
Chapter 3

BPDET: Classification Based

Software Defect Prediction Model

3.1 Introduction

The main objective of the software bug prediction technique is to classify faulty and

fault-free modules, and then the developer will assign reasonable testing sources,

allocate testing preferences of various software modules that boost the quality of

software systems. This chapter presents a novel SDP approach called Bug Prediction

using Deep representation and Ensemble learning Technique (BPDET). According

to the latest research and literature survey over SBP, we have framed three research

queries (RQ).

RQ-1: Effectiveness of BPDET in terms of performance metrics compared with

other fault prediction model.

RQ-2: How useful BPDET model compared with traditional methods regarding

the class imbalance and over-fitting problem?

RQ-3: How much training time taken by the BPDET model?

Software practitioners revealed that deep representation is better than traditional

feature extraction techniques [92, 128]. DBN and SDA have successfully imple-

mented for SBP, whereas SDA outperforms for noisy datasets [254]. Few other
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researchers [80, 194] claims over the quality of datasets and their noisy instances,

which should be considered during the SBP model. The researcher revealed that

ensemble learning could lead to avoid the risk of over-fitting problem [253] and the

biased result (class imbalance issue) [240] but surpass the performance over weak

classifiers. It is necessary to extract more relevant features which cause a noisy

removal extraction process for better results in an SBP model.

Figure 3.1: Working architecture of BPDET.

3.2 Architectural design

BPDET is a classification-based SBP model; it mainly classifies the module into

faulty and fault-free classes. The complete architectural design of BPDET is shown
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in Fig. 3.1. Its design contains two different phases, the deep learning phase, and

the ensemble learning phase. Both Deep learning and Ensemble learning phases will

be able to deal with both class imbalance and over-fitting problems.

The software defect dataset is divided into two parts; training data and testing

Figure 3.2: Design of Denoising auto encoder, the initial input is a and it is corrupted
to à, à is mapped with b, then finally c tries to regenerate to a. The regeneration error is

represented by MH(a,c). Taken from [254].

data. The objective of the training dataset is to train the model, and the testing

dataset is then applied to measure the performance of the trained model. But before

performing training and testing, the dataset will be preprocessed, which includes du-

plicate instance deletion, missing values replacement, and normalization. Afterward,

to extract deep representation from stacked denoising autoencoders, both training

and testing data will be input to it. Then after training data is identified by deep

representations, it is used to train the EL phase. Then testing data is determined by

the deep representation phase to analyze the performance of the trained EL phase.

Every detail of the proposed work is presented in the next section.

3.2.1 Proposed model

In this section, we fully explain the Bug Prediction using the Deep representation and

Ensemble learning Technique (BPDET) model. Firstly we will present implications

for combining SDA and EL, then preprocessing of datasets, then will explain different

phases of BPDET and its algorithm. The deep learning phase and ensemble learning

phase are two different phases of BPDET.
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Figure 3.3: Staked denoising auto-encoder (SDA), the input layer nodes represented by
the solid circle(green) at the bottom, the middle circles are hidden layer nodes. The class

label ci of deep representation is the same as the input.

3.2.1.1 Implication of combining SDA and EL techniques

The SDA has a powerful feature extraction mechanism; it was applied in many

applications such as electric load forecasting [248], an intelligent diagnosis system

[269], big data analysis [173] etc. SDA is also useful in classification problems like

image classification such as [143, 102].

Ensemble learning is a powerful technique for classification/regression, as it has

a property to perform as a hybrid classifier and combine the results of each base

learner, which made it more efficient compared with other methods. Combining

both SDA and EL can lead to more efficient EL methods.
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3.2.1.2 Data preprocessing

The most common dataset which is used for an SBP domain is the NASA repository

dataset. Duplicate instances need to be deleted [81]. Missing data points handled

by mean corresponding values [257] as there will be no big mean difference after

applying it. Then we applied min-max normalization technique. We have applied

SMOTE [33] sampling technique to avoid the class imbalance problem. A detailed

discussion about data preprocessing is presented in an earlier chapter 2.3.1.

3.2.1.3 Deep learning phase

The deep learning phase consists of three sub-phases: stacked denoising auto-encoder

(SDA), parameter selection for SDA, and generation of deep learning representation;

how these phases are working are explained below.

(a) Staked denoising auto-encoders (SDA)

After combining various denoising autoencoders (DAE) staked [254] on the top

of each other a powerful model build called a stacked denoising autoencoder

(SDA) [255]. DAE is a reshape variety of fundamental auto-encoder by ap-

pending the corruption process, and auto-encoder is the feed-forward neural

network, with input layer, hidden layer, and an output layer. The objective of

DAE is to establishing new input from the corrupted input. The basic frame-

work of SDA is shown in Fig. 3.2.

Input vector d-D where a ∈ Rd, the corrupted version of a is à which also be-

longs to Rd. It can be acquired by using first arbitrary choosing v*d elements

from a, then altering their value to zero and without changing reminder, where

v is the corrupted rate. In the first stage of the basic auto-encoder encoded

the à to hidden layer c, then in the second stage, it decodes the output of the

hidden layer, then produces a reconstruction of c. These two stages can be

formalized as below.

Encoding: r(à) = fθ1(M1à + β1)

Decoding: s(à) = fθ2(M2à + β2)
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In the above formula, M1 ∈ Rp1×d and M2 ∈ Rd×p1 are weight metrics and

β1 ∈ Rp1 and β2 ∈ Rd are different bias term correspondingly. fθ1 and fθ2 are

two non-linear activation functions, p1 is the number of nodes in hidden layer.

In this work Sigmoid function is used as a default activation function.

To train the model, the given input series is [ai]
n
i=1, the objective is to minimize

the reconstruction error, this error is mainly generated in between, input ai,

and it’s correspondingly its reconstruction s(à). The framework of the model

is represented as φ.

φ = arg min
1

n

∑n
i=1MH(ai,s(à))

Reconstruction error measure by MH ; its values can be squared for more sim-

plicity, MH(a,c) = || a - c||2. In the end, the back-propagation algorithm and

stochastic gradient descent rule for updating the framework until stopping con-

dition reached, such as reconstruction error less than its minimum limit.

After training the first DAE, the training data is then feed-forwarded from the

first DAE, and the output of the hidden layer of first DAE is used as training

data for the second DAE. Similarly, third DAE and so on. The DAE from a

staked and lie on top of each other and trained using unsupervised greedy layer

techniques [17].

(b) SDA parameters selection

As from the previous discussion, three structural parameters that need to be

set are given below:

(i) Number of hidden layer

(ii) Number of nodes in a hidden layer

(iii) Corruption rate value

(iv) Regularization methods

We have used three hidden layers for the simplicity of the model in SDA, the

basic configuration of SDA was given by [255]. In the first two hidden layers,

we set several nodes by five different discrete values; we tested by 100, 200, 500,

and 1000 nodes in the first two hidden layers during experiments, whereas for

the last hidden layer, we tested with six discrete values, i.e., 5, 10, 20, 40, 100

and 200. The corruption rate is tested at seven different values i.e., 0.1, 0.2,
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0.3, 0.6, 0.7, 0.8 and 0.9. First, we fix the number of node in the first hidden

layer and change the nodes in the other two layers and performed experiments,

then we fix the nodes of the last hidden layer and vary the nodes of the other

two layers. We have also tried four hidden layers of SDA and different nodes

in each hidden layer, but it was not effective as compared to three hidden layer

architecture. The cross-validation method was used again to achieve the most

favorable corruption rate for every dataset. Similar SDA parameters are also

taken by [249]. We have applied dropout and early stopping as regularization

techniques. Dropout [236] with “keepProbability” equal to 0.8 at each layer

in the training set. Early stop regularization not only reduces cost but also

avoids over-fitting chances, whereas early-stopping [271] also avoids chances of

over-fitting.

(c) Deep representation generation

We feed the preprocessed training and testing data to acquire corresponding

deep representation when the SDA model is trained. Let us take an example

to understand, as shown in Fig. 3.3, that aik represent the kth metrics of ith

instance, whereas ci represents the class label of ith instance. The class label

ci is the same as the output of deep representation. The deep ai1,.., deep ain

is the output deep representation of input a1,.. aik,.. aid which is coming from

L5 (last hidden layer). L1, .., L5, are layers of SDA whereas X1d, X2d, .., X5d are

the end nodes of SDA layers respectively.

3.2.1.4 Ensemble learning phase

EL phase utilized the deep representation-based training data and gave input to

ten different classifiers. This phase extracts the deep representation features from

training data. EL phase is the collection of ten different weak and robust classifiers,

which have been used in experiments. Ensemble learning [52] is the hybrid technique

in which numerous weak or robust classifiers combine to create a new classifier and

result of different classifiers combined and form a new result.

Yfinal = AverageProbability[y1, y2, .., y10] (3.1)

Here Yfinal is the final output of the ensemble learning technique after applying

the average probability of each base learner y1 to y10. We try to utilize the deep
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representation-based training set to build a powerful classification model and then

apply a deep representation-based test set to estimate the model’s performance. EL

has the capability to build a strong classifier using base learners and combine the

results of each base learner.

The input to the algorithm 1 is Dtr = [ai, ci]
n
i=1 and Dts = [cj]

m
j=1 are training and

testing data respectively. σd is the defective rate for heterogeneous ensemble learn-

ing i.e., Voting algorithm [126] method. Where ai, aj ∈ Rp are two p-D vectors

which are made of p software metrics. If ci = 1, then ith software module is non-

defective (majority class), elsewhere defective (minority). In the preprocessing step,

we delete every repeated instance in both Dtr and Dts then replace the missing

value with corresponding value and normalized as by min-max method as described

in section 3.2.1.2.

Stacked denoining auto-encoder (SDA) gets an input aik of kth metrics and ith in-

stance and give output a deep representation as Deepaik with same class label (ci)

both in input and output.

The dataset is divided into training (Dtr) and testing data (Dts). The training data

is 70% of the total dataset; the rest 30% is the testing dataset. We experimented

using 80%, 75%, 65%, and 60% as a training dataset and 20%, 25%, 35%, and 40%

as a testing dataset but got the better result in 70% and 30% training and testing

dataset ratio. The expected output is class label prediction of every instance in

testing data.

There are ten base learner in an EL phase, we symbolize each trained base learner as

bi (l=1, 2,...,10). We use performance of a model as a average performance of each

base learner bi. After implementing 10-fold cross validation we calculate weight (wi)

of every base learner for both MCC and F-measure (see section 3.2.2.4). For aj ∈
Dts, the probability of prediction of class label cj = 1 and cj = 0 by the base learner

bk.

MCCi =
AvGMCCi∑10
i=1AvGMCCi

(3.2)

The Dtr is for ensemble learning technique phase, as in EL phase, the dataset is

divided into ten different subsets with replacement, it means the data points can

be common in some or all section. Calculate the various performance evaluation

parameters, MCC, AUC, PRC, F-measure of the BPDET as explained in section

3.2.2.4.

Fi =
AvGFi∑10
i=1AvGFi

(3.3)
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For the base classifier bi, the probability of prediction for the class label cj = 1, cj =

Algorithm 1: BPDET algorithm

1: Input ← Dtr and Dts are training and testing data respectively. σd is defective rate.
Heterogeneous ensemble learning(Voting) method call.

2: Output → Class label cj prediction of every instance in testing data.
3: for every instance of Dtr and Dts

4: Delete every duplicate instances, both in Dtr and Dts. .
5: Fill the missing instance value both in Dtr and Dts with mean of the corresponding

instance value2.3.
6: Normalize both Dtr and Dts using min-max method.
7: Input ← SDA for generating deep representation of aik, where kth metrics of ith

instance of class label ci.
8: Output → Deepaik is the deep representation of aik As described in section 4.1.2 (c)
9: end for

10: for every base learner bl EL phase l=1, 2,...10.
11: do train Dtr, and hypothesis give back from different base learner bl.
12: According to bl conduct 10 fold cross fold validation in Dtr

13: Calculate average MCC(AvGMCCi) and average F-measure(AvGFi) (using
equations 3.2 & 3.3 )

14: end for
15: Apply bl, l = 1, 2, 3,...,10 to get the probability of instance aj as defective and

non-defective as PDlj , PNDlj , where PDlj + PNDlj = 1.
16: Set combined average probability of non-defective and defective as

[cPNDj , cPDj ] = max

{∑10
i=1MCCi ∗ [PNDij , PDij ]∑10
i=1 Fi ∗ [PNDij , PDij ]

17: Find the maximum probability for being defective instance w.r.t lth base learner as
maxPDlj .

18: Training dataset Dtr(70%) given input to Ensemble learning phase as suggested in
section 3.2.1.4.

19: Set threshold T =
eλ∗(σd−δ) − e−(λ∗(σd−δ))

eλ∗(σd−δ) + e−(λ∗(σd−δ))
20: If (σd < 0.25)
21: If (T <maxPDlj <0.5 )
22: then [cPNDj , cPDj ] = [PDlj , PNDlj ]
23: If(maxPDlj > 0.5)
24: then [cPNDj , cPDj ] = [PNDlj , PDlj ]
25: else [PNDlj , PDlj ] = [cPNDj , cPDj ]
26: If cPNDj >cPDj

27: then cj = 1, testing instance aj is non-defective.
28: else cj = 0, ai is defective.
29: Output → Class label ci prediction of every instance ai is testing data.

0 for non-defective and defective software module respectively and these represents
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as PNDij and PDij. The complete tuple is represented as [PNDij, PDij].

We are taking the maximum probability among the weighted probability of MCC and

F-measure (from equation 3.2 and 3.3). The computation of combined probabilities

of a software module for defective and non-defective is evaluated using equation 3.4.

Table 3.1: Comparison of MCC over baseline and EL methods with BPDET. Note**
“-” symbol implies model cannot give output.

Dataset BPDET(mean) Tong et al.
[249]

AdaBoost Bagging Random
forest

Logistic
Boost

CM1 0.42 0.1333 - 0.021 0.042 0.080

JM1 0.2319 0.2217 0.083 0.208 0.223 0.179

KC1 0.333 0.2405 0.211 0.330 0.301 0.255

KC2 0.415 0.3587 0.387 0.381 0.394 0.406

KC3 0.137 0.306 0.344 0.110 0.189 0.274

MC1 0.142 0.329 - - 0.268 -0.005

MC2 0.332 0.3289 0.102 0.198 0.317 0.205

PC1 0.382 0.3179 - 0.286 0.364 0.250

MW1 0.331 0.3207 0.243 0.136 0.217 0.193

PC2 0.171 0.1242 - - - 0.103

PC3 0.166 0.3095 - 0.088 0.238 0.172

PC4 0.469 0.5758 0.347 0.491 0.484 0.103

[cPNDj, cPDj] = max


∑10

i=1 MCCi ∗ [PNDij, PDij]∑10
i=1 Fi ∗ [PNDij, PDij]

(3.4)

The maximum probability for defective a software module is defined as [maxPDlj]
10
l=1,

l is the index of the base learner which gives a maximum probability of defective for

class label cj. For example maxPD6j show that, 6th base learner gives maximum

probability.

Now, we have to adjust the defective rate (σd) with combined probability. We set the

threshold to determine σd; we have used the Hyperbolic tangent activation function

(tanh(x)) as an activation function. [249] have used sigmoid function as activation
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function for defective rate. Tanh(x) function is better in such cases where so many

negative instances are suitable for addressing the class imbalance problem.

Table 3.2: Comparison of MCC with various classification methods with BPDET.
Note** “-” symbol implies model cannot give output.

Dataset BPDET(mean) SVM Naive
Bayes

Bayesian
network

Multilayer
perceptron

PART

CM1 0.420 0.149 0.224 0.194 -0.019 0.006

JM1 0.2319 0.140 0.208 0.210 0.136 0.199

KC1 0.333 0.119 0.296 0.311 0.309 0.250

KC2 0.415 -0.022 0.402 0.410 0.409 0.399

KC3 0.137 - 0.278 0.243 0.217 0.183

MC1 0.142 0.116 0.113 0.135 0.096 0.128

MC2 0.332 - 0.317 0.325 0.308 0.235

PC1 0.382 0.277 0.218 0.163 0.278 0.337

MW1 0.331 -0.029 0.275 0.276 0.264 0.311

PC2 0.171 - 0.163 0.117 -0.001 -0.001

PC3 0.166 0.249 0.152 0.275 0.201 0.100

PC4 0.469 0.076 0.348 0.346 0.452 0.506

T (σd) =
eλ∗(σd−δ) − e−(λ∗(σd−δ))

eλ∗(σd−δ) + e−(λ∗(σd−δ))
(3.5)

The range of Tσd (equation 3.5) is always from -1 to +1. Still, we are considered

only in the range from 0 to 1, because it will be irrelevant to consider the negative

defective rate. The λ, and δ are positive parameters that are adjusted according to

the threshold.

We performed our experiments by varying σd from 0 to 1, so that T(σd) >0.5. We

had adjust positive parameters according to it. We set λ as 100, 200, 300, 350, 400,

450, 475, 480, ad 500 then the adjusted δ are 0.0946, 0.1973, 0.2982, 0.3984, 0.498,

0.5988, 0.698, 0.7987, and 0.898.

After considered the relation between defective rate and maxPDlj, we have divided

the algorithm in to three different cases.
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Table 3.3: Comparison of ROC over baseline and EL methods with BPDET.

Dataset BPDET(mean) Tong et al. [249] AdaBoost Bagging Random
forest

Logistic
Boost

CM1 0.756 0.6560 0.7000 0.697 0.748 0.724

JM1 0.752 0.6587 0.710 0.741 0.745 0.713

KC1 0.811 0.6717 0.783 0.805 0.803 0.784

KC2 0.835 0.7645 0.784 0.821 0.825 0.824

KC3 0.718 0.7262 0.573 0.732 0.742 0.627

MC1 0.851 0.861 0.842 0.867 0.883 0.843

MC2 0.741 0.735 0.579 0.636 0.682 0.609

PC1 0.882 0.8251 0.805 0.853 0.870 0.829

MW1 0.776 0.736 0.748 0.749 0.767 0.741

PC2 0.810 0.758 0.818 0.808 0.803 0.806

PC3 0.842 0.825 0.782 0.818 0.839 0.819

PC4 0.944 0.935 0.913 0.920 0.935 0.818

Case 1: If σd < 0.25 and T < maxPDlj < 0.5 (training class is exceptionally

imbalance.), we reverse the expected defective probability for lth base learner with

combined defective probability, i.e., [cPNDj, cPDj] = [PDlj, PNDlj].

Case 2: If σd < 0.25 and maxPDlj > 0.5, we take the combined probability as

probability of lth base learner, i.e., [cPNDj, cPDj] = [PNDlj, PDlj].

Case 3: If σd > 0.25 and maxPDlj > 0.5, we take the predicted probabilities of lth

is as combined predicted probability [PNDlj, PDlj] = [cPNDj, cPDj].

The combination rule is of different types: average probabilities, the product of

probabilities, majority voting, median, max/min probability. In BPDET, the aver-

age probability is applied as a combination rule, as shown in equation 3.1.

In Fig. 3.1. it has been shown that training data (Dtr) from D1 to D10 randomly

split into ten different data subsets with replacement so that mutual data point can

be there to train each base learner effectively and training can occur without biased
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Table 3.4: Comparison of ROC with various classification methods against BPDET.

Dataset BPDET(mean) SVM Naive
Bayes

Bayesian
network

Multilayer
perceptron

PART

CM1 0.756 0.519 0.658 0.689 0.734 0.721

JM1 0.752 0.522 0.679 0.701 0.690 0.712

KC1 0.811 0.518 0.790 0.791 0.771 0.747

KC2 0.835 0.499 0.825 0.824 0.828 0.753

KC3 0.718 0.500 0.658 0.584 0.654 0.607

MC1 0.851 0.512 0.709 0.721 0.690 0.695

MC2 0.741 0.500 0.717 0.616 0.706 0.663

PC1 0.882 0.563 0.641 0.694 0.752 0.787

MW1 0.776 0.495 0.734 0.750 0.648 0.618

PC2 0.810 0.500 0.821 0.791 0.744 0.686

PC3 0.842 0.543 0.756 0.773 0.780 0.828

PC4 0.944 0.505 0.836 0.827 0.886 0.848

results, more details given in [130].

(D1, D2, D3, ..., D10 ⊂ Dtr) ∧ (Di ∩Dj 6= ∅)

Those training subsets are then input into ten different classifiers, and those classi-

fiers are IBK, MLP, SVM, RF, NB, Logistic Boost, PART, JRip, J48 consolidated,

and Decision Stump.

We have chosen ten base classifiers for the EL phase, we have followed the metric-

based classification selection criteria suggested by [135]. As we have used NASA

dataset which are of Halsted, basic Halsted and, McCabe software metrics (see Table

2.1) then it will be adequate to choose the Statistical classifier (Naive Bayes), Deci-

sion tree approach (Decision stump, J48 consolidated, PART), Ensemble learning-

based (Logistic Boost, Random forest), Neural network-based techniques (Multilayer
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Table 3.5: Comparison of PRC with various EL method.

Dataset BPDET(mean) AdaBoost Bagging Random
forest

Logistic
Boost

CM1 0.887 0.873 0.877 0.880 0.881

JM1 0.824 0.797 0.817 0.816 0.799

KC1 0.880 0.860 0.872 0.866 0.864

KC2 0.865 0.829 0.857 0.851 0.854

KC3 0.802 0.729 0.798 0.790 0.756

MC1 0.974 0.966 0.965 0.969 0.951

MC2 0.747 0.622 0.670 0.713 0.648

PC1 0.950 0.926 0.943 0.944 0.936

MW1 0.924 0.915 0.911 0.915 0.909

PC2 0.995 0.985 0.990 0.985 0.989

PC3 0.913 - 0.902 0.901 0.903

PC4 0.957 0.868 0.940 0.942 0.945

perceptron), Nearest neighbor methods (Instance-based learning) and Support Vec-

tor Machine based classifier (SVM). We have also performed various other classifica-

tion techniques to use as a base learner in voting techniques during our experiments,

but they were not much efficient.

3.2.2 Experiment setup

This section will dicsuss the experimental setup which is required for experiments;

we will discuss the dataset, the tools and its parameters, software metrics, and

parameters for performance evaluation.
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3.2.2.1 Datasets

We have used twelve different bug prediction datasets of NASA, from PROMISE

repository [221] and tera-PROMISE repository. CM1, JM1 KC1, KC2, KC3, MC1,

MC2, PC1, MW1, PC2, PC3, and PC4 are the various datasets that have been

utilized for experiments. Some datasets had missing values and repeated instances,

which can affect the result of the model. JM1 and MW1 have some missing values;

KC1, KC2, PC1, PC2, PC3, JM1, and CM1 have repeated instances. The table

2.3 consists of attributes are several metrics, number of instances before and after

preprocessing, number of non-faulty instances back and after preprocessing, and

percentage of faulty instances.

3.2.2.2 Tools and its parameters

Experiments for BPDET are performed on the Weka-3.9.2 tool and Anaconda (python)

version 5.2.0. The system configuration is an i7 octa-core 7th generation processor,

8GB RAM, 1TB internal memory, and Windows 10 operating system. The voting

is an ensemble learning algorithm have used for the experiment in Weka-3.9.2. The

best result came after using 70% dataset used for training and 30% for testing data.

The training datasets randomly divided into ten subsets with repetition, means data

items are mutual between weak classifier. Ten-fold cross-validation was used in the

experiment. Ten classifiers will be selected as seen in Fig. 3.1, “combination rule”

is an average probability (see equation 3.1).

3.2.2.3 Software metrics

Twelve datasets used in the BPDET experiment as shown in the table 2.1, twenty-

one software metrics which are essential for the operation are described in table 2.3.

The basis Halsted metrics, Derived Halsted metrics, and McCabe metrics are the

various software metrics used in experiments.

3.2.2.4 Performance evaluation parameters

The performance evaluation of the BPDET includes the area under the curve (AUC)

of ROC (receiver operating characteristic curve), F-measure, Mathews correlation



Chapter 3. BPDET: Classification Based Software Defect Prediction Model 55

coefficient (MCC), and precision-recall area (PRC). Sometimes the precision-recall

curve is more useful than ROC because the ROC only gives an idea of how the

classifier is performing in general because it considers the positive and negative

classes equally. If someone is interested in how the classifier is engaged in a particular

class, then PRC is more useful. As the MCC is more effective when classes are of

different sizes, which means it is effective to address class imbalance problem. It

also measures the biased nature of binary classifiers. The PRC curve also targets to

class imbalance problem, as PRC is not considered “True Negative”; it measures the

balance between the two classes. Let’s consider a convention that the faulty module

will be positive samples, and non-faulty modules will be negative samples.

3.3 Result and discussion

This section will explain the performance of BPDET and compare it with ten base-

line methods. We will also elaborate the performance of BPDET over different

corruption rates. After that, we will address all three research queries that we have

framed in section 3.1. In the last section 3.3.4, we will discuss the insightful discus-

sion about BPDET.

We have compared the performance of BPDET with the latest baseline methods.

The bold & underline text in tables (Table 3.1 to Table 3.8) of BPDET column

are showing the best performance among all other SBP methods, whereas the bold

text represents the second-best performance value of SBP models. In table 3.1

the comparison of MCC values with [249] and other ensemble learning methods.

MCC values of BPDET is highest for CM1 (0.420), KC2 (0.382), MC2 (0.332), PC1

(0.382), MW1 (0.331), & PC2 (0.171) among every EL baseline method. Among 8

out of 12 data, BPDET outperforms concerning baseline and other EL methods.

Similarly, the table 3.2, MCC values of BPDET were compared with the various

primary classifier based SBP models, the table 3.2 shown that the highest MCC of

BPDET are for CM1 (0.420), JM1 (0.232), KC1 (0.333), KC2 (415), MC1 (0.142),

MC2 (0.332), PC1 (0.382), MW1 (0.331), PC2 (0.171), & PC4 (0.469). In 10 out of

12 data BPDET surpass the MCC values with other traditional SBP models.

In Fig. 3.4(a), the MCC values of BPDET over every dataset are compared with the

best four fault prediction models. It can be seen in the figure, that MCC of BPDET

is better for CM1, JM1, KC1, KC2, MC2, PC1, MW1, & PC2, whereas for datasets
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MC1 (0.3287), PC3 (0.3095) & PC4 (0.5758) the highest MCC value produced by

SBP of [249]. AdBoost based SBP have the highest MCC for KC3 (0.344) dataset.

The ROC is the foremost evaluation parameter to evaluate the accuracy of any

prediction model. In table 3.3 and table 3.4 we compared the ROC of BPDET

concerning ten other SBP techniques. In table 3.3 the ROC is compared with five

baseline methods including few EL methods, from the table 3.3 it can be easily seen

that ROC of BPDET is highest for datasets CM1, JM1, KC1, KC2 MC2 and PC1,

MW1, PC3, PC4 and their respective values are 0.756, 0.752, 0.811, 0.835, 0.741,

0.882, 0.776, 0.842 and 0.944 respectively, whereas for KC3 (RF), MC1 (RF), PC2

(AdaBoost), 0.742, 0.883 and 0.818 respectively. In Fig.3.4(b), we have compared

the ROC for various datasets with the best four-fault prediction models. BPDET

surpasses ROC values compared with other techniques for CM1, JM1, KC1, KC2,

MC2, PC1, MW1, PC3, and PC4.

Similarly, table 3.4 compared the various ROC of BPDET concerning different clas-

sifiers. ROC of BPDET is maximum in 11 out of 12 datasets, as in the bold &

underline letter of table 3.4 indicates the maximum ROC of any of the SBP meth-

ods. Naive Bayes beats the performance of BPDET for the PC2 dataset, the ROC

for PC2 data by Naive Bayes is 0.821, but the BPDET is the second-best performer

with the 0.810 ROC value.

Table 3.5 shows the comparison of PRC values for all twelve different datasets of the

BPDET model and compared with four EL methods. In the table, we can easily see

that bold & underline text shows the highest PRC values and bold as second high-

est PRC values among all EL techniques. The PRC value of BPDET in all dataset

is highest, i.e CM1, JM1, KC1, KC2, KC3, MC1, MC2, PC1, MW1, PC2, PC3,

and PC4 and their corresponding values are 0.887, 0.824, 0.880, 0.865, 0.802, 0.974,

0.747, 0.950, 0.924, 0.995, 0.913, and 0.957 respectively. The second-best performer

is Bagging; it beats other EL models in seven datasets (JM1, KC1, KC2, KC3,

MC1, PC2, & PC3). BPDET has the highest PRC values compared with all ten

SBP models, so BPDET is much more effective for class imbalance challenges with

respect to existing techniques. Fig. 3.4(c) reports that PRC produced by BPDET

for every dataset is maximum between all top models. After BPDET, Logistic Boost

outperforms other EL-based methods.

In table 3.6 we have compared the PRC values produced by BPDET with five basic

classification techniques; the PRC values of the BPDET model are highest among

all classical classification techniques for all datasets. The PRC of values produced
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by the PART model is the second-best performer; it is effective in four datasets

(CM1, JM1, PC1, & PC2), whereas MLP (KC2, PC3, & PC4) and Naive Bayes

(KC3, MC1 & MC2) also a second-best performer for three datasets.

Table 3.6: Comparison of PRC with various classification method.

Dataset BPDET
(mean)

SVM Naive
Bayes

Bayesian
network

Multilayer
perceptron

PART

CM1 0.887 0.828 0.859 0.865 0.879 0.880

JM1 0.824 0.698 0.783 0.795 0.789 0.796

KC1 0.880 0.745 0.860 0.861 0.851 0.835

KC2 0.865 0.674 0.852 0.856 0.860 0.799

KC3 0.802 0.698 0.778 0.725 0.778 0.742

MC1 0.974 0.956 0.968 0.967 0.966 0.965

MC2 0.747 0.547 0.735 0.628 0.722 0.667

PC1 0.950 0.885 0.894 0.904 0.921 0.925

MW1 0.924 0.857 0.904 0.911 0.886 0.889

PC2 0.995 0.971 0.981 0.984 0.989 0.991

PC3 0.913 0.830 0.883 0.892 0.893 0.870

PC4 0.957 0.787 0.901 0.902 0.933 0.909

The highest PRC value of BPDET is for the PC2 (0.995) dataset, and after that

MC1 (0.974) data, it reflects the idea that MC1 and PC1 have more minor class

imbalance problem. Whereas MC2 (0.747) and KC3 (0.802) have the lowest PRC

values, so comparable, they can have low-class imbalance issues.

F-measure is also helpful for the evaluation of accuracy for SBP models. In table 3.7

F-measure is compared to baseline and four EL models, whereas in table 3.8 compare

the F-measure with five classifications based SBP models with respect to BPDET.

In both the tables, BPDET has the highest F-measure for all twelve datasets. In 10

out of 12 datasets BPDET outperformed compared with baseline and EL methods

i.e., CM1, JM1, KC1, KC2, KC3, MC1, MC2, PC1, MW1, and PC2 are 0.847, 0.763,

0.832, 0.816, 0.759, 0.967, 0.675, 0.926, 0.909, and 0.994, respectively. RF outper-

form on PC3, PC4 projects with f-score of 0.873 and 0.894, respectively; even RF
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(a) Comparison of MCC values between best
models overall dataset.

(b) Comparison of ROC values between best
models over all dataset.

(c) Comparison of PRC values between best
models over all dataset.

(d) Comparison of F-measure values between
best models over all dataset.

Figure 3.4: Comparison of MCC, ROC, PRC, F-measure between best fault prediction
techniques over all dataset.

is the second-best performer after BPDET in six datasets (JM1, KC2, KC3, MC1,

MC2, & PC1). In Fig. 3.4(d) we have compared the F-measure of BPDET with the

four highest f-score models; it can be seen that BPDET have maximum F-measure

values for ten datasets compared with other techniques.

In Fig.3.4, we have summarized every performance evaluation metrics for the bug

prediction model, which shows the efficiency of BPDET compared with other base-

line or existing methods.

Multilayer perceptron, PART, and AdaBoost also have much higher f-score values

than the other methods. After comparing the evaluation parameters of BPDET

with four EL-baseline, and five classical SBP techniques, we have analyzed the per-

formance metrics of each dataset. We examined MCC, ROC, PRC, and F-measure

one by one.
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Table 3.7: Comparison of F-measure over baseline and EL methods with BPDET.
Note** “-” symbol implies model cannot produce output.

Dataset BPDET(mean) Tong et al. [249] AdaBoost Bagging Random
forest

Logistic
Boost

CM1 0.847 0.239 - 0.841 0.814 0.802

JM1 0.763 0.395 0.727 0.754 0.760 0.749

KC1 0.832 0.468 0.806 0.824 0.826 0.815

KC2 0.816 0.555 0.810 0.752 0.769 0.792

KC3 0.759 0.438 0.741 0.752 0.749 0.742

MC1 0.967 0.289 - - 0.952 0.950

MC2 0.675 0.565 0.601 0.659 0.671 0.643

PC1 0.926 0.362 - 0.917 0.919 0.914

MW1 0.909 0.3969 0.901 0.891 0.898 0.898

PC2 0.994 0.152 - - - 0.991

PC3 0.863 0.400 - 0.854 0.873 0.864

PC4 0.889 0.6288 0.868 0.886 0.894 0.892
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Table 3.8: Comparison of F-measure with various classification method. Note** “-”
symbol implies model cannot give output.

Dataset BPDET(mean) SVM Naive
Bayes

Bayesian
network

Multilayer
perceptron

PART

CM1 0.847 0.833 0.828 0.718 0.825 0.831

JM1 0.763 0.739 0.751 0.710 0.741 0.752

KC1 0.832 0.787 0.820 0.739 0.825 0.817

KC2 0.816 0.703 0.801 0.797 0.810 0.802

KC3 0.759 - 0.745 0.735 0.738 0.726

MC1 0.967 0.945 0.889 0.857 0.939 0.937

MC2 0.675 - 0.657 0.662 0.642 0.615

PC1 0.926 0.914 0.895 0.791 0.917 0.918

MW1 0.919 0.881 0.864 0.871 0.900 0.909

PC2 0.994 - 0.983 0.943 0.990 0.985

PC3 0.863 0.858 0.573 0.760 0.845 0.855

PC4 0.889 0.824 0.861 0.787 0.890 0.884
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Table 3.9: Comparison of total training time(seconds) taken by the various ensemble
learning methods and some base classifier with respect to BPDET.

Dataset BPDET AdaBoost Bagging Random
Forrest

Logistic
Boost

SVM Naive
Bayes

Multi layer
perceptron

PART

CM1 12.64 0.051 0.031 0.091 0.021 0.072 0.0001 1.331 0.0021

JM1 918.52 0.32 1.691 5.66 0.291 130.38 0.032 24.52 1.775

KC1 40.051 0.052 0.151 0.561 0.051 0.731 0.0001 4.775 0.130

KC2 7.461 0.021 0.032 0.122 0.010 0.063 0.0001 1.811 0.021

KC3 8.51 0.022 0.021 0.041 0.010 0.021 0.0001 1.210 0.123

MC1 75.11 0.122 0.171 0.361 0.083 1.341 0.012 11.532 0.012

MC2 4.46 0.020 0.022 0.042 0.010 0.011 0.0001 0.770 0.0101

PC1 16.53 0.061 0.061 0.212 0.031 0.342 0.0001 2.370 0.032

MW1 23.513 0.13 1.5 0.31 0.12 0.006 0.01 2.29 0.08

PC2 163.22 0.44 4.4 1.06 0.25 0.316 0.03 35.41 0.35

PC3 58.23 0.08 1.9 0.50 0.08 0.086 0.01 11.62 0.17

PC4 61.25 0.09 1.8 0.37 0.06 0.069 0.01 8.18 0.9
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Fig. 3.5 shows the bar graph of various performance measures produced by BPDET

for all examined datasets; it has been demonstrated in the bar-graph of Fig. 3.5(a)

that MCC value for data PC4 (0.469) and CM1 (0.42) is the highest, and lowest for

KC3 (0.137) and MC1 (0.142).

In Fig. 3.5(b), the ROC of all twelve datasets are examined and shown. The highest

ROC value yield by BPDET are 0.944 and 0.887 for PC4 and PC1, respectively,

whereas 0.741 and 0.752 are the lowest ROC values for MC2 and CM1 datasets,

respectively.

Fig. 3.5(c) shows the PRC values of BPDET of all datasets, as the figure reports

that the PRC value of PC2 (0.995) and MC1 (0.974) are the highest, whereas MC2

(0.747) and KC3 (0.802) projects are have lowest values.

In Fig. 3.5(d) represents the F-measure values of BPDET over various datasets, for

PC2 (0.994) MC1 (0.967) the F-measure are highest and for MC2 (0.675) and KC3

(0.759) are the lowest among all datasets.

3.3.1 Effect of corruption rate over performance of BPDET

The variation of corruption rate, as discussed in section 3.2.1.3, it affects the per-

formance of the BPDET model. Evaluation metrics values are different at various

corruption rates, and they can be easily detectable by conducting experiments at

different corruption rates. To get a deeper analysis of the BPDET model, we must

have considered the effect of the corruption rate (σd). In Fig. 3.7, we have summa-

rized the effect of the corruption rate of BPDET over performance metrics.

Table 3.11 shows the adjustment variations of defective rate σd with positive param-

eters λ and δ. We have considered the threshold more than 0.5, so after calculating

the value of eλ∗(σd−δ) by using equation 3.5, i.e., equal to 0.54. The value of σd from

0 to 1 with 0.1 value of difference. Total adjusted values of λ and δ are shown in the

table 3.11. The box-plot graph of λ and δ are shown in Fig. 3.6(a) and Fig. 3.6(b).

The corruption rate variation causes dissimilar performance results; it can be easily

trackable at different corruption rates. Fig. 3.7 shows the difference in perfor-

mance metrics on every dataset when the corruption rate varies. In Fig. 3.7(a) we

have plotted the MCC values at 0 to 0.9 value of corruption rate. Whereas in Fig.

3.7(b) we have compared the variation of ROC w.r.t corruption rates for all twelve

datasets. In Fig. 3.7(c) and Fig. 3.7(d) shown the different results of PRC values

and F-measure values for all datasets at 0 to 0.9 corruption rate.
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(a) BPDET result: MCC over various dataset.

(b) BPDET result: Area under curve of ROC
over various dataset.

(c) BPDET result: PRC values over various
dataset.

(d) BPDET result: F-measure values over vari-
ous dataset.

Figure 3.5: Comparison of MCC, ROC, PRC, F-measure of BPDET over all 12 dataset.

In Fig. 3.8, we have shown the boxplot graph of performance metrics of each dataset

at different corruption rates. The graph also shows the range values (minimum to

maximum) of all four performance metrics for every dataset. In Fig. 3.8(a), the

boxplot graph of MCC values is shown, Fig. 3.8(b) shows the ROC range at differ-

ent corruption rate, Fig. 3.8(c) and Fig. 3.8(d) shows the PRC and F-measure of

each dataset.
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(a) Boxplot of lamda (positive parameter), the
range of lamda that used in the experiment.

(b) Boxplot of delta (positive parameter), the
range of delta that used in the experiment.

Figure 3.6: Boxplot of positive parameters λ and δ for corruption rate(σd).

3.3.2 Research queries discussion

The research problems which were asked in section 3.1, we are going to address

those questions. Each research query is related to the performance of the proposed

approach, defective datasets, the class imbalance & over-fitting problem, and time

comparison with other SBP models. The justification of every research query (RQ)

is given below.

3.3.2.1 Effectiveness of BPDET in terms of performance metrics compared

with other fault prediction model

The BPDET model is an effective SBP model, as we have seen earlier in section that

MCC, ROC, PRC, and F-measure of BPDET are compared with baseline methods,

i.e., four EL techniques and five latest classical SBP methods. The tables 3.1, 3.2,

3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9 shows the comparative analysis of MCC, ROC,

PRC, and F-measure of EL with baseline model and various traditional techniques,

respectively. Whereas Fig. 3.5(a), 3.5(b), 3.5(c), and 3.5(d) shows the effectiveness

of BPDET model with respect to MCC, ROC, PRC, and F-measure, respectively.

In Fig. 3.4, we have compared the state-of-the-art prediction models using the

performance metrics. The graphs reports in Figures. 3.4(a) 3.4(b)), 3.4(c), 3.4(d)

are performance metrics of top four SDP models, in terms of MCC, ROC, PRC and

F-measure, respectively.
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(a) Variation of MCC values of BPDET with respect
to curruption rate for every dataset.

(b) Variation of ROC values of BPDET with respect
to curruption rate for everydataset.

(c) Variation of PRC values of BPDET with respect
to curruption rate for every dataset.

(d) Variation of F-measure values of BPDET with re-
spect to curruption rate for every dataset.

Figure 3.7: Variation of MCC, ROC, PRC and F-measure of BPDET with respect to
corruption rate for every dataset.

3.3.2.2 How useful BPDET model compared with traditional methods re-

garding the class imbalance and over-fitting problem

Over-fitting is defined as the model that performs better while in training and worst

in testing.

(i) Data noise/ data inconsistent

(ii) Deficient training data

(iii) Construction of complex mode

The ensemble learning method is one of the techniques to avoid over-fitting, [25]

suggested EL is beneficial to avoid over-fitting in ML-based prediction models. We
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(a) Boxplot of MCC over various dataset. It shows
the variation of MCC when the σd varies.

(b) Boxplot of ROC over various dataset. It shows the
variation of ROC when the σd varies.

(c) Boxplot of PRC over various dataset. It shows the
variation of MCC when the σd varies.

(d) Boxplot of F-measure over various dataset. It shows the
variation of F-measure when the σd varies.

Figure 3.8: Boxplot representation of MCC. ROC, PRC and F-measure for every dataset
when the corruption rate(σd) varies.

have applied regularization techniques in our proposed model; the dropout [236] and

early stop [271] are also efficient to avoid over-fitting. Averaging the classifier result

can also protect the model from over-fitting. According to [66], the average of the

classifier’s result can able to reduce the over-fitting problem, as we have used average

probability (equation 3.1) as a combination rule.

EL not only protects against over-fitting but also fights for the class imbalance

problem. Re-sampling and cost-sensitive learning are other methods to avoid class

imbalance problem; that is the main reason to apply two layers of EL stage. Other

EL methods such as AdaBoost, Bagging [240, 53] are not effective for the class

imbalance problem. BPDET employed two other EL techniques as a base learner,

and these Random Forrest and logistic boost. If some EL methods are used as a base

learner in the BPDET model, they can efficiently reduces class imbalance problem.
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The main reasons of BPDET to avoid class imbalance and over-fitting problems are

2 layers of EL method, regularization techniques, and combination rule. The first

layer of EL is trying to reduce these two challenges. The combined rule, which is

the average probability [66] also helps to minimize these two challenges. MCC and

PRC values of the proposed model are higher than state-of-the-art techniques, as

discussed earlier. It indicates that the proposed model avoids these two issues.

3.3.2.3 How much training time taken by the BPDET model

Training time is an important aspect of measuring an ML-based predictive model;

the total time is the sum of staked denoising auto-encoder (SDA) phase, training,

and testing of an ensemble learning phase of the BPDET model. Total time is the

summation of all these times.

Total execution time(sec) = SDA time + EL(Training(Dtr) + Testing(Dts)) time.

So; Total training time = DL phase (Training) + EL phase (Training) = Total

execution time - Testing time

Table 3.11 shows the total training time, i.e., training of EL phase and SDA phase,

whereas sampling time (SMOTE) and training time of other SBP techniques over

various datasets. As we can see, the training time by BPDET for each dataset is

very high, it is because of the model with two complex phases.

As shown in Fig. 3.9, JM1 has the maximum training time taken, i.e., 918.52 sec,

whereas PC2 has the second maximum training time with 163.22 sec, which is very

lesser as compare to JM1; the main reason is that it has 10886 instances, out of

which 2106 defective instances (19.35%) and 8779 non-defective instances (80.65%).

MC2 and KC2 have the lowest training time, i.e., 4.46 sec and 4.461 sec, respectively.

The time taken by the BPDET model is high for every dataset with respect to other

techniques because of the following reasons.

(a) The deep learning phase takes time

(b) Ten different classifier in a BPDET model (EL model)

(c) Second layer of EL in BPDET
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Table 3.11: Adjustment of parameters(λ, δ) with defective rate to achieve threshold
T(σd).

σd λ δ

0.1 100 0.0946
0.2 200 0.1973
0.3 300 0.292
0.4 350 0.3984
0.5 400 0.4988
0.6 450 0.5988
0.7 475 0.698
0.8 480 0.7987
0.9 500 0.898

3.3.3 Significant analysis

In this subsection, we have conducted a non-parametric test on BPDET and other

SFP models using Wilcoxon Rank-Sum Test [73]. We have considered four different

average values of MCC, ROC, PRC, and f-score as a performance measure, the first,

second, third, and fourth row of Table 3.12 are average values of MCC, ROC, PRC,

and f-score of different SBP models. We have taken four various means values of

BPDET in S1 and best performing SBP models in S2. In sample one (S1), we input

these metrics values, whereas, in sample two (S2), we gave second best-performed

values of these corresponding metrics, for example: if an SBP “A” has the second-

highest ROC values but third highest MCC values, so we took only the ROC values

of the model A. The sum of ranks for S1 is: R1 = 156, and the sum of ranks of the

S2 is: R2 = 120. Hence, the test statistic is R = R1 = 156. The following null and

Table 3.12: Two different sample of BPDET and other best models. The full description
of the table in the section 3.3.3.

S1 (BPDET) S2 (other techniques)

0.294 0.260 (Tong et al.)
0.819 0.761 (Tong et al.)
0.894 0.881 (RF)
0.856 0.837 (Logistic Boost)
0.304 0.261 (Tong et al.)
0.820 0.767(AdaBoost)
0.899 0.880 (Bagging)
0.850 0.827 (PART)
0.297 0.262 (Naive Bayes)
0.821 0.763 (Logistic Boost)
0.904 0.870 (MLP)
0.852 0.824 (PART)

alternative hypotheses need to be tested: H0 = Median (Difference) = 0

Ha : Median (Difference) > 0
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Table 3.13: Ranking of values from samples. The full description of the table in the
section 3.3.3.

Sample Values Rank

S2 0.260 1
S2 0.261 2
S1 0.294 3
S1 0.297 4
S1 0.304 5
S2 0.761 6
S2 0.763 7
S2 0.767 8
S1 0.819 9
S1 0.820 10
S1 0.821 11
S2 0.824 12
S2 0.827 13
S2 0.837 14
S1 0.850 15
S1 0.852 16
S1 0.856 17
S2 0.870 18
S2 0.880 19
S2 0.881 20
S1 0.894 21
S1 0.899 22
S1 0.904 23

We observed that both sample sizes are greater than 10, then we can use a normal

approximation. The following z-statistic l be used, based on the information pro-

vided, the significance level is α = 0.025, and the critical value for a right-tailed test

is zc = 1.96. The rejection region for this right-tailed test is R = z : z > 1.96.

Test Statistics: z-statistic is computed as follows:

z =
R− n1(n1 + n2 + 1)/2

n1n2(n1 + n2 + 1)/12
= 0.739

Here n1, and n2 are sample sizes, the decision about the null hypothesis: Since it is

observed that z = 0.739 ≤ zc = 1.96, it is then concluded that the null hypothesis is

rejected. Using the p-value approach: The p-value is 0.2301, and since p = 0.2301 ≥
0.025, it is concluded that the null hypothesis is rejected, so Ho is rejected. Therefore,

there is not enough evidence to claim that the sample median of differences is greater

than 0 at the 0.025 significance level.
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3.3.4 Insightful discussion

The BPDET model is significantly efficient to perform over each twelve NASA

datasets, but we have also found BPDET is not the best predictive model on a

few datasets concerning evaluation metrics, as its values are lesser than the other

techniques. In this section, we will intuitively discuss the flaws of BPDET. In table

3.1, the MCC value is maximum for datasets MC1, PC3, PC4 and their respective

values are 0.329, 0.309, 0.576 respectively by [249], whereas for KC3 data the max-

imum MCC is 0.344 by AdaBoost. Table 2.3 indicates that the faulty instance of

MC1 is too low, i.e. 2.30%, similarly the PC2 have only 2.15% of faulty instance,

which is highly imbalanced, as from equation 2.18 we can see that when the value

of False Negative is high, then MCC will be lesser, so it can be a reason of the lesser

value of MCC. Whereas in KC3, total instance is 194, the defective instance is 36

(see table 2.3) approx 18.55% defective. There are fewer instances, so maybe these

can be one of the reasons, as False Negative rate can be more so, MCC will be less.

Similarly, the Table 3.3 shows that ROC of KC3 (0.718), MC1 (0.851), PC2 (0.810)

of BPDET model are also lesser compared with other SBP techniques. As discussed,

MC1 & PC2 are highly imbalanced, and KC3 has a lesser number of instances; maybe

these can be reasons for it. One more essential consideration is overfitting in the

Random forest algorithm, as BPDET uses ten base classifiers with lesser chances

of overfitting. EL method is effective in handling the over-fitting issue. Maximum

F-measure values are of PC3 (0.873) and PC4 (0.894) produced by the RF-based

SBP method, which surpasses the performance of BPDET. PC3 and PC4 have more

number of software metrics and lesser number of the instance so data sparsity arises,

which can cause poor performance by BPDET.

We have also analyzed the stability of the BPDET using the k-fold cross-validation

test. In Table 3.10 we have listed the MCC, ROC, PRC and f-score values produced

by the BPDET model over 5, 8, 10, 12 and 15 fold cross-validation on every datasets.

As the table 3.10 reports, for each dataset, the values of MCC, ROC, PRC, and f-

score are approx equal till 12-fold cross-validation. After the 12 fold cross-validation,

the values of performance metrics started decreasing, i.e., there is a small difference

in the performance on 12-fold and 15 fold cross-validation. Although at 15 fold, the

values slightly reduce, which indicates BPDET started losing its stability. If the

value of evaluation metrics is still approximately equal, which implies the higher

stability of the model, BPDET performs similarly.
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3.4 Threats to validity

There are so many threats that can affect the result of the experiment. Let us

categorize those threats as internal and external threats.

The research proposal presented in this chapter depends on selected systems, which

do not consider all the industrial domain possibilities. Many researchers questioned

[80, 220] the quality of NASA datasets. Due to these many reasons, there can be no

proper representation of the size of classes which can be treated as external threats

that affect the accuracy of the proposed model.

According to some past studies [148, 12] performance measure parameters such as

Accuracy, Balance, F-measure, G-measure, G-mean1, G-mean2 PD, PF have been

used to analyze the performance of the binary classifier based SBP model, but we

have used MCC, ROC, PRC, and F-measure for better analyses of the SBP model.

3.5 Summary

Software bug prediction is an important aspect of software reliability to ensure high-

quality software systems. We proposed a novel SBP model based on deep learning

and ensemble learning techniques. Our proposed model BPDET has two stages: the

deep learning stage and the ensemble learning stage. We have applied Staked denois-

ing auto-encoder(SDA) into BPDET to extract the deep representation of metrics

from traditional software metrics. The deep learning phase mainly addresses the

class imbalance and over-fitting problems, and two stages of EL also target these

two issues. We have chosen twelve NASA public datasets for experiments, applied

10 fold cross-validation, and performed each experiment up to thirty times. We

analyzed the performance of BPDET concerning MCC, ROC, PRC, F-measure and

compared it with baseline methods, EL-based, and traditional SBP methods. After

analysis, we found that performance metrics on most of the dataset for BPDET

model is higher than the existing state-of-the-art techniques. We have also tested

the model over 5, 8, 10, 12, and 15 fold cross-validation to measure the stability.

We have found that the values MCC, PRC, ROC, and f-score are approximately

equal till 12 fold cross-validation and started reducing after it. We have also val-

idated the BPDET using Wilcoxon rank-sum test at alpha 0.025 and rejected the

null hypothesis, i.e., H0 = Median (Difference). The experiment shows that deep



Chapter 3. BPDET: Classification Based Software Defect Prediction Model 73

learning is effective for extracting the deep representation of conventional software

metrics and avoiding class imbalance & over-fitting problems. Deep representation

combined with ensemble learning to build a better SBP model concerning baseline

and traditional techniques.

In this work, we only identify the module or class is buggy or not; estimating the

number of faults in every module provides more precise information. We now extend

our work over predicting a number of defects in every module. Predicting the num-

ber of defects in each module is more useful because it can optimally divide testing

resources. The module or class consists of more bugs that may require more testing

effort.


