
Chapter 6

Predicting the next version of the

Software System: A Hybrid

Regression Analysis

6.1 Introduction

Cross-version defect prediction builds a methodology from the previous version of a

software system to predict defects in the current version. Most of the articles over

cross-version defect prediction model [281, 224, 279] only focus on bug prediction

in the current version of a software system. On the other hand, our work predicts

the metrics and the bug count for a new version of the software system, i.e., we are

predicting data associated with the next version of a software project. Predicting the

next version of any software system allows rapid addition of functionality from user

response and resolution of platform compatibility issues of the previous versions.

Prediction of metric values and the number of bugs in software modules helps to

Figure 6.1: Structure of next version prediction of a software system.

129

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 130

develop high-quality software products at a low cost, further reducing the testing and

development efforts of the software development life cycle. The motivation behind

our work is given below:

(i) To date, no previous work on software bug prediction has focused on predicting

the entire software (number of bugs along with software metrics in each module)

of the successive version of a same software system.

(ii) The success of deep learning architectures in time series prediction and se-

quence prediction motivates their application for the next version prediction

of software systems.

We performed the experiments on eight public software systems from the PROMISE

data repository [215], using all the available versions to build our prediction model.

The main contributions are summarized as follows:

(I) We propose a new methodology for predicting the entire successive version of

a software system (metrics and bug count for each module). We shared all the

obtained results and codes on Github for future analysis.

(II) We develop a novel architecture using a sequence to sequence model for pre-

dicting the bug count and normalized values of the software metrics in the

corresponding software modules.

(III) We uniquely model the various versions of software systems in the time-series

domain, utilizing the inherent relationship present across software modules in

adjacent versions.

There are many conceptual differences between our work and the existing cross-

version bug prediction work [286, 281]. Exiting work focuses on predicting bug or

bug count or bug count vector of the next version of a software system. In contrast,

we predict the entire software metrics and bug vector of each module of the upcoming

version of a software project. The mathematical demonstration of both the work

and their difference is shown in section 6.2.1.

No doubt, the prior prediction of each module detail (software metrics/bug count)

will help the project leader to develop the next version more efficiently and with

lesser cost.

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 131

We have framed three research queries (RQ), and the chapter also aims to find

answers to these research queries (RQ). The research queries are given below:

RQ-1 How is the proposed approach effective in predicting the bug count of every

module in the next version of a software system?

RQ-2 How is the proposed approach effective in predicting the each software metric

values of every module in the next version of a software system?

RQ-3 How much the proposed model is significantly effective over existing learning

methods?

This chapter is organized as follows. In the next section, we explain the underlying

motivation and elaborate on the problem definition. In section 6.3, the premises

is defined, while sections 6.4 and 6.5 present the proposed approach and results &

discussion respectively. Finally, the threat to validity is discussed in sections 6.6.

6.2 Problem Identification

Let there be n versions in a software system. Our objective is to predict the data for

the (n+1)th version. We employ a strategy to train an LSTM model using the first

n-1 versions as the train data to predict the nth version. Then, this trained model

is used to predict the (n+1)th version given versions 2 to n. Fig. 6.1 shows the

basic structure of the prediction approach for the next version of a software system.

As shown in Fig. 6.1, the instance with class labels are created from a software

repository, the data then is sent for preprocessing to remove noise, data duplication,

etc. After preprocessing, the metadata is created using all software versions and then

fed to the trained model for prediction of the next version of the same software.

6.2.1 Problem definition

Let there be n versions in some software system, say S, where n is a positive integer.

S = [S1, S2,....,Sn]. Let the dataset corresponding to the ith version be di, where

each di has a m-dimensional feature vector, say f. So di = [f1, f2,...., fm, bi], here bi

is the bug count vector of software Si. Let metadata be D1 = [d1, d2,....., dn]. The

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 132

Table 6.1: Dataset description.

Software Version No. of
modules

No. of buggy
modules

% of Buggy
modules

Max bug
count

ant ant-1.3 125 33 16.00% 3
ant-1.4 178 47 22.47% 3
ant-1.5 293 35 10.92% 2
ant-1.6 351 184 26.21% 10
ant-1.7 745 338 22.28% 10

camel camel-1.0 339 14 3.83% 2
camel-1.2 608 216 35.53% 28
camel-1.4 872 146 16.63% 17
camel-1.6 965 118 19.48% 28

log4j log4j-1.0 135 25 18.5% 9
log4j-1.1 109 37 33.9% 9
lof4j-1.2 205 188 91.7% 10

lucene lucene-2.0 195 91 46.6% 22
lucene-2.2 247 144 58.2% 47
lucene-2.4 340 200 58.5% 30

jedit jedit-3.2 272 90 31.01% 45
jedit-4.0 306 75 24.51% 23
jedit-4.1 312 78 25.32% 23
jedit-4.2 367 48 13.08% 10

xerces xerces-1.2 440 115 16.14% 4
xerces-1.3 453 68 15.23% 30
xerces-1.4 588 429 72.95% 62
xerces-init 163 78 47.85% 11

velocity velocity-1.4 198 49 24.7% 7
velocity-1.5 214 141 65.8% 10
velocity-1.6 229 78 34.0% 12

poi poi-1.5 237 139 58.64% 20
poi-2.0 314 37 11.78% 2
poi-2.5 385 248 64.44% 11
poi-3.0 442 281 63.57% 19

existing cross-version defect prediction utilizes the D1 for training and predict bn+1

of dn+1, i.e., the bug count vector of the software Si+1. Our work is significantly

different, and our objective is to predict data associated with the next version of D1,

i.e. dn+1, i.e., corresponding data to the next version of the software Sn+1. Thus

dn+1 = [m’1, m’2, m’3,...., m’l, bn+1], where m’i is the ith module and bn+1 is the

bug count vector of the next version. The objective function of the proposed work

is given in equation 6.1.

κ(D1) = dn+1 (6.1)

Here κ is a non-linear function to predict dn+1.

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 133

6.3 Premises

This section illustrates the necessary information of the methodologies (deep learning

architecture), software systems (datasets & software metrics), and various perfor-

mance measures that we have used in this work.

6.3.1 Deep Learning Architecture

We have applied Long Short Term Memory (LSTM) [94] as our deep learning ar-

chitecture. We first create the meta-dataset D1 using all the modules present across

all the versions of the software system, from which the meta dataset D2 is cre-

ated, after removing all the duplicate versions. Sequence to sequence model [245]

(Seq2Seq) (also known as encoder-decoder model), map fixed-length input (Tx) to

a fixed-length output (Ty), where Tx 6= Ty. It consists of three sections- encoder,

intermediate (encoder vector) and decoder. The underlying architecture of sequence

to sequence model using the LSTM unit is shown in Fig. 2.4. The detailed discussion

of LSTM and Seq2Seq is given in earlier section 2.3.2.

6.3.2 Software systems

We have used eight public software systems from the PROMISE data repository,

and every software version has twenty metrics and one additional information on

bug count. A detailed description of the software datasets used is given in Table 2.4.

Table 2.2 listed the 19 metrics used for each software system. Seven are complex-

ity metrics, five coupling, three cohesion, three abstraction, and one encapsulation

metrics.

6.3.3 Performance Measures

We have employed MAE, MSE, and accuracy as the performance measure. Detailed

discussion about these metrics is given in section 2.4.

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 134

Algorithm 7: Proposed algorithm

1 Input
2 Create a meta dataset D1 using d1, d2,...., dn
3 D1 has total p instances . Duplicates may be present for i = 1 to p do
4 Add Module Mi to D2 such that Mi ⊂ d1 OR d2 OR OR dn.
5 end
6 . Removing duplicate instances
7 if Mi already in D2 then
8 Discard Mi else
9 D2 ← Mi

10 end
11 . Extracting out the common modules
12 for i = 1 to p do
13 if Module Mi ⊂ d1, AND Mi ⊂ d2, AND Mi ⊂ d3,..., AND Mi ⊂ dn. then
14 D3 ← Mi

15 end

16 end
17 D4 = Get Test Data(M,D2) . Goto Algorithm 8
18 D5 = Data augmentation(D3, D4) . Goto Algorithm 9
19 D6 = Next version(D5) . Predicted new version of S

Algorithm 8: Get Test Data(M, D2)

1 Input M, D2

2 Let 1 < k < n
3 Let D2 contain q modules
4 for j = 1 to q do
5 x1 = TRUE
6 for i = 1 to k do
7 if Mj 6⊂ di then
8 x1 = FALSE
9 end

10 end
11 x2 = FALSE
12 for i = k to n do
13 if Mj 6⊂ di then
14 x2 = TRUE
15 end

16 end
17 if x1 & !x2 then
18 D4 ← Mj

19 end

20 end
21 return D4

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 135

Figure 6.2: The graphical abstract of proposed approach.

6.4 Proposed Approach

The graphical abstract of the proposed architecture, consisting of four phases, is

shown in Fig. 6.2. In the first phase, the dataset is extracted from the software

repository. The cleaning of the dataset includes the deletion of duplicate instances

and the removal of null values. Minmax normalization [6] is used to normalize the

features of the dataset to values between 0 and 1.

The second phase involves obtaining the metadata set (D1) based on the software

version datasets (d1, d2,..dn) of software S, using the Get Test Data function. From

D1, D2 is obtained, which contains all the modules encountered in S across all n

versions, along with the metrics for the versions in which they are present; and zero

values for those in which they aren’t present.

The third phase is the data augmentation phase, in which dataset D3 is obtained

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 136

which contains all modules which are present across all n versions of S. A value k is

chosen between 1 and n, representing the number of versions required for the data

augmentation phase. From D3, a dataset D4 is obtained containing those modules

which are present across the first k versions of S but are missing in at least one of

the remaining n-k versions. The Seq2Seq model, containing k LSTM units as part of

the encoder and n-k LSTM units for the decoder, is used to predict the n-k versions

of these modules. D3 and D4, with the predicted versions, are augmented to obtain

the final dataset D5.

The final phase is the next version prediction phase, where an LSTM network is

used to obtain the (n+1)th version of the software S from the n versions present in

D5. A detailed discussion is given in section 6.4.1.

6.4.1 Proposed algorithm

The pseudo-code of the proposed algorithm is shown in algorithm 7. Algorithm 8

represents the Get Test Data() function which takes in two parameters, M represent-

ing the set of all modules of software S and D2 containing non-duplicate instances;

and outputs the dataset D4, as described earlier. Algorithm 9 represents the data

augmentation phase which uses the Seq2Seq model (discussed in section 6.3.1) to

predict the remaining versions of D4 and D5 is obtained. Finally, algorithm 10 per-

forms the next version prediction phase on D5. This uses the versions 1 to n-1 as

the train data and versions 2 to n, i.e., d2, d3,. . . ,dn as the test data in an LSTM

network.

6.4.2 Experimental setup

We have conducted our experiments on a GPU server with NVIDIA 16GB RAM,

NVIDIA-SMI driver version 410.104, and CUDA version 10. We used Anaconda

version 3 with Tensorflow as a back-end over Keras library. We have also used

Numpy & Pandas for linear algebra operations. Further, for data interpretation, we

have used Seaborn and Matplotlib for data visualization.

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 137

6.4.3 Optimization and Hyperparameters Tunning

We use the Adams optimizer and dropout regularization techniques. Adams (Adap-

tive Moment Optimization) [125] combines the heuristics of Momentum, and RM-

SProp optimizers, as shown in equations 6.2, 6.3, 6.4, and 6.5.

vt = β1 ∗ vt−1 − (1− β1) ∗ gt (6.2)

st = β2 ∗ st−1 − (1− β2) ∗ g2
t (6.3)

∆ωt = −η vt√
st − ε

∗ gt (6.4)

wt+1 = wt + ∆ωt (6.5)

where η is the learning rate, gt is the gradient at time t w.r.t. wj, vt is the exponential

average of gradient w.r.t. wj, st is the exponential average of square of gradient w.r.t.

wj, and β1 & β2 are hyperparameters. Dropout regularization [236] technique avoids

overfitting and provides unbiased results.

We have used the LSTM cell as a recurrent unit in the Seq2Seq model. We used k

LSTM units in the encoder and (n-k) LSTM units in the decoder with a dropout

rate between 0.3 and 0.1. A batch size of 32 is used, and a 20% validation split and

300 epochs with Softmax layer as the output.

A basic LSTM model consisting of 3 LSTM layers containing 100, 80, and 60 hidden

units, respectively, is used for the next version prediction phase. A dropout of 0.2

is applied at each layer, and it is run for 500 epochs with a batch size of 64 and

Softmax layer as the output. We have provided a similar platform for the baseline

methods. We have compared the proposed model next version prediction phase

with regular LSTM, Gated Recurrent Unit (GRU) [41], Convolution Neural Network

(CNN) [109], Recurrent Neural Network (RNN) [291], Random Forest (RF) [29, 28],

AdaBoost [9], J48 [206], and Support Vector Machine (SVM) [229]. To avoid random

bias, we have provided similar preprocessing steps and added similar hypermeters

and optimization techniques to LSTM, CNN, GRU, and RNN. The number of seeds

is 5, the batch size is 500, and the execution slot is 2 in the RF approach. In

AdaBoost, we have a 200 batch size, the weight threshold is 100, and the decision

stump as the base classifier. We have used 500 batch size; the confidence factor

is 0.25, the number of folds is 5 in the J48 technique. We modeled the SVM as

a regression technique, and we used 100 batch size, loss at 0.1, and radial basis

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 138

function as a kernel. The remainder parameters and hyperparameters are tunned to

the default value of the WEKA tool [74].

Algorithm 9: Data augmentation(D3, D4)

1 Input D3, D4

2 Model = apply Seq2Seq(D3)
3 versions = Model.Predict(D4) . Predict dk, dk+1,..., dn
4 for j=1 to n-k do
5 D4 = D4 + versions[j]
6 end
7 Let D4 has q1 modules & D3 has q2 modules
8 for j= 1 to q1 do
9 D5 ← D4[j]

10 end
11 for j= 1 to q2 do
12 D5 ← D3[j]
13 end
14 return D5

Algorithm 10: Next version(D5)

1 Input D5

2 Train data = D5[1 : n-1]
3 Test data = D5[2 : n]
4 Model = apply LSTM(Train data) . Model is basic LSTM network
5 next version = Model.Predict(Test data)
6 return next version

6.5 Results and Discussion

Table 6.2 shows the MSE, MAE, and accuracy in percentage for all eight datasets

during the data augmentation phase. MSE obtained is 107.40, 115.73, 117.41,

125.06, 127.51, 132.41, 147.37, & 201.20 for jedit, ant, velocity, poi, log4j, camel,

xerces, & lucene datasets respectively. The lowest MAE values are of jedit and xerces

as 30.59 and 45.47, respectively. The top three accuracies obtained are 70.23, 67.74

& 66.40 for camel, velocity, & ant datasets. Table 6.3 shows the MSE, MAE, and

accuracy of the next version prediction phase. The maximum and minimum values

of MSE are 45.34 and 75.00 for jedit and poi datasets, respectively. The minimum

MAE values are 30.59 and 45.47 obtained for jedit and xerces datasets, respectively.

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 139

Table 6.2: Performance at data augmentation phase.

Data MSE(%) MAE(%) Accuracy(%)

ant 115.73 68.99 47.58
camel 132.41 69.20 44.78
log4j 127.51 75.31 60.22
jedit 107.40 62.56 51.25
lucene 201.20 76.54 40.72
xerces 147.37 71.57 60.71
velocity 117.41 62.84 32.24
poi 125.06 61.27 57.21

Maximum accuracy is obtained at 70.23% for the camel dataset, while the minimum

is at 45.28 for jedit.

Figure. 6.5 shows the plots of accuracy versus epoch and loss versus epoch for all

eight metadatasets in the data augmentation phase using the Seq2Seq model. Ac-

curacy varies after 50 epochs for both training and test data in ant, camel, jedit,

and velocity metadatasets, as shown in Figures 6.5(a), 6.5(b), 6.5(c) and 6.5(d) re-

spectively. The accuracy over the training set for lucene and log4j datasets varies

till 100 and 175 epochs respectively after which they obtain a constant accuracy, as

shown in Figures 6.5(e), & 6.5(f) respectively. Poi (Fig. 6.5(g)) and xerces (Fig.

6.5(h)) datasets show a variation in the accuracy throughout the 300 epochs. The

loss versus epoch for lucene and log4j over both training and testing phases are al-

most constant, as shown in Fig. 6.5(e) & Fig. 6.5(f) respectively. Figure 6.6 shows

the accuracy versus epoch and loss versus epoch plots for the next version prediction

phase. The test set accuracy is high compared with the train set for log4j metadata

from 1 to 190 epochs, and then the train set accuracy increases to 500 epochs. In

contrast, for the remaining metadatasets, the loss over the test set is higher than

that over the train set.

6.5.1 How is the proposed approach effective in predicting the bug count

of every module in the next version of a software system?

According to results, five out of eight metadatasets have almost 60% or more ac-

curacy in the next version prediction phase, which is significantly satisfying. Two

metadatasets (lucene & xerces) have an accuracy between 50% and 60%. The only

jedit has less than 50% accuracy, i.e., 45.47%. It will indeed reduce the enormous

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 140

amount of software development costs. The predicted version doesn’t contain null

or negative values of any software metric.

6.5.2 How is the proposed approach effective in predicting the each soft-

ware metric values of every module in the next version of a soft-

ware system?

As discussed earlier, we get more than 50% accuracy on seven metadatasets in

predicting the next version of software S. We generate the next versions of S, with

all 20 metrics and bug count vector. We predicted all the 20 software metrics for

the next version of S, the existing version of S is made of all these 20 metrics as

discussed earlier. The software metrics are already scaled between 0 and 1. Few

metrics values are negative due to the normalization technique. The accuracy of the

metric value prediction of each module of the next version software system is the

same as a bug count prediction of each module. Table 6.3 shows the accuracy MSE

and MSE value of each data while predicting metrics of the next version software

system.

6.5.3 How much the proposed model is significantly effective over exist-

ing learning methods?

We provided a similar preprocessing step for all eight learning models. We feed

metadata into these learning methods to measure the performance. Table 6.4 re-

ports the mean MSE value of existing baseline learning models; the bold letter in

Table 6.4 and Table 6.5 indicates the minimum MSE/MAE value produces by any

model over given data. As the table indicates, the mean MSE of the proposed model

over the next version prediction phase is minimum amongst all these approaches.

Similarly, the mean MAE values of the proposed model are minimum as shown in

Table 6.5. Whereas the accuracy of the next version prediction phase is maximum as

reported in Table 6.6; the bold letter in the table refers to the maximum accuracy

produces by any learning model over a given project. After the proposed model,

the second-best learning performance is of a traditional LSTM based approach. We

also compared the average performance metrics of the proposed model and baseline

approaches at every different repeated iteration, as shown in Fig. 6.3. The mean

of MSE and MAE, which yield by the proposed model, is lowest at 50 iterations

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 141

compared with other baseline methods as shown in Fig. 6.3(a), and Fig. 6.3(b),

respectively. Similarly, the accuracy produces by the suggested model is maximum

at all 50 iterations, as shown in Fig. 6.3(c). It also indicated the model is highly

stable and consistent.

We have statistically compared the performance of the proposed approach with base-

line models using Cliff’s delta [43], which is a non-parametric effect size measure;

it quantifies the significant difference between the performances given approaches.

The range of δ lies from -1 to 1; when the value δ is 1 or -1, then there is no over-

lapping between the performance of the two models. However, if δ is 0, it indicates

the two approaches are completely overlapping. Table 6.10 illustrate the various

δ values and its corresponding explanation [2]. Table 6.7 to Table 6.9 reports the

various p values and Cliff’s delta values of proposed model compared with baseline

techniques. Table 6.11 signifies that the proposed model outperforms over all eight

learning methods in every project.

6.5.4 Insightful discussion

Due to fewer data instances of the various software systems, our accuracy obtained is

only up to 70.23%. To prevent overfitting due to a lack of data samples, we have used

the dropout regularization. jedit has only 1257 modules across all versions, and hence

we get low accuracy (45.28%). The metadata set during the experiment also suffers

from CIP, which may lead to improper training. This needs to be addressed during

both phases. Undersampling and oversampling aren’t beneficial to address this

problem, as undersampling leads to data loss, whereas oversampling adds synthetic

instances that aren’t part of the original software dataset. Hyperparameter tuning

is an empirical process, which can enhance performance. We have tried to tune

parameters as well as possible, but we cannot say that further tuning will not improve

the performance.

The traditional LSTM approach is the second most optimal technique amongst all

existing methods. We only consider the LSTM to investigate the cost-effectiveness

of the proposed model and regular LSTM. We inspected an average of all three

performance measures at a different percentage of LOC, as shown in Fig. 6.4. While

inspective at different percentages of LOC, we found that the proposed model is

outperforming at a wide range compared with regular LSTM architecture. The

average MSE and MSE is very low at different LOC as shown in Fig. 6.4(a), and

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 142

(a) Comparison of average MSE value(%) of all learning
model at different iteration.

(b) Comparison of average MAE value(%) of all learning
model at different iteration.

(c) Comparison of average Accuracy value(%) of all learning
model at different iteration.

Figure 6.3: Comparison of average MSE, MAE, and Accuracy value(%) of all learning
model at different iteration.

Fig. 6.4(b), respectively. Similarly, the mean accuracy of the proposed model is

greater at every inspected LOC compared with the regular LSTM model, as shown

in Fig. 6.4(c).

The stability of the sequence to sequence model over the data augmentation phase,

Fig. 6.5(a), Fig. 6.5(b), Fig. 6.5(c), Fig. 6.5(d) reports that both the train and test

set accuracy is varying, so the model is moderately unstable due to lack of training

instances. But, the model is stable over the rest of the metadata. The stability of

the proposed model over the next version prediction phase, the zigzag lines in Fig.

6.6(a) and Fig. 6.6(g) indicates the model is moderately unstable. In contrast, the

suggested model is stable over the rest of the metadata.

Table 6.3: Performance at next version prediction phase.

Data MSE(%) MAE(%) Accuracy(%)

ant 147.77 70.32 66.40
camel 143.09 66.04 70.23
log4j 120.01 71.56 60.20
jedit 45.34 30.59 45.28
lucene 185.50 71.61 54.69
xerces 108.58 45.47 51.72
velocity 109.35 59.90 67.74
poi 75.00 131.21 59.25

Average 117.97±2.48 68.33±2.20 59.43±2.40

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 143

T
a
b
l
e
6
.4
:

C
om

p
ar

is
on

of
M

S
E

(%
)

of
n

ex
t

ve
rs

io
n

p
re

d
ic

ti
o
n

p
h

a
se

w
it

h
b

a
se

li
n

e
le

a
rn

in
g

m
et

h
o
d

s.
T

h
e

re
su

lt
s

a
re

in
th

e
fo

rm
o
f

m
ea

n
±

st
a
n

d
a
rd

d
ev

ia
ti

o
n

.

D
a
t
a

P
r
o
p

o
s
e
d

m
o
d
e
l

L
S
T

M
C

N
N

G
R

U
R

N
N

R
F

A
d
a
B

o
o
s
t

J
4
8

S
V

M

a
n
t

1
4
7
.7

7
±
3
.1
5

1
9
8
.1
1
±
3
.1
8

2
0
5
.5
1
±
3
.5
0

2
1
5
.1
0
±
3
.4
1

2
2
0
.1
1
±
3
.4
2

2
2
5
.1
0
±
4
.1
2

2
2
7
.1
0
±
4
.2
5

2
4
1
.1
0
±
4
.6
2

2
6
1
.3
5
±
4
.1
2

c
a
m
e
l

1
4
3
.0

9
±
2
.8
5

1
9
5
.4
4
±
2
.9
5

2
1
0
.6
1
±
3
.1
5

2
2
3
.6
9
±
3
.4
1

2
3
0
.1
8
±
3
.5
2

2
3
7
.4
1
±
4
.2
6

2
4
0
.1
3
±
4
.0
2

2
5
6
.3
4
±
4
.5
2

2
7
8
.6
3
±
4
.5
0

lo
g
4
j

1
2
0
.0

1
±
2
.5
2

1
7
5
.5
0
±
2
.4
5

1
8
3
.4
0
±
2
.5
6

2
0
7
.1
9
±
3
.1
5

2
2
3
.8
5
±
3
.4
1

2
2
9
.5
0
±
4
.3
9

2
3
4
.6
8
±
4
.5
6

2
5
2
.2
2
±
3
.9
9

2
8
5
.9
1
±
4
.1
2

je
d
it

4
5
.3

4
±
1
.2
5

7
5
.1
1
±
1
.8
5

8
0
.5
0
±
1
.8
8

9
3
.5
2
±
1
.9
5

1
0
1
.2
0
±
2
.1
5

1
0
8
.9
0
±
2
.1
6

1
1
3
.4
1
±
2
.4
5

1
2
4
.9
9
±
3
.1
5

1
4
1
.7
1
±
3
.3
3

lu
c
e
n
e

1
8
5
.5

0
±
2
.5
5

2
3
4
.2
0
±
2
.6
5

2
4
9
.5
0
±
2
.4
8

2
8
7
.4
4
±
3
.5
0

3
0
6
.8
8
±
3
.8
5

3
1
5
.6
0
±
5
.5
6

3
1
9
.8
2
±
6
.6
6

3
2
7
.5
5
±
7
.5
2

3
6
6
.4
8
±
8
.5
6

x
e
rc

e
s

1
0
8
.5

8
±
2
.8
5

1
4
6
.5
8
±
1
.8
5

1
5
4
.8
5
±
2
.8
5

1
7
9
.6
1
±
3
.6
5

1
9
2
.1
3
±
3
.1
5

2
0
6
.4
1
±
2
.4
4

2
1
1
.1
6
±
3
.1
5

2
1
8
.6
0
±
3
.1
5

2
3
9
.1
0
±
3
.4
8

v
e
lo
c
it
y

1
0
9
.3

5
±
2
.5
5

1
3
9
.5
5
±
3
.4
5

1
6
3
.8
2
±
4
.1
2

1
7
9
.8
2
±
4
.4
1

2
0
0
.0
5
±
5
.5
5

2
1
0
.5
4
±
6
.1
8

2
1
7
.6
0
±
6
.6
9

2
2
4
.6
1
±
7
.5
2

2
4
1
.3
4
±
8
.1
2

p
o
i

7
5
.0

0
±
2
.1
2

1
1
0
.2
0
±
3
.1
5

1
2
2
.1
3
±
2
.5
2

1
3
7
.6
5
±
2
.7
5

1
4
9
.6
8
±
3
.8
5

1
5
8
.6
1
±
3
.6
9

1
6
4
.3
1
±
4
.1
5

1
7
1
.2
2
±
4
.6
5

1
9
9
.2
0
±
4
.1
0

A
v
e
ra

g
e

1
1
7
.9

7
±

2
.4
8

1
5
9
.3
3
±
2
.6
9

1
7
1
.2
9
±
2
.8
8

1
9
0
.5
0
±
3
.2
7

2
0
3
.0
1
±
3
.6
1

2
1
1
.5
0
±
4
.1
0

2
1
6
.0
2
±
4
.4
9

2
2
7
.0
7
±
4
.8
9

2
5
1
.7
5
±
5
.0
4

T
a
b
l
e
6
.5
:

C
om

p
ar

is
on

of
M

A
E

(%
)

o
f

n
ex

t
ve

rs
io

n
p

re
d

ic
ti

o
n

p
h

a
se

w
it

h
b

a
se

li
n

e
le

a
rn

in
g

m
et

h
o
d

s.

D
a
t
a

P
r
o
p

o
s
e
d

m
o
d
e
l

L
S
T

M
C

N
N

G
R

U
R

N
N

R
F

A
d
a
B

o
o
s
t

J
4
8

S
V

M

a
n
t

7
0
.3

2
±
3
.5
5

8
7
.6
1
±
3
.4
5

8
3
.3
0
±
2
.8
5

9
0
.2
2
±
3
.2
2

1
0
4
.2
2
±
1
.9
9

1
1
0
.8
7
±
4
.1
0

1
2
7
.5
2
±
4
.1
6

1
3
4
.5
5
±
5
.0
5

1
5
0
.4
7
±
5
.5
2

c
a
m
e
l

6
6
.0

4
±
3
.1
5

8
1
.2
0
±
2
.8
5

9
0
.5
5
±
2
.7
4

1
0
5
.9
0
±
2
.9
5

1
2
0
.4
7
±
3
.1
5

1
3
1
.2
0
±
3
.4
5

1
4
7
.5
2
±
4
.1
5

1
5
5
.5
±
4
.5
1
8

1
6
2
.9
2
±
4
.6
2

lo
g
4
j

7
1
.5

6
±
2
.1
1

8
6
.3
2
±
2
.5
5

9
8
.5
2
±
2
.7
5

1
1
0
.2
2
±
2
.6
9

1
2
3
.6
0
±
2
.8
8

1
3
5
.8
2
±
2
.9
5

1
4
6
.4
5
±
3
.1
5

1
5
9
.8
9
±
3
.5
5

1
6
5
.5
0
±
4
.0
5

je
d
it

3
0
.5

9
±
1
.8
5

4
2
.8
5
±
1
.7
5

5
5
.6
9
±
1
.9
9

6
9
.6
2
±
2
.1
5

7
6
.5
5
±
2
.6
9

8
9
.5
2
±
2
.7
5

9
5
.1
5
±
3
.0
5

1
0
3
.2
2
±
3
.1
5

1
1
5
.6
4
±
3
.4
1

lu
c
e
n
e

7
1
.6

1
±
2
.1
5

8
6
.5
5
±
2
.6
2

9
4
.6
5
±
3
.1
0

1
0
8
.3
7
±
3
.1
2

1
1
9
.6
5
±
3
.1
1

1
2
4
.3
3
±
3
.4
1

1
3
8
.4
1
±
3
.1
6

1
4
6
.7
1
±
3
.4
1

1
5
2
.8
2
±
3
.5
0

x
e
rc

e
s

4
5
.4

7
±
1
.2
5

5
9
.8
8
±
1
.2
9

6
8
.2
3
±
1
.5
4

7
6
.4
9
±
2
.1
0

8
9
.9
0
±
1
.8
5

9
5
.1
1
±
2
.0
5

1
0
7
.5
1
±
2
.1
0

1
1
4
.2
2
±
2
.5
6

1
1
9
.6
3
±
2
.7
5

v
e
lo
c
it
y

5
9
.9

0
±
1
.4
5

7
2
.2
3
±
1
.3
5

8
6
.5
5
±
1
.5
5

9
7
.5
1
±
1
.6
0

1
0
8
.6
5
±
1
.4
8

1
1
9
.8
8
±
1
.6
8

1
3
0
.5
2
±
2
.1
8

1
3
7
.5
5
±
2
.6
9

1
4
3
.5
5
±
2
.5
0

p
o
i

1
3
1
.2

1
±
2
.1
2

1
5
0
.2
2
±
2
.5
2

1
6
9
.2
2
±
2
.7
4

1
7
8
.2
2
±
2
.6
9

1
9
0
.8
5
±
3
.1
0

2
0
6
.5
0
±
4
.1
9

2
1
5
.3
9
±
4
.8
5

2
2
2
.5
0
±
5
.1
2

2
3
1
.4
5
±
5
.2
6

A
v
e
ra

g
e

6
8
.3

3
±
2
.2
0

8
3
.3
5
±
2
.2
9

9
3
.3
3
±
2
.4
0

1
0
4
.5
6
±
2
.5
6

1
1
6
.7
3
±
2
.5
3

1
2
6
.6
5
±
3
.0
7

1
3
8
.5
5
±
3
.3
3

1
4
6
.8
2
±
3
.7
5

1
5
5
.2
4
±
3
.9
5

T
a
b
l
e
6
.6
:

C
om

p
ar

is
on

of
ac

cu
ra

cy
(%

)
o
f

n
ex

t
ve

rs
io

n
p

re
d

ic
ti

o
n

p
h

a
se

w
it

h
b

a
se

li
n

e
le

a
rn

in
g

m
et

h
o
d

s.

D
a
t
a

P
r
o
p

o
s
e
d

m
o
d
e
l

L
S
T

M
C

N
N

G
R

U
R

N
N

R
F

A
d
a
B

o
o
s
t

J
4
8

S
V

M

a
n
t

6
6
.4

0
±
2
.5
2

4
3
.5
5
±
1
.2
2

4
0
.2
6
±
1
.8
0

4
2
.3
5
±
1
.5
6

4
1
.6
9
±
1
.7
5

3
8
.8
5
±
1
.8
9

3
6
.7
7
±
2
.1
1

3
4
.5
1
±
1
.4
6

2
9
.6
9
±
1
.4
0

c
a
m
e
l

7
0
.2

3
±
3
.1
1

5
3
.6
9
±
1
.9
5

4
9
.6
7
±
1
.6
5

5
0
.2
9
±
1
.4
4

4
9
.9
8
±
1
.2
9

4
8
.5
5
±
1
.3
9

4
6
.3
0
±
1
.5
5

4
5
.5
8
±
1
.3
1

4
4
.2
3
±
1
.7
7

lo
g
4
j

6
0
.2

0
±
2
.5
5

4
8
.6
0
±
2
.1
4

4
6
.8
5
±
2
.3
1

4
7
.8
8
±
2
.0
9

4
7
.6
9
±
1
.8
8

4
5
.9
6
±
1
.8
9

3
9
.5
5
±
1
.7
6

3
7
.8
5
±
1
.6
8

3
5
.9
9
±
1
.5
3

je
d
it

4
5
.2

8
±
1
.7
9

2
9
.8
9
±
1
.6
5

2
7
.6
1
±
1
.5
5

2
8
.1
5
±
1
.7
5

2
8
.5
2
±
1
.6
5

2
5
.9
9
±
1
.2
2

2
2
.6
6
±
1
.4
7

1
8
.9
5
±
1
.0
9

1
5
.6
6
±
0
.9
9

lu
c
e
n
e

5
4
.6

9
±
2
.6
5

4
3
.5
5
±
2
.4
1

4
1
.6
9
±
1
.9
8

4
2
.1
5
±
1
.6
9

3
9
.5
0
±
1
.7
7

3
5
.4
1
±
1
.5
6

3
2
.9
9
±
1
.3
5

3
0
.2
8
±
1
.2
2

2
9
.6
5
±
1
.5
5

x
e
rc

e
s

5
1
.7

2
±
2
.1
1

3
9
.8
8
±
2
.3
5

3
7
.5
6
±
2
.1
7

3
5
.2
0
±
1
.8
5

3
3
.6
4
±
1
.7
6

3
2
.1
0
±
1
.9
5

3
1
.5
0
±
2
.1
0

2
8
.9
0
±
1
.4
5

2
6
.8
8
±
1
.9
5

v
e
lo
c
it
y

6
7
.7

4
±
3
.1
2

5
3
.6
7
±
2
.4
5

5
1
.5
6
±
1
.8
5

5
2
.4
6
±
1
.9
5

4
7
.5
5
±
1
.5
5

4
3
.1
1
±
2
.1
2

4
0
.9
2
±
1
.7
5

3
7
.5
8
±
2
.1
9

3
5
.5
2
±
2
.5
0

p
o
i

5
9
.2

5
±
1
.4
1

4
3
.5
1
±
1
.8
5

4
0
.2
6
±
2
.6
5

4
1
.8
5
±
2
.1
5

3
9
.9
5
±
2
.1
5

3
8
.4
9
±
1
.8
9

3
7
.5
2
±
2
.1
5

3
3
.6
8
±
1
.9
9

3
1
.6
8
±
1
.8
5

A
v
e
ra

g
e

5
9
.4

3
±
2
.4
0

4
4
.5
3
±
2
.0
1

4
1
.9
3
±
1
.9
9

4
2
.5
4
±
1
.8
1

4
1
.0
6
±
1
.7
2

3
8
.5
5
±
1
.7
3

3
6
.0
6
±
1
.7
8

3
3
.4
1
±
1
.5
3

3
1
.1
5
±
1
.6
9

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 144

(a) Cost effectiveness by comparing Mean MSE(%).

(b) Cost effectiveness by comparing Mean MAE(%). (c) Cost effectiveness by comparing Mean Accuracy(%).

Figure 6.4: Cost effectiveness of Proposed model compared with regular LSTM in terms
of MSE, MAE, and Accuracy.

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 145

T
a
b
l
e
6
.7
:

P
-V

al
u

e
an

d
C

li
ff

’s
D

el
ta

(δ
)

of
p

ro
p

o
se

d
m

o
d

el
(P

M
)

co
m

p
a
re

d
w

it
h

th
e

ex
is

ti
n

g
a
p

p
ro

a
ch

es
in

te
rm

s
o
f

M
S

E
.

D
a
t
a
s
e
t

P
M

V
s

L
S
T

M
P

M
V

s
C

N
N

P
M

V
s

G
R

U
P

M
V

s
R

N
N

P
M

V
s

R
F

P
M

V
s

A
d
a
B

o
o
s
t

P
M

V
s

J
4
8

P
M

V
s

S
V

M
p
-v
a
le

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ

a
n
t

8
.6
*
1
0
−

6
0
.8
8

3
.7
*
1
0
−

7
1

2
.6
*
1
0
−

7
1

9
.4
*
1
0
−

7
1

3
.2
*
1
0
−

8
1

4
.1
*
1
0
−

8
1

4
.4
*
1
0
−

8
1

5
.5
*
1
0
−

8
1

c
a
m
e
l

5
.1
*
1
0
−

6
0
.9
2

6
.4
*
1
0
−

6
1

3
.1
*
1
0
−

6
0
.8
4

1
.2
*
1
0
−

7
1

2
.3
*
1
0
−

7
1

5
.6
*
1
0
−

7
1

8
.9
*
1
0
−

7
1

1
.3
*
1
0
−

8
1

lo
g
4
j

4
.3
*
1
0
−

6
0
.8
9

5
.9
*
1
0
−

6
1

3
.4
*
1
0
−

6
0
.8
1

3
.1
*
1
0
−

7
1

3
.4
*
1
0
−

7
1

6
.4
*
1
0
−

7
1

9
.1
*
1
0
−

7
1

2
.3
*
1
0
−

8
1

je
d
it

2
.5
*
1
0
−

6
1

3
.1
*
1
0
−

6
1

1
.1
*
1
0
−

6
0
.9
3

8
.8
*
1
0
−

6
1

9
.1
*
1
0
−

6
1

2
.3
*
1
0
−

7
1

7
.1
*
1
0
−

7
1

8
.1
*
1
0
−

7
1

lu
c
e
n
e

3
.3
*
1
0
−

6
1

2
.8
*
1
0
−

6
1

3
.1
*
1
0
−

6
1

7
.6
*
1
0
−

6
1

9
.7
*
1
0
−

6
1

3
.1
*
1
0
−

7
1

6
.2
*
1
0
−

7
1

7
.3
*
1
0
−

7
1

x
e
rc

e
s

2
.7
*
1
0
−

6
0
.9
0

2
.8
*
1
0
−

6
1

3
.5
*
1
0
−

6
1

6
.7
*
1
0
−

6
1

8
.8
*
1
0
−

6
1

2
.1
*
1
0
−

7
1

4
.6
*
1
0
−

7
1

6
.9
*
1
0
−

7
1

v
e
lo
c
it
y

4
.1
*
1
0
−

6
0
.9
3

5
.9
*
1
0
−

6
1

6
.9
*
1
0
−

6
1

8
.1
*
1
0
−

6
1

1
.3
*
1
0
−

7
1

3
.9
*
1
0
−

7
1

5
.8
*
1
0
−

7
1

1
.1
*
1
0
−

8
1

p
o
i

3
.1
*
1
0
−

6
0
.8
8

6
.8
*
1
0
−

6
1

7
.1
*
1
0
−

6
1

8
.8
*
1
0
−

6
1

1
.9
*
1
0
−

7
1

4
.1
*
1
0
−

7
1

6
.1
*
1
0
−

7
1

8
.1
*
1
0
−

8
1

T
a
b
l
e
6
.8
:

P
-V

al
u

e
an

d
C

li
ff

’s
D

el
ta

(δ
)

of
p

ro
p

o
se

d
m

o
d
el

(P
M

)
co

m
p

a
re

d
w

it
h

th
e

ex
is

ti
n

g
a
p

p
ro

a
ch

es
in

te
rm

s
o
f

M
A

E
.

D
a
t
a
s
e
t

P
M

V
s

L
S
T

M
P

M
V

s
C

N
N

P
M

V
s

G
R

U
P

M
V

s
R

N
N

P
M

V
s

R
F

P
M

V
s

A
d
a
B

o
o
s
t

P
M

V
s

J
4
8

P
M

V
s

S
V

M
p
-v
a
le

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ

a
n
t

7
.2
*
1
0
−

6
0
.9
1

3
.4
*
1
0
−

7
1

2
.9
*
1
0
−

7
1

8
.8
*
1
0
−

7
1

4
.5
*
1
0
−

8
1

4
.9
*
1
0
−

8
1

5
.8
*
1
0
−

8
1

6
.7
*
1
0
−

8
1

c
a
m
e
l

4
.2
*
1
0
−

6
0
.9
6

5
.9
*
1
0
−

6
1

4
.4
*
1
0
−

6
0
.9
2

2
.3
*
1
0
−

7
1

3
.4
*
1
0
−

7
1

6
.7
*
1
0
−

7
1

9
.7
*
1
0
−

7
1

2
.1
*
1
0
−

8
1

lo
g
4
j

3
.2
*
1
0
−

6
0
.9
2

5
.5
*
1
0
−

6
1

3
.8
*
1
0
−

6
0
.8
8

4
.2
*
1
0
−

7
1

5
.1
*
1
0
−

7
1

6
.9
*
1
0
−

7
1

9
.7
*
1
0
−

7
1

3
.1
*
1
0
−

8
1

je
d
it

3
.1
*
1
0
−

6
1

3
.7
*
1
0
−

6
1

2
.4
*
1
0
−

6
1

8
.4
*
1
0
−

6
1

9
.4
*
1
0
−

6
1

3
.1
*
1
0
−

7
1

6
.6
*
1
0
−

7
1

8
.2
*
1
0
−

7
1

lu
c
e
n
e

3
.7
*
1
0
−

6
1

2
.9
*
1
0
−

6
1

4
.2
*
1
0
−

6
1

8
.7
*
1
0
−

6
1

9
.9
*
1
0
−

6
1

4
.1
*
1
0
−

7
1

5
.1
*
1
0
−

7
1

6
.5
*
1
0
−

7
1

x
e
rc

e
s

3
.1
*
1
0
−

6
0
.9
4

3
.1
*
1
0
−

6
1

4
.1
*
1
0
−

6
1

7
.5
*
1
0
−

6
1

8
.9
*
1
0
−

6
1

1
.5
*
1
0
−

7
1

3
.9
*
1
0
−

7
1

7
.4
*
1
0
−

7
1

v
e
lo
c
it
y

3
.6
*
1
0
−

6
0
.9
6

4
.8
*
1
0
−

6
1

7
.1
*
1
0
−

6
1

8
.6
*
1
0
−

6
1

1
.9
*
1
0
−

7
1

4
.5
*
1
0
−

7
1

6
.1
*
1
0
−

7
1

2
.5
*
1
0
−

8
1

p
o
i

2
.8
*
1
0
−

6
0
.8
5

5
.4
*
1
0
−

6
1

6
.6
*
1
0
−

6
1

8
.2
*
1
0
−

6
1

2
.1
*
1
0
−

7
1

3
.9
*
1
0
−

7
1

6
.9
*
1
0
−

7
1

7
.7
*
1
0
−

8
1

T
a
b
l
e
6
.9
:

P
-V

al
u

e
an

d
C

li
ff

’s
D

el
ta

(δ
)

of
p

ro
p

o
se

d
m

o
d

el
(P

M
)

co
m

p
a
re

d
w

it
h

th
e

ex
is

ti
n

g
a
p

p
ro

a
ch

es
in

te
rm

s
o
f

A
cc

u
ra

cy
.

D
a
t
a
s
e
t

P
M

V
s

L
S
T

M
P

M
V

s
C

N
N

P
M

V
s

G
R

U
P

M
V

s
R

N
N

P
M

V
s

R
F

P
M

V
s

A
d
a
B

o
o
s
t

P
M

V
s

J
4
8

P
M

V
s

S
V

M
p
-v
a
le

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ
p
-v
a
lu
e

δ

a
n
t

5
.8
*
1
0
−

6
0
.9
7

3
.8
*
1
0
−

7
1

4
.8
*
1
0
−

6
1

5
.4
*
1
0
−

7
1

6
.9
*
1
0
−

7
1

9
.1
*
1
0
−

8
1

1
.8
*
1
0
−

8
1

2
.7
*
1
0
−

8
1

c
a
m
e
l

6
.9
*
1
0
−

6
1

8
.1
*
1
0
−

6
1

7
.1
*
1
0
−

6
1

9
.1
*
1
0
−

6
1

2
.4
*
1
0
−

7
1

3
.3
*
1
0
−

7
1

5
.9
*
1
0
−

7
1

1
.7
*
1
0
−

7
1

lo
g
4
j

2
.9
*
1
0
−

6
0
.9
2

6
.5
*
1
0
−

6
1

4
.1
*
1
0
−

6
0
.9
8

6
.9
*
1
0
−

6
1

2
.1
*
1
0
−

7
1

3
.9
*
1
0
−

7
1

7
.9
*
1
0
−

7
1

3
.8
*
1
0
−

8
1

je
d
it

2
.9
*
1
0
−

6
1

4
.2
*
1
0
−

6
1

3
.5
*
1
0
−

6
1

5
.4
*
1
0
−

6
1

8
.6
*
1
0
−

6
1

2
.8
*
1
0
−

7
1

5
.8
*
1
0
−

7
1

7
.9
*
1
0
−

7
1

lu
c
e
n
e

4
.9
*
1
0
−

6
1

3
.5
*
1
0
−

6
1

4
.3
*
1
0
−

6
1

7
.5
*
1
0
−

6
1

8
.6
*
1
0
−

6
1

3
.2
*
1
0
−

7
1

4
.8
*
1
0
−

7
1

5
.2
*
1
0
−

7
1

x
e
rc

e
s

2
.9
*
1
0
−

6
0
.9
0

3
.1
*
1
0
−

6
1

4
.7
*
1
0
−

6
1

6
.7
*
1
0
−

6
1

7
.6
*
1
0
−

6
1

9
.7
*
1
0
−

6
1

3
.1
*
1
0
−

7
1

7
.4
*
1
0
−

7
1

v
e
lo
c
it
y

2
.8
*
1
0
−

6
0
.9
7

4
.0
*
1
0
−

6
1

3
.4
*
1
0
−

6
1

6
.4
*
1
0
−

6
1

8
.7
*
1
0
−

6
1

3
.4
*
1
0
−

7
1

5
.3
*
1
0
−

7
1

2
.5
*
1
0
−

8
1

p
o
i

3
.1
*
1
0
−

6
0
.9
1

6
.1
*
1
0
−

6
1

4
.6
*
1
0
−

6
1

7
.9
*
1
0
−

6
1

9
.8
*
1
0
−

6
1

2
.7
*
1
0
−

7
1

5
.7
*
1
0
−

7
1

6
.9
*
1
0
−

8
1

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 146

Table 6.10: Effectiveness level [43] of cliff’s delta(δ).

Cliff’s delta (δ) Level of effective-
ness [43]

| δ | < 0.147 Negligible

0.147 ≤ | δ | < 0.33 Small

0.33 ≤ | δ | < 0.474 Medium

| δ | ≥0.474 Large

Table 6.11: Number of projects in which PM is statistically significantly improves over
existing approaches (+); performs more or less or approximately equally well (=); and
performs loses (–) compared to the baseline techniques in form of MSE/MAE/Accuracy.

PM versus baseline
methods.

+ = –

PM Vs. LSTM 8 0 0
PM Vs. CNN 8 0 0
PM Vs. GRU 8 0 0
PM Vs. RNN 8 0 0
PM Vs. RF 8 0 0
PM Vs. AdaBoost 8 0 0
PM Vs. J48 8 0 0
PM Vs. SVM 8 0 0

6.6 Threats to validity

We have used eight projects of various versions from PROMISE repository datasets

in our experiments. The projects are of multiple domains. All the software projects

that are developed within the organization (commercial) may acquire different bug

patterns. The results can be varied if the proposed model is applied without analyz-

ing the domain. We have employed LSTM and seq2seq techniques in our proposed

model. We have tried to achieve optimal results by tunning parameters/hyperpa-

rameters. Changes in those parameters can lead to better results. The results of the

model can be different over other configurations and platforms.

6.7 Summary

Predicting bug count and the values of other software metrics in the next version of

a software system enable software development at a lower cost and proper allocation

of resources for development and testing. Cross bug defect prediction only predicts

the bugs in the new version, but our approach predicts metrics values and bugs in

each module of the upcoming software version. Our proposed method uses deep

learning to predict the next version, and we demonstrated this approach using 8

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 147

(a) Accuracy and Loss versus number of Epoch of ant
metadata.

(b) Accuracy and Loss versus number of Epoch of
camel metadata.

(c) Accuracy and Loss versus number of Epoch of jedit
metadata.

(d) Accuracy and Loss versus number of Epoch of ve-
locity metadata.

(e) Accuracy and Loss versus number of Epoch of
lucene metadata.

(f) Accuracy and Loss versus number of Epoch of log4j
metadata.

(g) Accuracy and Loss versus number of Epoch of poi
metadata.

(h) Accuracy and Loss versus number of Epoch of
xerces metadata.

Figure 6.5: Accuracy and loss versus epoch of all eight metadataset in data augmenta-
tion phase.

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 148

(a) Accuracy and Loss versus number of Epoch of ant
metadata.

(b) Accuracy and Loss versus number of Epoch of
camel metadata.

(c) Accuracy and Loss versus number of Epoch of jedit
metadata.

(d) Accuracy and Loss versus number of Epoch of ve-
locity metadata.

(e) Accuracy and Loss versus number of Epoch of
lucene metadata.

(f) Accuracy and Loss versus number of Epoch of log4j
metadata.

(g) Accuracy and Loss versus number of Epoch of poi
metadata.

(h) Accuracy and Loss versus number of Epoch of
xerces metadata.

Figure 6.6: Accuracy and loss versus epoch of all eight meta dataset in next version
prediction phase.

Chapter 6. Predicting the next version of the Software System: A Hybrid Regression
Analysis 149

software systems from the PROMISE repository. Our approach obtains an accuracy

of 60% or more on 5 out of the 8 datasets, with the highest accuracy being 70.23%

on the camel dataset and the lowest being 45.28% on the jedit dataset. The results

obtained are significant in terms of accuracy. The proposed model outperforms

baseline learning methods on all eight public datasets.

