
Chapter 7

Summary

This thesis investigated and suggested four different defect prediction approaches in

four distinct aspects. This thesis also discussed the various challenges of defect pre-

diction and how our methods overcome these challenges. We have revisited existing

solutions to these challenges and also analyzed them. WWe proposed a classification-

based SDP model. We have also extended the classification-based SDP problem into

regression-based defect estimation methods in three different categories. The first

is cross-version defect number prediction, the second is cross-project defect count

estimation, and the third is for entire software prediction, which is hybrid regression

analysis. The summary of all four works is given below.

1. BPDET is a classification-based defect prediction method. It employed a

stacked denoising autoencoder to extract deep features from the classical soft-

ware metrics of 12 NASA projects in the deep learning phase. After that, it uses

heterogeneous ensemble learning techniques to train the model; ten different

classifiers are used as a weak learner and average probability as a combination

rule in the ensemble learning phase. According to our empirical study, the deep

learning phase mainly addresses the class imbalance and over-fitting problem,

and the two stages of ensemble learning also target these issues. We found

that BPDET significantly outperformed the existing state-of-the-art methods

in terms of MCC, ROC, PRC, and F-measure. We conducted a k-fold cross-

validation test to measure the stability of the model, and we found BPDET is

highly stable.

150



Chapter 7. Summary of the Thesis 151

2. Cross-version defect count vector prediction estimates the bug count vector

(column vector consists of bug information) of the next version of a software

system. It mainly employs the information of all prior versions of the same

software system. BCV-Predictor is an approach that estimates the bug count

vector of the next version software system. It consists of two main steps; first,

the data amalgamation process that leads to meta data creation, and second,

model training. We have employed long short term memory architecture as

a learning technique. We trained the model using meta data and estimated

the bug count vector over the test/development set. We found the proposed

model produces unbiased results over existing techniques and avoid overfit-

ting and class imbalance problem. Moreover, the proposed model significantly

outperforms existing methods. The BCV-Predictor is more suitable for large

software projects, and it takes reasonable training costs. The model is stable

for substantial projects and moderately stable for a small software system.

3. Cross-project defect number prediction is one step ahead of cross-project de-

fect prediction. It also estimates the number of faults in every module in the

target project. We proposed a method called DNNAttention using attention

and LSTM layer to predict a number of the defect in the target project using

training over diverse projects (cross-project). The DNNAttention contains two

phases. In the first phase, the data is created (source project) using the data

amalgamation process; it uniquely amalgamates 44 different projects. In the

second phase, deep features are extracted using the attention layer and train the

model using the LSTM network. We train the proposed model using 44 diverse

projects of the PROMISE repository and test over the individual project (tar-

get project). The results found the proposed model significantly outperforms

existing methods. It also avoids class imbalance and overfitting problems. We

discovered that DNNAtention is more suitable for large and moderate-sized

projects, whereas it produces a high loss for small-sized projects. The model

is stable over large and moderate size projects.

4. Prediction of the entire version of a software system will reduce the enor-

mous amount of effort in software development. We have proposed a novel

approach to estimate the entire next version of a software system. In the hy-

brid regression analysis, we applied deep learning and eight projects of the

PROMISE repository for the experiments. Our approach is divided into two

phases: the first is the data augmentation phase, and the second is the entire



Chapter 7. Summary of the Thesis 152

version prediction phase. The proposed model significantly outperforms other

state-of-the-art methods.

The proposed methodologies can help to produce high-quality software products at

a lower cost.


