisource transfer learning with convolutional neu-

ral networks for lung pattern analysis. IEEE journal of biomedical and health

informatics, 21(1):76–84.

[41] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evalua-

tion of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555.

[42] CireşAn, D., Meier, U., Masci, J., and Schmidhuber, J. (2012). Multi-column

deep neural network for traffic sign classification. Neural networks, 32:333–338.

[43] Cliff, N. (2014). Ordinal methods for behavioral data analysis. Psychology Press.

Bibliography 164

[44] Cochran, W. G. (2007). Sampling techniques. John Wiley & Sons.

[45] Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for

youtube recommendations. In Proceedings of the 10th ACM conference on recom-

mender systems, pages 191–198. ACM.

[46] Czibula, G., Marian, Z., and Czibula, I. G. (2014). Software defect prediction

using relational association rule mining. Information Sciences, 264:260–278.

[47] Dai, W., Yang, Q., Xue, G.-R., and Yu, Y. (2007). Boosting for transfer learn-

ing. In Proceedings of the 24th international conference on Machine learning,

pages 193–200.

[48] Dam, H. K., Pham, T., Ng, S. W., Tran, T., Grundy, J., Ghose, A., Kim, T.,

and Kim, C.-J. (2018). A deep tree-based model for software defect prediction.

arXiv preprint arXiv:1802.00921.

[49] Davis, J. and Goadrich, M. (2006). The relationship between precision-recall

and roc curves. In Proceedings of the 23rd international conference on Machine

learning, pages 233–240. ACM.

[50] Deng, L., Hinton, G., and Kingsbury, B. (2013). New types of deep neural

network learning for speech recognition and related applications: An overview. In

2013 IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 8599–8603. IEEE.

[51] Di Martino, S., Ferrucci, F., Gravino, C., and Sarro, F. (2011). A genetic algo-

rithm to configure support vector machines for predicting fault-prone components.

In International Conference on Product Focused Software Process Improvement,

pages 247–261. Springer.

[52] Dietterich, T. G. et al. (2002). Ensemble learning. The handbook of brain theory

and neural networks, 2:110–125.

[53] Dittman, D. J., Khoshgoftaar, T. M., and Napolitano, A. (2015). The effect

of data sampling when using random forest on imbalanced bioinformatics data.

In Information Reuse and Integration (IRI), 2015 IEEE International Conference

on, pages 457–463. IEEE.

[54] Do, C. B. and Ng, A. Y. (2006). Transfer learning for text classification. In

Advances in Neural Information Processing Systems, pages 299–306.

Bibliography 165

[55] Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015). Multi-task learning for

multiple language translation. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Confer-

ence on Natural Language Processing (Volume 1: Long Papers), pages 1723–1732.

[56] Duggal, H. and Singh, P. (2012). Comparative study of the performance of

m5-rules algorithm with different algorithms.

[57] D’Ambros, M., Lanza, M., and Robbes, R. (2012). Evaluating defect predic-

tion approaches: a benchmark and an extensive comparison. Empirical Software

Engineering, 17(4-5):531–577.

[58] Eaton, E. et al. (2011). Selective transfer between learning tasks using task-

based boosting. In Twenty-Fifth AAAI Conference on Artificial Intelligence.

[59] Fagundes, R. A., Souza, R. M., and Cysneiros, F. J. (2016). Zero-inflated

prediction model in software-fault data. IET Software, 10(1):1–9.

[60] Fakoor, R., Ladhak, F., Nazi, A., and Huber, M. (2013). Using deep learning

to enhance cancer diagnosis and classification. In Proceedings of the international

conference on machine learning, volume 28. ACM New York, USA.

[61] Fan, G., Diao, X., Yu, H., Yang, K., and Chen, L. (2019). Software defect

prediction via attention-based recurrent neural network. Scientific Programming,

2019.

[62] Fenton, N. E. and Neil, M. (1999). A critique of software defect prediction

models. IEEE Transactions on software engineering, 25(5):675–689.

[63] Fenton, N. E. and Neil, M. (2000). Software metrics: roadmap. In Proceedings

of the Conference on the Future of Software Engineering, pages 357–370. Citeseer.

[64] Firat, O., Cho, K., and Bengio, Y. (2016). Multi-way, multilingual neu-

ral machine translation with a shared attention mechanism. arXiv preprint

arXiv:1601.01073.

[65] Frank, E. and Bouckaert, R. R. (2009). Conditional density estimation with

class probability estimators. In Asian Conference on Machine Learning, pages

65–81. Springer.

[66] Freund, Y., Mansour, Y., and Schapire, R. E. (2001). Why averaging classifiers

can protect against overfitting. In AISTATS. Citeseer.

Bibliography 166

[67] Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of

on-line learning and an application to boosting. Journal of computer and system

sciences, 55(1):119–139.

[68] Friedman, J., Hastie, T., Tibshirani, R., et al. (2000). Additive logistic re-

gression: a statistical view of boosting (with discussion and a rejoinder by the

authors). The annals of statistics, 28(2):337–407.

[69] Fung, G. P. C., Yu, J. X., Lu, H., and Yu, P. S. (2005). Text classification

without negative examples revisit. IEEE transactions on Knowledge and Data

Engineering, 18(1):6–20.

[70] Ganai, M. K. and Wang, C. (2010). Interval analysis for concurrent trace pro-

grams using transaction sequence graphs. In International Conference on Runtime

Verification, pages 253–269. Springer.

[71] Gao, K. and Khoshgoftaar, T. M. (2007). A comprehensive empirical study

of count models for software fault prediction. IEEE Transactions on Reliability,

56(2):223–236.

[72] Gao, L., Guo, Z., Zhang, H., Xu, X., and Shen, H. T. (2017). Video caption-

ing with attention-based lstm and semantic consistency. IEEE Transactions on

Multimedia, 19(9):2045–2055.

[73] Garćıa, S., Fernández, A., Luengo, J., and Herrera, F. (2010). Advanced non-

parametric tests for multiple comparisons in the design of experiments in computa-

tional intelligence and data mining: Experimental analysis of power. Information

Sciences, 180(10):2044–2064.

[74] Garner, S. R. et al. (1995). Weka: The waikato environment for knowledge

analysis. In Proceedings of the New Zealand computer science research students

conference, pages 57–64.

[75] Gelfand, S. B., Ravishankar, C., and Delp, E. J. (1989). An iterative growing

and pruning algorithm for classification tree design. In Systems, Man and Cyber-

netics, 1989. Conference Proceedings., IEEE International Conference on, pages

818–823. IEEE.

[76] Ghotra, B., McIntosh, S., and Hassan, A. E. (2015). Revisiting the impact

of classification techniques on the performance of defect prediction models. In

Bibliography 167

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,

volume 1, pages 789–800. IEEE.

[77] Ghotra, B., McIntosh, S., and Hassan, A. E. (2017). A large-scale study of

the impact of feature selection techniques on defect classification models. In

2017 IEEE/ACM 14th International Conference on Mining Software Reposito-

ries (MSR), pages 146–157. IEEE.

[78] Gong, L., Jiang, S., Bo, L., Jiang, L., and Qian, J. (2019). A novel class-

imbalance learning approach for both within-project and cross-project defect pre-

diction. IEEE Transactions on Reliability.

[79] Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. (2000). Predicting

fault incidence using software change history. IEEE Transactions on software

engineering, 26(7):653–661.

[80] Gray, D., Bowes, D., Davey, N., Sun, Y., and Christianson, B. (2011). The

misuse of the nasa metrics data program data sets for automated software defect

prediction. In Evaluation & Assessment in Software Engineering (EASE 2011),

15th Annual Conference on, pages 96–103. IET.

[81] Gray, D., Bowes, D., Davey, N., Sun, Y., and Christianson, B. (2012). Reflec-

tions on the nasa mdp data sets. IET software, 6(6):549–558.

[82] Greene, W. H. (2003). Econometric analysis. Pearson Education India.

[83] Gulsun, M. A., Zheng, Y., Sharma, P., Georgescu, B., and Comaniciu, D.

(2017). Method and system for vascular disease detection using recurrent neural

networks. US Patent 9,767,557.

[84] Guo, L., Ma, Y., Cukic, B., and Singh, H. (2004). Robust prediction of fault-

proneness by random forests. In 15th international symposium on software relia-

bility engineering, pages 417–428. IEEE.

[85] Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. (2011). A sys-

tematic literature review on fault prediction performance in software engineering.

IEEE Transactions on Software Engineering, 38(6):1276–1304.

[86] Hall, T., Zhang, M., Bowes, D., and Sun, Y. (2014). Some code smells have a

significant but small effect on faults. ACM Transactions on Software Engineering

and Methodology (TOSEM), 23(4):33.

Bibliography 168

[87] Halstead, M. H. (1977). Elements of software science.

[88] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778.

[89] Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., and Scholkopf, B. (1998).

Support vector machines. IEEE Intelligent Systems and their applications,

13(4):18–28.

[90] Heffernan, R., Paliwal, K., Lyons, J., Dehzangi, A., Sharma, A., Wang, J.,

Sattar, A., Yang, Y., and Zhou, Y. (2015). Improving prediction of secondary

structure, local backbone angles and solvent accessible surface area of proteins by

iterative deep learning. Scientific reports, 5(1):1–11.

[91] Herbold, S., Trautsch, A., and Grabowski, J. (2017). A comparative study

to benchmark cross-project defect prediction approaches. IEEE Transactions on

Software Engineering, 44(9):811–833.

[92] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior,

A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks

for acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine, 29(6):82–97.

[93] Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 6(02):107–116.

[94] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8):1735–1780.

[95] Hong, S., Noh, H., and Han, B. (2015). Decoupled deep neural network for semi-

supervised semantic segmentation. In Advances in neural information processing

systems, pages 1495–1503.

[96] Iba, W. and Langley, P. (1992). Induction of one-level decision trees. In Machine

Learning Proceedings 1992, pages 233–240. Elsevier.

[97] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167.

Bibliography 169

[98] Irie, K., Tüske, Z., Alkhouli, T., Schlüter, R., and Ney, H. (2016). Lstm, gru,

highway and a bit of attention: An empirical overview for language modeling in

speech recognition. In Interspeech, pages 3519–3523.

[99] Janes, A., Scotto, M., Pedrycz, W., Russo, B., Stefanovic, M., and Succi, G.

(2006). Identification of defect-prone classes in telecommunication software sys-

tems using design metrics. Information sciences, 176(24):3711–3734.

[100] Japkowicz, N. and Stephen, S. (2002). The class imbalance problem: A sys-

tematic study. Intelligent data analysis, 6(5):429–449.

[101] Ji, H., Huang, S., Wu, Y., Hui, Z., and Zheng, C. (2019). A new weighted

naive bayes method based on information diffusion for software defect prediction.

Software Quality Journal, pages 1–46.

[102] Jia, W., Muhammad, K., Wang, S.-H., and Zhang, Y.-D. (2019). Five-category

classification of pathological brain images based on deep stacked sparse autoen-

coder. Multimedia Tools and Applications, 78(4):4045–4064.

[103] Jin, C. and Jin, S.-W. (2015). Prediction approach of software fault-proneness

based on hybrid artificial neural network and quantum particle swarm optimiza-

tion. Applied Soft Computing, 35:717–725.

[104] Jing, X.-Y., Wu, F., Dong, X., and Xu, B. (2016). An improved sda

based defect prediction framework for both within-project and cross-project class-

imbalance problems. IEEE Transactions on Software Engineering, 43(4):321–339.

[105] Jing, X.-Y., Ying, S., Zhang, Z.-W., Wu, S.-S., and Liu, J. (2014). Dictionary

learning based software defect prediction. In Proceedings of the 36th International

Conference on Software Engineering, pages 414–423. ACM.

[106] Joachims, T. (1996). A probabilistic analysis of the rocchio algorithm with

tfidf for text categorization. Technical report, Carnegie-mellon univ pittsburgh

pa dept of computer science.

[107] Jorgensen, M. (1995). Experience with the accuracy of software mainte-

nance task effort prediction models. IEEE Transactions on software engineering,

21(8):674–681.

Bibliography 170

[108] Jureczko, M. and Madeyski, L. (2010). Towards identifying software project

clusters with regard to defect prediction. In Proceedings of the 6th International

Conference on Predictive Models in Software Engineering, pages 1–10.

[109] Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional

neural network for modelling sentences. arXiv preprint arXiv:1404.2188.

[110] Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., and

Hassan, A. E. (2016). Studying just-in-time defect prediction using cross-project

models. Empirical Software Engineering, 21(5):2072–2106.

[111] Kamei, Y., Monden, A., Matsumoto, S., Kakimoto, T., and Matsumoto, K.-i.

(2007). The effects of over and under sampling on fault-prone module detec-

tion. In First International Symposium on Empirical Software Engineering and

Measurement (ESEM 2007), pages 196–204. IEEE.

[112] Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A.,

and Ubayashi, N. (2013). A large-scale empirical study of just-in-time quality

assurance. IEEE Transactions on Software Engineering, 39(6):757–773.

[113] Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., and Thambidurai, P.

(2007). Object-oriented software fault prediction using neural networks. Informa-

tion and software technology, 49(5):483–492.

[114] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei,

L. (2014). Large-scale video classification with convolutional neural networks. In

Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,

pages 1725–1732.

[115] Kaur, A., Kaur, K., and Kaur, H. (2016). Application of machine learning

on process metrics for defect prediction in mobile application. In Information

Systems Design and Intelligent Applications, pages 81–98. Springer.

[116] Khoshgoftaar, T. M. and Allen, E. B. (1999). Logistic regression modeling of

software quality. International Journal of Reliability, Quality and Safety Engi-

neering, 6(04):303–317.

[117] Khoshgoftaar, T. M. and Allen, E. B. (2001). Controlling overfitting in

classification-tree models of software quality. Empirical Software Engineering,

6(1):59–79.

Bibliography 171

[118] Khoshgoftaar, T. M. and Gao, K. (2007). Count models for software quality

estimation. IEEE Transactions on Reliability, 56(2):212–222.

[119] Khoshgoftaar, T. M., Gao, K., and Seliya, N. (2010). Attribute selection and

imbalanced data: Problems in software defect prediction. In 2010 22nd IEEE

International Conference on Tools with Artificial Intelligence, volume 1, pages

137–144. IEEE.

[120] Khoshgoftaar, T. M., Geleyn, E., and Nguyen, L. (2003). Empirical case

studies of combining software quality classification models. In Third International

Conference on Quality Software, 2003. Proceedings., pages 40–49. IEEE.

[121] Khoshgoftaar, T. M., Pandya, A. S., and More, H. B. (1992). A neural net-

work approach for predicting software development faults. In Proceedings Third

International Symposium on Software Reliability Engineering, pages 83–89. IEEE.

[122] Khuat, T. T. and Le, M. H. (2019). Ensemble learning for software fault

prediction problem with imbalanced data. International Journal of Electrical &

Computer Engineering (2088-8708), 9.

[123] Kim, S., Whitehead Jr, E. J., and Zhang, Y. (2008). Classifying soft-

ware changes: Clean or buggy? IEEE Transactions on Software Engineering,

34(2):181–196.

[124] Kim, S., Zhang, H., Wu, R., and Gong, L. (2011). Dealing with noise in

defect prediction. In 2011 33rd International Conference on Software Engineering

(ICSE), pages 481–490. IEEE.

[125] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[126] Kittler, J., Hater, M., and Duin, R. P. (1996). Combining classifiers. In

Proceedings of 13th international conference on pattern recognition, volume 2,

pages 897–901. IEEE.

[127] Kohavi, R. et al. (1995). A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal,

Canada.

Bibliography 172

[128] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105.

[129] Kumar, L., Sripada, S. K., Sureka, A., and Rath, S. K. (2017). Effective fault

prediction model developed using least square support vector machine (lssvm).

Journal of Systems and Software.

[130] Kuncheva, L. I. and Whitaker, C. J. (2003). Measures of diversity in classifier

ensembles and their relationship with the ensemble accuracy. Machine learning,

51(2):181–207.

[131] Lam, F. and Longnecker, M. (1983). A modified wilcoxon rank sum test for

paired data. Biometrika, 70(2):510–513.

[132] Lambert, D. (1992). Zero-inflated poisson regression, with an application to

defects in manufacturing. Technometrics, 34(1):1–14.

[133] Laradji, I. H., Alshayeb, M., and Ghouti, L. (2015). Software defect pre-

diction using ensemble learning on selected features. Information and Software

Technology, 58:388–402.

[134] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,

521(7553):436–444.

[135] Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. (2008). Benchmarking

classification models for software defect prediction: A proposed framework and

novel findings. IEEE Transactions on Software Engineering, 34(4):485–496.

[136] Li, B., Shen, B., Wang, J., Chen, Y., Zhang, T., and Wang, J. (2014). A

scenario-based approach to predicting software defects using compressed c4. 5

model. In Computer Software and Applications Conference (COMPSAC), 2014

IEEE 38th Annual, pages 406–415. IEEE.

[137] Li, P. L., Herbsleb, J., Shaw, M., and Robinson, B. (2006). Experiences

and results from initiating field defect prediction and product test prioritization

efforts at abb inc. In Proceedings of the 28th international conference on Software

engineering, pages 413–422. ACM.

[138] Li, W., Huang, Z., and Li, Q. (2016). Three-way decisions based software

defect prediction. Knowledge-Based Systems, 91:263–274.

Bibliography 173

[139] Liaw, A., Wiener, M., et al. (2002). Classification and regression by random-

forest. R news, 2(3):18–22.

[140] Lim, H. and Goel, A. L. (2008). Software effort prediction. Wiley Encyclopedia

of Computer Science and Engineering.

[141] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,

M., Van Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. (2017). A survey

on deep learning in medical image analysis. Medical image analysis, 42:60–88.

[142] Liu, C., Yang, D., Xia, X., Yan, M., and Zhang, X. (2019). A two-phase trans-

fer learning model for cross-project defect prediction. Information and Software

Technology, 107:125–136.

[143] Liu, J., Pan, Y., Li, M., Chen, Z., Tang, L., Lu, C., and Wang, J. (2018).

Applications of deep learning to mri images: A survey. Big Data Mining and

Analytics, 1(1):1–18.

[144] Liu, J., Wang, G., Duan, L.-Y., Abdiyeva, K., and Kot, A. C. (2017a).

Skeleton-based human action recognition with global context-aware attention lstm

networks. IEEE Transactions on Image Processing, 27(4):1586–1599.

[145] Liu, J., Wang, G., Hu, P., Duan, L.-Y., and Kot, A. C. (2017b). Global

context-aware attention lstm networks for 3d action recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 1647–

1656.

[146] Liu, Y., Khoshgoftaar, T. M., and Seliya, N. (2010). Evolutionary optimization

of software quality modeling with multiple repositories. IEEE Transactions on

Software Engineering, 36(6):852–864.

[147] Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R. A., and Zhou,

Y. (2007). Muvi: automatically inferring multi-variable access correlations and

detecting related semantic and concurrency bugs. In ACM SIGOPS Operating

Systems Review, volume 41, pages 103–116. ACM.

[148] Ma, B., Zhang, H., Chen, G., Zhao, Y., and Baesens, B. (2014a). Investigating

associative classification for software fault prediction: an experimental perspec-

tive. International Journal of Software Engineering and Knowledge Engineering,

24(01):61–90.

Bibliography 174

[149] Ma, W., Chen, L., Yang, Y., Zhou, Y., and Xu, B. (2016). Empirical analysis

of network measures for effort-aware fault-proneness prediction. Information and

Software Technology, 69:50–70.

[150] Ma, Y., Luo, G., Zeng, X., and Chen, A. (2012). Transfer learning for

cross-company software defect prediction. Information and Software Technology,

54(3):248–256.

[151] Ma, Y., Pan, W., Zhu, S., Yin, H., and Luo, J. (2014b). An improved semi-

supervised learning method for software defect prediction. Journal of Intelligent

& Fuzzy Systems, 27(5):2473–2480.

[152] Ma, Y., Qin, K., and Zhu, S. (2014c). Discrimination analysis for predicting

defect-prone software modules. Journal of Applied Mathematics, 2014.

[153] Mahaweerawat, A., Sophatsathit, P., Lursinsap, C., and Musilek, P. (2004).

Fault prediction in object-oriented software using neural network techniques. Ad-

vanced Virtual and Intelligent Computing Center (AVIC), Department of Mathe-

matics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, pages

1–8.

[154] Mahmood, Z., Bowes, D., Lane, P. C., and Hall, T. (2015). What is the

impact of imbalance on software defect prediction performance? In Proceedings

of the 11th International Conference on Predictive Models and Data Analytics in

Software Engineering, page 4. ACM.

[155] Malhotra, R. (2015). A systematic review of machine learning techniques for

software fault prediction. Applied Soft Computing, 27:504–518.

[156] Manjula, C. and Florence, L. (2018). Deep neural network based hybrid ap-

proach for software defect prediction using software metrics. Cluster Computing,

pages 1–17.

[157] Martini, A. T., Farrukh, M., and Ge, H. (2018). Recognition of ironic sen-

tences in twitter using attention-based lstm. International Journal of Advanced

Computer Science and Applications, 9(8).

[158] Matthews, B. W. (1975). Comparison of the predicted and observed secondary

structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein

Structure, 405(2):442–451.

Bibliography 175

[159] Mauša, G. and Grbac, T. G. (2017). Co-evolutionary multi-population genetic

programming for classification in software defect prediction: An empirical case

study. Applied soft computing, 55:331–351.

[160] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software

Engineering, (4):308–320.

[161] Menotti, D., Chiachia, G., Pinto, A., Schwartz, W. R., Pedrini, H., Falcao,

A. X., and Rocha, A. (2015). Deep representations for iris, face, and fingerprint

spoofing detection. IEEE Transactions on Information Forensics and Security,

10(4):864–879.

[162] Menzies, T., Greenwald, J., and Frank, A. (2006). Data mining static code

attributes to learn defect predictors. IEEE transactions on software engineering,

33(1):2–13.

[163] Miao, Y., Gowayyed, M., and Metze, F. (2015). Eesen: End-to-end speech

recognition using deep rnn models and wfst-based decoding. In 2015 IEEE Work-

shop on Automatic Speech Recognition and Understanding (ASRU), pages 167–

174. IEEE.

[164] Mısırlı, A. T., Bener, A. B., and Turhan, B. (2011). An industrial case study

of classifier ensembles for locating software defects. Software Quality Journal,

19(3):515–536.

[165] Mohamed, W. N. H. W., Salleh, M. N. M., and Omar, A. H. (2012). A

comparative study of reduced error pruning method in decision tree algorithms. In

Control System, Computing and Engineering (ICCSCE), 2012 IEEE International

Conference on, pages 392–397. IEEE.

[166] Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning

for image-based plant disease detection. Frontiers in plant science, 7:1419.

[167] Moser, R., Pedrycz, W., and Succi, G. (2008). A comparative analysis of the

efficiency of change metrics and static code attributes for defect prediction. In

Proceedings of the 30th international conference on Software engineering, pages

181–190. ACM.

[168] Murphy, K. P. et al. (2006). Naive bayes classifiers. University of British

Columbia, 18.

Bibliography 176

[169] Musa, J. D., Iannino, A., and Okumoto, K. (1990). Software reliability. Ad-

vances in computers, 30:85–170.

[170] Nagappan, N. and Ball, T. (2005). Static analysis tools as early indicators

of pre-release defect density. In Proceedings. 27th International Conference on

Software Engineering, 2005. ICSE 2005., pages 580–586. IEEE.

[171] Nagappan, N., Murphy, B., and Basili, V. (2008). The influence of organi-

zational structure on software quality. In 2008 ACM/IEEE 30th International

Conference on Software Engineering, pages 521–530. IEEE.

[172] Nagappan, N. and Wang, X. (2016). Hydra: Massively compositional model

for cross-project defect prediction. IEEE Transactions on software Engineering,

42(10):977.

[173] Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R.,

and Muharemagic, E. (2015). Deep learning applications and challenges in big

data analytics. Journal of Big Data, 2(1):1.

[174] Nam, J. and Kim, S. (2015). Clami: Defect prediction on unlabeled datasets

(t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM Interna-

tional Conference on, pages 452–463. IEEE.

[175] Nam, J., Pan, S. J., and Kim, S. (2013). Transfer defect learning. In 2013 35th

international conference on software engineering (ICSE), pages 382–391. IEEE.

[176] Ng, H.-W., Nguyen, V. D., Vonikakis, V., and Winkler, S. (2015). Deep

learning for emotion recognition on small datasets using transfer learning. In Pro-

ceedings of the 2015 ACM on international conference on multimodal interaction,

pages 443–449. ACM.

[177] Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H. G., and Ogata, T.

(2015). Audio-visual speech recognition using deep learning. Applied Intelligence,

42(4):722–737.

[178] Nunez, J. C., Cabido, R., Pantrigo, J. J., Montemayor, A. S., and Velez, J. F.

(2018). Convolutional neural networks and long short-term memory for skeleton-

based human activity and hand gesture recognition. Pattern Recognition, 76:80–

94.

Bibliography 177

[179] Okutan, A. and Yıldız, O. T. (2014). Software defect prediction using bayesian

networks. Empirical Software Engineering, 19(1):154–181.

[180] Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. (2012). How many trees

in a random forest? In International workshop on machine learning and data

mining in pattern recognition, pages 154–168. Springer.

[181] Ostrand, T. J., Weyuker, E. J., and Bell, R. M. (2004). Where the bugs are.

In ACM SIGSOFT Software Engineering Notes, volume 29, pages 86–96. ACM.

[182] Ostrand, T. J., Weyuker, E. J., and Bell, R. M. (2005). Predicting the location

and number of faults in large software systems. IEEE Transactions on Software

Engineering, 31(4):340–355.

[183] Oyedotun, O. K. and Khashman, A. (2017). Deep learning in vision-based

static hand gesture recognition. Neural Computing and Applications, 28(12):3941–

3951.

[184] Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2010). Domain adap-

tation via transfer component analysis. IEEE Transactions on Neural Networks,

22(2):199–210.

[185] Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. IEEE Trans-

actions on knowledge and data engineering, 22(10):1345–1359.

[186] Panichella, A., Oliveto, R., and De Lucia, A. (2014). Cross-project defect

prediction models: L’union fait la force. In 2014 Software Evolution Week-IEEE

Conference on Software Maintenance, Reengineering, and Reverse Engineering

(CSMR-WCRE), pages 164–173. IEEE.

[187] Pascanu, R., Mikolov, T., and Bengio, Y. (2012). Understanding the exploding

gradient problem. CoRR, abs/1211.5063, 2.

[188] Pelayo, L. and Dick, S. (2007). Applying novel resampling strategies to soft-

ware defect prediction. In NAFIPS 2007-2007 Annual Meeting of the North Amer-

ican Fuzzy Information Processing Society, pages 69–72. IEEE.

[189] Pelayo, L. and Dick, S. (2012). Evaluating stratification alternatives to improve

software defect prediction. IEEE transactions on reliability, 61(2):516–525.

Bibliography 178

[190] Peng, Y., Kou, G., Wang, G., Wu, W., and Shi, Y. (2011). Ensemble of

software defect predictors: an ahp-based evaluation method. International Journal

of Information Technology & Decision Making, 10(01):187–206.

[191] Pérez, J. M., Muguerza, J., Arbelaitz, O., Gurrutxaga, I., and Mart́ın, J. I.

(2007). Combining multiple class distribution modified subsamples in a single

tree. Pattern Recognition Letters, 28(4):414–422.

[192] Peters, F., Menzies, T., and Marcus, A. (2013). Better cross company defect

prediction. In 2013 10th Working Conference on Mining Software Repositories

(MSR), pages 409–418. IEEE.

[193] Peto, R. and Peto, J. (1972). Asymptotically efficient rank invariant test pro-

cedures. Journal of the Royal Statistical Society: Series A (General), 135(2):185–

198.

[194] Petrić, J., Bowes, D., Hall, T., Christianson, B., and Baddoo, N. (2016).

The jinx on the nasa software defect data sets. In Proceedings of the 20th In-

ternational Conference on Evaluation and Assessment in Software Engineering,

page 13. ACM.

[195] Polikar, R. (2012). Ensemble learning. In Ensemble machine learning, pages

1–34. Springer.

[196] Powers, D. M. (2011). Evaluation: from precision, recall and f-measure to roc,

informedness, markedness and correlation.

[197] Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., and Carin, L.

(2016). Variational autoencoder for deep learning of images, labels and captions.

In Advances in neural information processing systems, pages 2352–2360.

[198] Putnam, L. H. (1978). A general empirical solution to the macro software sizing

and estimating problem. IEEE transactions on Software Engineering, (4):345–361.

[199] Rahm, E. and Do, H. H. (2000). Data cleaning: Problems and current ap-

proaches. IEEE Data Eng. Bull., 23(4):3–13.

[200] Rathore, S. S. and Kumar, S. (2015). Predicting number of faults in software

system using genetic programming. Procedia Computer Science, 62:303–311.

Bibliography 179

[201] Rathore, S. S. and Kumar, S. (2016). A decision tree regression based ap-

proach for the number of software faults prediction. ACM SIGSOFT Software

Engineering Notes, 41(1):1–6.

[202] Rathore, S. S. and Kumar, S. (2017a). Linear and non-linear heterogeneous

ensemble methods to predict the number of faults in software systems. Knowledge-

Based Systems, 119:232–256.

[203] Rathore, S. S. and Kumar, S. (2017b). Towards an ensemble based system

for predicting the number of software faults. Expert Systems with Applications,

82:357–382.

[204] Rathore, S. S. and Kumar, S. (2018). An approach for the prediction of number

of software faults based on the dynamic selection of learning techniques. IEEE

Transactions on Reliability, 68(1):216–236.

[205] Rathore, S. S. and Kumar, S. (2019a). Nonlinear rule based ensemble meth-

ods for the prediction of number of faults. In Fault Prediction Modeling for the

Prediction of Number of Software Faults, pages 59–69. Springer.

[206] Rathore, S. S. and Kumar, S. (2019b). A study on software fault prediction

techniques. Artificial Intelligence Review, 51(2):255–327.

[207] Rätsch, G., Onoda, T., and Müller, K. R. (1998). An improvement of adaboost

to avoid overfitting. In Proc. of the Int. Conf. on Neural Information Processing.

Citeseer.

[208] Riaz, M., Mendes, E., and Tempero, E. (2009). A systematic review of software

maintainability prediction and metrics. In Proceedings of the 2009 3rd Interna-

tional Symposium on Empirical Software Engineering and Measurement, pages

367–377. IEEE Computer Society.

[209] Ricky, M. Y., Purnomo, F., and Yulianto, B. (2016). Mobile application soft-

ware defect prediction. In Service-Oriented System Engineering (SOSE), 2016

IEEE Symposium on, pages 307–313. IEEE.

[210] Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review,

33(1-2):1–39.

[211] Rolnick, D., Veit, A., Belongie, S., and Shavit, N. (2017). Deep learning is

robust to massive label noise. arXiv preprint arXiv:1705.10694.

Bibliography 180

[Ruck et al.] Ruck, D. W., Rogers, S. K., Kabrisky, M., Oxley, M. E., and Suter,

B. W. The multilayer perceptron as an approximation to a bayes optimal discrim-

inant function.

[213] Ruder, S. (2016). An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747.

[214] Sasidharan, R. and Sriram, P. (2014). Hyper-quadtree-based k-means algo-

rithm for software fault prediction. In Computational Intelligence, Cyber Security

and Computational Models, pages 107–118. Springer.

[215] Sayyad Shirabad, J. and Menzies, T. (2005a). The PROMISE Repository of

Software Engineering Databases. School of Information Technology and Engineer-

ing, University of Ottawa, Canada.

[216] Sayyad Shirabad, J. and Menzies, T. (2005b). The PROMISE Repository of

Software Engineering Databases. School of Information Technology and Engineer-

ing, University of Ottawa, Canada.

[217] Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural net-

works. IEEE Transactions on Signal Processing, 45(11):2673–2681.

[218] Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T.,

Qin, C., Ž́ıdek, A., Nelson, A. W., Bridgland, A., et al. (2019). Protein structure

prediction using multiple deep neural networks in the 13th critical assessment of

protein structure prediction (casp13). Proteins: Structure, Function, and Bioin-

formatics, 87(12):1141–1148.

[219] Severyn, A. and Moschitti, A. (2015). Twitter sentiment analysis with deep

convolutional neural networks. In Proceedings of the 38th International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages

959–962.

[220] Shepperd, M., Song, Q., Sun, Z., and Mair, C. (2013). Data quality: Some

comments on the nasa software defect datasets. IEEE Transactions on Software

Engineering, 39(9):1208–1215.

[221] Shirabad, J. S. and Menzies, T. J. (2005). The promise repository of soft-

ware engineering databases. School of Information Technology and Engineering,

University of Ottawa, Canada, 24.

Bibliography 181

[222] Shivaji, S., Whitehead, E. J., Akella, R., and Kim, S. (2012). Reducing features

to improve code change-based bug prediction. IEEE Transactions on Software

Engineering, 39(4):552–569.

[223] Shivaji, S., Whitehead Jr, E. J., Akella, R., and Kim, S. (2009). Reducing

features to improve bug prediction. In 2009 IEEE/ACM International Conference

on Automated Software Engineering, pages 600–604. IEEE.

[224] Shukla, S., Radhakrishnan, T., Muthukumaran, K., and Neti, L. B. M. (2018).

Multi-objective cross-version defect prediction. Soft Computing, 22(6):1959–1980.

[225] Siers, M. J. and Islam, M. Z. (2015). Software defect prediction using a cost

sensitive decision forest and voting, and a potential solution to the class imbalance

problem. Information Systems, 51:62–71.

[226] Singh, P., Pal, N. R., Verma, S., and Vyas, O. P. (2016). Fuzzy rule-based

approach for software fault prediction. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 47(5):826–837.

[227] Singh, S. P., Kumar, A., Darbari, H., Singh, L., Rastogi, A., and Jain, S.

(2017). Machine translation using deep learning: An overview. In 2017 Inter-

national Conference on Computer, Communications and Electronics (Comptelix),

pages 162–167. IEEE.

[228] Singh, V. and Chaturvedi, K. (2013). Improving the quality of software by

quantifying the code change metric and predicting the bugs. In International Con-

ference on Computational Science and Its Applications, pages 408–426. Springer.

[229] Singh, Y., Kaur, A., and Malhotra, R. (2009). Software fault proneness pre-

diction using support vector machines. In Proceedings of the world congress on

engineering, volume 1, pages 1–3.

[230] Smola, A. J. and Bartlett, P. L. (2001). Sparse greedy gaussian process re-

gression. In Advances in neural information processing systems, pages 619–625.

[231] Soleimani, A. and Asdaghi, F. (2014). An ais based feature selection method

for software fault prediction. In Intelligent Systems (ICIS), 2014 Iranian Confer-

ence on, pages 1–5. IEEE.

[232] Solis, F. J. and Wets, R. J.-B. (1981). Minimization by random search tech-

niques. Mathematics of operations research, 6(1):19–30.

Bibliography 182

[233] Sommerville, I. (2011). Software engineering 9th edition. ISBN-10,

137035152:18.

[234] Song, J., Guo, Z., Gao, L., Liu, W., Zhang, D., and Shen, H. T. (2017).

Hierarchical lstm with adjusted temporal attention for video captioning. arXiv

preprint arXiv:1706.01231.

[235] Song, Q., Jia, Z., Shepperd, M., Ying, S., and Liu, J. (2010). A general

software defect-proneness prediction framework. IEEE transactions on software

engineering, 37(3):356–370.

[236] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,

R. (2014). Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958.

[237] Steinwart, I. and Christmann, A. (2008). Support vector machines. Springer

Science & Business Media.

[238] Strezoski, G., Stojanovski, D., Dimitrovski, I., and Madjarov, G. (2016). Hand

gesture recognition using deep convolutional neural networks. In International

conference on ICT innovations, pages 49–58. Springer.

[239] Su, B., yong Chen, H., Chen, P., Bian, G.-B., Liu, W., et al. (2020). Deep

learning-based solar-cell manufacturing defect detection with complementary at-

tention network. IEEE Transactions on Industrial Informatics.

[240] Su, C., Ju, S., Liu, Y., and Yu, Z. (2015). Improving random forest and rota-

tion forest for highly imbalanced datasets. Intelligent Data Analysis, 19(6):1409–

1432.

[241] Sun, Z., Song, Q., and Zhu, X. (2012). Using coding-based ensemble learning

to improve software defect prediction. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 42(6):1806–1817.

[242] Sundermeyer, M., Schlüter, R., and Ney, H. (2012). Lstm neural networks for

language modeling. In Thirteenth annual conference of the international speech

communication association.

[243] Sushant, A. (2020). Meta-datasest and source code. https://github.com/

sushantkumar007007/sushantkumar007007-gmail.com.

Bibliography 183

[244] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance

of initialization and momentum in deep learning. In International conference on

machine learning, pages 1139–1147.

[245] Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to sequence learning

with neural networks. Advances in NIPS.

[246] Tang, S., Wu, Z., and Chen, K. (2017). Movie recommendation via blstm. In

International Conference on Multimedia Modeling, pages 269–279. Springer.

[247] Tantithamthavorn, C. and Hassan, A. E. (2018). An experience report on

defect modelling in practice: Pitfalls and challenges. In Proceedings of the 40th

International Conference on Software Engineering: Software Engineering in Prac-

tice, pages 286–295. ACM.

[248] Tong, C., Li, J., Lang, C., Kong, F., Niu, J., and Rodrigues, J. J. (2018a).

An efficient deep model for day-ahead electricity load forecasting with stacked

denoising auto-encoders. Journal of Parallel and Distributed Computing, 117:267–

273.

[249] Tong, H., Liu, B., and Wang, S. (2018b). Software defect prediction using

stacked denoising autoencoders and two-stage ensemble learning. Information

and Software Technology, 96:94–111.

[250] Turabieh, H., Mafarja, M., and Li, X. (2019). Iterated feature selection algo-

rithms with layered recurrent neural network for software fault prediction. Expert

Systems with Applications, 122:27–42.

[251] Vashisht, V., Lal, M., and Sureshchandar, G. (2016). Defect prediction frame-

work using neural networks for software enhancement projects. British Journal

of Mathematics & Computer Science, 16(5):384–394.

[252] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in

neural information processing systems, pages 5998–6008.

[253] Vezhnevets, A. and Barinova, O. (2007). Avoiding boosting overfitting by

removing confusing samples. In European Conference on Machine Learning, pages

430–441. Springer.

Bibliography 184

[254] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extract-

ing and composing robust features with denoising autoencoders. In Proceedings of

the 25th international conference on Machine learning, pages 1096–1103. ACM.

[255] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010).

Stacked denoising autoencoders: Learning useful representations in a deep net-

work with a local denoising criterion. Journal of machine learning research,

11(Dec):3371–3408.

[256] Wagner, S. (2006). A literature survey of the quality economics of defect-

detection techniques. In Proceedings of the 2006 ACM/IEEE international sym-

posium on Empirical software engineering, pages 194–203.

[257] Walczak, B. and Massart, D. (2001). Dealing with missing data: Part i.

Chemometrics and Intelligent Laboratory Systems, 58(1):15–27.

[258] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., and

Tang, X. (2017). Residual attention network for image classification. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

3156–3164.

[259] Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., Doel,

T., David, A. L., Deprest, J., Ourselin, S., et al. (2018a). Interactive medical

image segmentation using deep learning with image-specific fine tuning. IEEE

transactions on medical imaging, 37(7):1562–1573.

[260] Wang, J. and Zhang, C. (2018). Software reliability prediction using a deep

learning model based on the rnn encoder–decoder. Reliability Engineering & Sys-

tem Safety, 170:73–82.

[261] Wang, J. and Zhang, H. (2012). Predicting defect numbers based on defect

state transition models. In Proceedings of the 2012 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, pages 191–200.

IEEE.

[262] Wang, S., Liu, T., and Tan, L. (2016a). Automatically learning semantic

features for defect prediction. In Proceedings of the 38th International Conference

on Software Engineering, pages 297–308. ACM.

Bibliography 185

[263] Wang, S., Minku, L. L., and Yao, X. (2013). Online class imbalance learning

and its applications in fault detection. International Journal of Computational

Intelligence and Applications, 12(04):1340001.

[264] Wang, S., Peng, J., Ma, J., and Xu, J. (2016b). Protein secondary structure

prediction using deep convolutional neural fields. Scientific reports, 6(1):1–11.

[265] Wang, S. and Yao, X. (2012). Multiclass imbalance problems: Analysis and

potential solutions. IEEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics), 42(4):1119–1130.

[266] Wang, S. and Yao, X. (2013). Using class imbalance learning for software

defect prediction. IEEE Transactions on Reliability, 62(2):434–443.

[267] Wang, T., Li, W., Shi, H., and Liu, Z. (2011). Software defect prediction based

on classifiers ensemble. JOURNAL OF INFORMATION &COMPUTATIONAL

SCIENCE, 8(16):4241–4254.

[268] Wang, Y., Huang, M., Zhu, X., and Zhao, L. (2016c). Attention-based lstm

for aspect-level sentiment classification. In Proceedings of the 2016 conference on

empirical methods in natural language processing, pages 606–615.

[269] Wang, Z., Wang, J., and Wang, Y. (2018b). An intelligent diagnosis scheme

based on generative adversarial learning deep neural networks and its application

to planetary gearbox fault pattern recognition. Neurocomputing, 310:213–222.

[270] Wei, H., Hu, C., Chen, S., Xue, Y., and Zhang, Q. (2019). Establishing a

software defect prediction model via effective dimension reduction. Information

Sciences, 477:399–409.

[271] Weigend, A. (1994). On overfitting and the effective number of hidden units.

In Proceedings of the 1993 connectionist models summer school, volume 1, pages

335–342.

[272] Weyuker, E. J., Ostrand, T. J., and Bell, R. M. (2010). Comparing the ef-

fectiveness of several modeling methods for fault prediction. Empirical Software

Engineering, 15(3):277–295.

[273] Wilcoxon, F., Katti, S., and Wilcox, R. A. (1970). Critical values and prob-

ability levels for the wilcoxon rank sum test and the wilcoxon signed rank test.

Selected tables in mathematical statistics, 1:171–259.

Bibliography 186

[274] Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining:

Practical machine learning tools and techniques. Morgan Kaufmann.

[275] Woolson, R. (2007). Wilcoxon signed-rank test. Wiley encyclopedia of clinical

trials, pages 1–3.

[276] Wu, C., Fan, W., He, Y., Sun, J., and Naoi, S. (2014). Handwritten character

recognition by alternately trained relaxation convolutional neural network. In 2014

14th International Conference on Frontiers in Handwriting Recognition, pages

291–296. IEEE.

[277] Xia, X., Lo, D., Pan, S. J., Nagappan, N., and Wang, X. (2016). Hydra: Mas-

sively compositional model for cross-project defect prediction. IEEE Transactions

on software Engineering, 42(10):977–998.

[278] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,

and Bengio, Y. (2015). Show, attend and tell: Neural image caption generation

with visual attention. In International conference on machine learning, pages

2048–2057.

[279] Xu, Z., Li, S., Luo, X., Liu, J., Zhang, T., Tang, Y., Xu, J., Yuan, P., and

Keung, J. (2019a). Tstss: A two-stage training subset selection framework for

cross version defect prediction. Journal of Systems and Software, 154:59–78.

[280] Xu, Z., Liu, J., Luo, X., Yang, Z., Zhang, Y., Yuan, P., Tang, Y., and Zhang,

T. (2019b). Software defect prediction based on kernel pca and weighted extreme

learning machine. Information and Software Technology, 106:182–200.

[281] Xu, Z., Liu, J., Luo, X., and Zhang, T. (2018). Cross-version defect prediction

via hybrid active learning with kernel principal component analysis. In 2018 IEEE

25th International Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 209–220. IEEE.

[282] Xu, Z., Liu, J., Yang, Z., An, G., and Jia, X. (2016). The impact of feature

selection on defect prediction performance: An empirical comparison. In 2016

IEEE 27th International Symposium on Software Reliability Engineering (ISSRE),

pages 309–320. IEEE.

[283] Yadav, H. B. and Yadav, D. K. (2015). A fuzzy logic based approach for

phase-wise software defects prediction using software metrics. Information and

Software Technology, 63:44–57.

Bibliography 187

[284] Yamada, S., Ohtera, H., and Narihisa, H. (1986). Software reliability growth

models with testing-effort. IEEE Transactions on Reliability, 35(1):19–23.

[285] Yang, X., Lo, D., Xia, X., Zhang, Y., and Sun, J. (2015). Deep learning

for just-in-time defect prediction. In Software Quality, Reliability and Security

(QRS), 2015 IEEE International Conference on, pages 17–26. IEEE.

[286] Yang, X. and Wen, W. (2018). Ridge and lasso regression models for cross-

version defect prediction. IEEE Transactions on Reliability, 67(3):885–896.

[287] Ye, X., Bunescu, R., and Liu, C. (2015). Mapping bug reports to relevant

files: A ranking model, a fine-grained benchmark, and feature evaluation. IEEE

Transactions on Software Engineering, 42(4):379–402.

[288] Yu, J. (2019). A selective deep stacked denoising autoencoders ensemble with

negative correlation learning for gearbox fault diagnosis. Computers in Industry,

108:62–72.

[289] Yu, L. (2012). Using negative binomial regression analysis to predict software

faults: A study of apache ant.

[290] Yuan, Y., Chao, M., and Lo, Y.-C. (2017). Automatic skin lesion segmentation

using deep fully convolutional networks with jaccard distance. IEEE transactions

on medical imaging, 36(9):1876–1886.

[291] Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network

regularization. arXiv preprint arXiv:1409.2329.

[292] Zhang, Z.-W., Jing, X.-Y., and Wang, T.-J. (2017). Label propagation based

semi-supervised learning for software defect prediction. Automated Software En-

gineering, 24(1):47–69.

[293] Zhao, Y., Yang, Y., Lu, H., Liu, J., Leung, H., Wu, Y., Zhou, Y., and Xu,

B. (2017). Understanding the value of considering client usage context in pack-

age cohesion for fault-proneness prediction. Automated Software Engineering,

24(2):393–453.

[294] Zhao, Y., Yang, Y., Lu, H., Zhou, Y., Song, Q., and Xu, B. (2015). An

empirical analysis of package-modularization metrics: Implications for software

fault-proneness. Information and Software Technology, 57:186–203.

Bibliography 188

[295] Zheng, J. (2010). Cost-sensitive boosting neural networks for software defect

prediction. Expert Systems with Applications, 37(6):4537–4543.

[296] Zhou, C., Sun, C., Liu, Z., and Lau, F. (2015). A c-lstm neural network for

text classification. arXiv preprint arXiv:1511.08630.

[297] Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., and Xu, B. (2016).

Attention-based bidirectional long short-term memory networks for relation clas-

sification. In Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 2: Short Papers), pages 207–212.

[298] Zhou, Y. and Leung, H. (2007). Predicting object-oriented software main-

tainability using multivariate adaptive regression splines. Journal of Systems and

Software, 80(8):1349–1361.

[299] Zhu, G., Zhang, L., Mei, L., Shao, J., Song, J., and Shen, P. (2016). Large-

scale isolated gesture recognition using pyramidal 3d convolutional networks. In

2016 23rd International Conference on Pattern Recognition (ICPR), pages 19–24.

IEEE.

[300] Zhu, Y., Chen, Y., Lu, Z., Pan, S. J., Xue, G.-R., Yu, Y., and Yang, Q. (2011).

Heterogeneous transfer learning for image classification. In Twenty-Fifth AAAI

Conference on Artificial Intelligence.

[301] Zimmermann, T., Nagappan, N., Gall, H., Giger, E., and Murphy, B. (2009).

Cross-project defect prediction: a large scale experiment on data vs. domain vs.

process. In Proceedings of the 7th joint meeting of the European software engi-

neering conference and the ACM SIGSOFT symposium on The foundations of

software engineering, pages 91–100.

