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highway and a bit of attention: An empirical overview for language modeling in

speech recognition. In Interspeech, pages 3519–3523.

[99] Janes, A., Scotto, M., Pedrycz, W., Russo, B., Stefanovic, M., and Succi, G.

(2006). Identification of defect-prone classes in telecommunication software sys-

tems using design metrics. Information sciences, 176(24):3711–3734.

[100] Japkowicz, N. and Stephen, S. (2002). The class imbalance problem: A sys-

tematic study. Intelligent data analysis, 6(5):429–449.

[101] Ji, H., Huang, S., Wu, Y., Hui, Z., and Zheng, C. (2019). A new weighted

naive bayes method based on information diffusion for software defect prediction.

Software Quality Journal, pages 1–46.

[102] Jia, W., Muhammad, K., Wang, S.-H., and Zhang, Y.-D. (2019). Five-category

classification of pathological brain images based on deep stacked sparse autoen-

coder. Multimedia Tools and Applications, 78(4):4045–4064.

[103] Jin, C. and Jin, S.-W. (2015). Prediction approach of software fault-proneness

based on hybrid artificial neural network and quantum particle swarm optimiza-

tion. Applied Soft Computing, 35:717–725.

[104] Jing, X.-Y., Wu, F., Dong, X., and Xu, B. (2016). An improved sda

based defect prediction framework for both within-project and cross-project class-

imbalance problems. IEEE Transactions on Software Engineering, 43(4):321–339.

[105] Jing, X.-Y., Ying, S., Zhang, Z.-W., Wu, S.-S., and Liu, J. (2014). Dictionary

learning based software defect prediction. In Proceedings of the 36th International

Conference on Software Engineering, pages 414–423. ACM.

[106] Joachims, T. (1996). A probabilistic analysis of the rocchio algorithm with

tfidf for text categorization. Technical report, Carnegie-mellon univ pittsburgh

pa dept of computer science.

[107] Jorgensen, M. (1995). Experience with the accuracy of software mainte-

nance task effort prediction models. IEEE Transactions on software engineering,

21(8):674–681.



Bibliography 170

[108] Jureczko, M. and Madeyski, L. (2010). Towards identifying software project

clusters with regard to defect prediction. In Proceedings of the 6th International

Conference on Predictive Models in Software Engineering, pages 1–10.

[109] Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional

neural network for modelling sentences. arXiv preprint arXiv:1404.2188.

[110] Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., and

Hassan, A. E. (2016). Studying just-in-time defect prediction using cross-project

models. Empirical Software Engineering, 21(5):2072–2106.

[111] Kamei, Y., Monden, A., Matsumoto, S., Kakimoto, T., and Matsumoto, K.-i.

(2007). The effects of over and under sampling on fault-prone module detec-

tion. In First International Symposium on Empirical Software Engineering and

Measurement (ESEM 2007), pages 196–204. IEEE.

[112] Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A.,

and Ubayashi, N. (2013). A large-scale empirical study of just-in-time quality

assurance. IEEE Transactions on Software Engineering, 39(6):757–773.

[113] Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., and Thambidurai, P.

(2007). Object-oriented software fault prediction using neural networks. Informa-

tion and software technology, 49(5):483–492.

[114] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei,

L. (2014). Large-scale video classification with convolutional neural networks. In

Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,

pages 1725–1732.

[115] Kaur, A., Kaur, K., and Kaur, H. (2016). Application of machine learning

on process metrics for defect prediction in mobile application. In Information

Systems Design and Intelligent Applications, pages 81–98. Springer.

[116] Khoshgoftaar, T. M. and Allen, E. B. (1999). Logistic regression modeling of

software quality. International Journal of Reliability, Quality and Safety Engi-

neering, 6(04):303–317.

[117] Khoshgoftaar, T. M. and Allen, E. B. (2001). Controlling overfitting in

classification-tree models of software quality. Empirical Software Engineering,

6(1):59–79.



Bibliography 171

[118] Khoshgoftaar, T. M. and Gao, K. (2007). Count models for software quality

estimation. IEEE Transactions on Reliability, 56(2):212–222.

[119] Khoshgoftaar, T. M., Gao, K., and Seliya, N. (2010). Attribute selection and

imbalanced data: Problems in software defect prediction. In 2010 22nd IEEE

International Conference on Tools with Artificial Intelligence, volume 1, pages

137–144. IEEE.

[120] Khoshgoftaar, T. M., Geleyn, E., and Nguyen, L. (2003). Empirical case

studies of combining software quality classification models. In Third International

Conference on Quality Software, 2003. Proceedings., pages 40–49. IEEE.

[121] Khoshgoftaar, T. M., Pandya, A. S., and More, H. B. (1992). A neural net-

work approach for predicting software development faults. In Proceedings Third

International Symposium on Software Reliability Engineering, pages 83–89. IEEE.

[122] Khuat, T. T. and Le, M. H. (2019). Ensemble learning for software fault

prediction problem with imbalanced data. International Journal of Electrical &

Computer Engineering (2088-8708), 9.

[123] Kim, S., Whitehead Jr, E. J., and Zhang, Y. (2008). Classifying soft-

ware changes: Clean or buggy? IEEE Transactions on Software Engineering,

34(2):181–196.

[124] Kim, S., Zhang, H., Wu, R., and Gong, L. (2011). Dealing with noise in

defect prediction. In 2011 33rd International Conference on Software Engineering

(ICSE), pages 481–490. IEEE.

[125] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[126] Kittler, J., Hater, M., and Duin, R. P. (1996). Combining classifiers. In

Proceedings of 13th international conference on pattern recognition, volume 2,

pages 897–901. IEEE.

[127] Kohavi, R. et al. (1995). A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal,

Canada.



Bibliography 172

[128] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105.

[129] Kumar, L., Sripada, S. K., Sureka, A., and Rath, S. K. (2017). Effective fault

prediction model developed using least square support vector machine (lssvm).

Journal of Systems and Software.

[130] Kuncheva, L. I. and Whitaker, C. J. (2003). Measures of diversity in classifier

ensembles and their relationship with the ensemble accuracy. Machine learning,

51(2):181–207.

[131] Lam, F. and Longnecker, M. (1983). A modified wilcoxon rank sum test for

paired data. Biometrika, 70(2):510–513.

[132] Lambert, D. (1992). Zero-inflated poisson regression, with an application to

defects in manufacturing. Technometrics, 34(1):1–14.

[133] Laradji, I. H., Alshayeb, M., and Ghouti, L. (2015). Software defect pre-

diction using ensemble learning on selected features. Information and Software

Technology, 58:388–402.

[134] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,

521(7553):436–444.

[135] Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. (2008). Benchmarking

classification models for software defect prediction: A proposed framework and

novel findings. IEEE Transactions on Software Engineering, 34(4):485–496.

[136] Li, B., Shen, B., Wang, J., Chen, Y., Zhang, T., and Wang, J. (2014). A

scenario-based approach to predicting software defects using compressed c4. 5

model. In Computer Software and Applications Conference (COMPSAC), 2014

IEEE 38th Annual, pages 406–415. IEEE.

[137] Li, P. L., Herbsleb, J., Shaw, M., and Robinson, B. (2006). Experiences

and results from initiating field defect prediction and product test prioritization

efforts at abb inc. In Proceedings of the 28th international conference on Software

engineering, pages 413–422. ACM.

[138] Li, W., Huang, Z., and Li, Q. (2016). Three-way decisions based software

defect prediction. Knowledge-Based Systems, 91:263–274.



Bibliography 173

[139] Liaw, A., Wiener, M., et al. (2002). Classification and regression by random-

forest. R news, 2(3):18–22.

[140] Lim, H. and Goel, A. L. (2008). Software effort prediction. Wiley Encyclopedia

of Computer Science and Engineering.

[141] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,

M., Van Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. (2017). A survey

on deep learning in medical image analysis. Medical image analysis, 42:60–88.

[142] Liu, C., Yang, D., Xia, X., Yan, M., and Zhang, X. (2019). A two-phase trans-

fer learning model for cross-project defect prediction. Information and Software

Technology, 107:125–136.

[143] Liu, J., Pan, Y., Li, M., Chen, Z., Tang, L., Lu, C., and Wang, J. (2018).

Applications of deep learning to mri images: A survey. Big Data Mining and

Analytics, 1(1):1–18.

[144] Liu, J., Wang, G., Duan, L.-Y., Abdiyeva, K., and Kot, A. C. (2017a).

Skeleton-based human action recognition with global context-aware attention lstm

networks. IEEE Transactions on Image Processing, 27(4):1586–1599.

[145] Liu, J., Wang, G., Hu, P., Duan, L.-Y., and Kot, A. C. (2017b). Global

context-aware attention lstm networks for 3d action recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 1647–

1656.

[146] Liu, Y., Khoshgoftaar, T. M., and Seliya, N. (2010). Evolutionary optimization

of software quality modeling with multiple repositories. IEEE Transactions on

Software Engineering, 36(6):852–864.

[147] Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R. A., and Zhou,

Y. (2007). Muvi: automatically inferring multi-variable access correlations and

detecting related semantic and concurrency bugs. In ACM SIGOPS Operating

Systems Review, volume 41, pages 103–116. ACM.

[148] Ma, B., Zhang, H., Chen, G., Zhao, Y., and Baesens, B. (2014a). Investigating

associative classification for software fault prediction: an experimental perspec-

tive. International Journal of Software Engineering and Knowledge Engineering,

24(01):61–90.



Bibliography 174

[149] Ma, W., Chen, L., Yang, Y., Zhou, Y., and Xu, B. (2016). Empirical analysis

of network measures for effort-aware fault-proneness prediction. Information and

Software Technology, 69:50–70.

[150] Ma, Y., Luo, G., Zeng, X., and Chen, A. (2012). Transfer learning for

cross-company software defect prediction. Information and Software Technology,

54(3):248–256.

[151] Ma, Y., Pan, W., Zhu, S., Yin, H., and Luo, J. (2014b). An improved semi-

supervised learning method for software defect prediction. Journal of Intelligent

& Fuzzy Systems, 27(5):2473–2480.

[152] Ma, Y., Qin, K., and Zhu, S. (2014c). Discrimination analysis for predicting

defect-prone software modules. Journal of Applied Mathematics, 2014.

[153] Mahaweerawat, A., Sophatsathit, P., Lursinsap, C., and Musilek, P. (2004).

Fault prediction in object-oriented software using neural network techniques. Ad-

vanced Virtual and Intelligent Computing Center (AVIC), Department of Mathe-

matics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, pages

1–8.

[154] Mahmood, Z., Bowes, D., Lane, P. C., and Hall, T. (2015). What is the

impact of imbalance on software defect prediction performance? In Proceedings

of the 11th International Conference on Predictive Models and Data Analytics in

Software Engineering, page 4. ACM.

[155] Malhotra, R. (2015). A systematic review of machine learning techniques for

software fault prediction. Applied Soft Computing, 27:504–518.

[156] Manjula, C. and Florence, L. (2018). Deep neural network based hybrid ap-

proach for software defect prediction using software metrics. Cluster Computing,

pages 1–17.

[157] Martini, A. T., Farrukh, M., and Ge, H. (2018). Recognition of ironic sen-

tences in twitter using attention-based lstm. International Journal of Advanced

Computer Science and Applications, 9(8).

[158] Matthews, B. W. (1975). Comparison of the predicted and observed secondary

structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein

Structure, 405(2):442–451.



Bibliography 175
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