
Chapter 2

Preliminary

“A weak background is a deadly thing, so make the strong one.” – Robert Henri

This chapter presents background information related to software defect prediction

techniques. We have sequentially illustrated various software metrics and various

public projects in section 2.1 and section 2.1. Different classification and regression-

based performance metrics in section 2.4. Learning methodologies used in this thesis

in section 2.3.2 and baseline methods in section 2.5.

2.1 Software Metrics

Software fault prediction is a bridge between software bugs and software metrics.

There are diverse software metrics used for SBP, McCabe [160], Halsted [87] and

Chidamber & Kemerer’s (CK) [39] were most widely used for SBP for an object-

oriented software system. Some another metric are also employed like code smell

metrics [86], line of comments/codes [10], context package cohesion metrics [293],

web metrics [19], change metrics [123], mutation-based metrics [22], network metrics

[149], modularization metrics [294] and cascading style metrics [20]. Twenty-one

software metrics which are essential for the operation are described in table 2.1; this

kind of metrics are mostly employed in classification based SDP. The basis Halsted

metrics, Derived Halsted metrics, and McCabe metrics are the various software

metrics used in experiments. These metrics consist of some parameter related to

25

Chapter 2. Preliminary 26

software reliability decried in table 2.1. Few CK metrics more useful for CVDP and

CPDP are listed in Table 2.2.

Table 2.1: Method level metrics description.

Types Metrics Definition

Basic Halsted LOCode Count lines of code
LOBlank Count number of blank lines
LOCodeAndComment Count of blank and code lines
uniqueOp Total number of unique opera-

tors
uniqueOpnd Total number of unique

operands
totalOp Total number of opera-

tors
totalOpnd Total number of operands
branchCount Total number of branch count
n Total numbers of operator and

operands

Derived halsted t Time estimator
b Effort estimation
e Program write effort estimation
i Intelligence
d Difficulty
l Program length(v/n)
v Volume

McCabe loc Total lines of code
v(g) Cyclomatic complexity
ev(g) Essential complexity
lv(g) Design complexity

2.2 Dataset Description

This thesis mainly considered datasets from NASA, and PROMISE repository soft-

ware projects. NASA is the most widely used datasets in SFP. The list of all datasets

that are employed in various classes of SDP is shown in Fig. 2.1. Table 2.3, and Table

Chapter 2. Preliminary 27

Table 2.2: Object oriented level metrics description.

Metric class Metric
name

Explanation

Abstraction DIT Depth of inheritance tree
NOC Number of children
MFA Measure of functional abstraction

Cohesion LCOM Lack of cohesion methods
LCOM3 Lack of cohesion in methods
CAM Cohesion among methods of class

Coupling CBO Coupling between object classes
RFC Response for class
CA Afferent couplings
CE Efferent couplings
IC Inheritance coupling

Complexity LOC Line of codes
WMC Weighted methods per classes
NPM Number of public methods
AMC Average methods complexity
Max cc Max McCabe’s cyclomatic complexity
Avg cc Average McCabe’s cyclomatic complex-

ity
MOA Measure of aggregation

Encapsulation DAM Data access metric

2.4 illustrated various software project dataset which is from NASA and PROMISE

repository, respectively. List of all SDP datasets is listed below.

• NASA dataset: It is the most widely used dataset in SFP; it is freeware dataset

and can be downloaded from the link given below:

https://github.com/klainfo/NASADefectDataset/tree/master/OriginalData/MDP.

• PROMISE dataset: It is also frequently employed datasets in the SFP domain.

The datasets are freely available in PROMISE repository [216]. It can be

downloaded from http://promise.site.uottawa.ca/SERepository/.

• Eclipse dataset: Most of its versions are freely available at http://bug.inf.

usi.ch/download.php.

• Student dataset: This is mainly for academic study, which is developed by

students. Few of them can be downloaded from http://bug.inf.usi.ch/

index.php.

Chapter 2. Preliminary 28

• Open-Source dataset: It includes some other open-source software projects,

such as Xylan, Lucene, Ant, Apache, KDE, Gnome, Mozilla, Openoffice, Klac,

Kpdf, Kspread, and Firefox, etc. It can be downloaded from http://bug.inf.

usi.ch/download.php.

• Others: This is some private dataset, or industrial datasets, such as commercial

Java application or commercial banking dataset.

Figure 2.1: Percentage of studies for different dataset that are used in SFP.

Table 2.3: Dataset description before and after preprocessing.

Dataset No. of metrics
No. of instance No. of non-faulty instances Fault instances(%)
Before After Before After Before After

CM1 22 498 442 449 394 9.85 10.85
KC1 22 2109 1212 1783 897 15.45 25.98
KC2 22 522 375 415 270 20.50 28
KC3 40 194 194 158 158 18.55 18.55
MC1 39 1988 1988 1942 1942 2.30 2.30
MC2 40 125 125 81 81 35.20 35.20
PC1 22 1109 954 1032 884 6.95 7.35
JM1 22 10885 8912 8779 6905 19.35 22.5
MW1 38 253 253 226 226 10.67 10.67
PC2 37 745 745 729 729 2.15 2.15
PC3 38 1077 1077 943 943 12.44 12.44
PC4 38 1458 1344 1280 1167 12.21 13.17

Chapter 2. Preliminary 29

Table 2.4: PROMISE Dataset description.

Software Version No. of
modules

No. of buggy
modules

% Buggy of
modules

Max bug
count

ant ant-1.3 125 33 16.00% 3
ant-1.4 178 47 22.47% 3
ant-1.5 293 35 10.92% 2
ant-1.6 351 184 26.21% 10
ant-1.7 745 338 22.28% 10

camel camel-1.0 339 14 3.83% 2
camel-1.2 608 216 35.53% 28
camel-1.4 872 146 16.63% 17
camel-1.6 965 118 19.48% 28

log4j log4j-1.0 135 25 18.5% 9
log4j-1.1 109 37 33.9% 9
lof4j-1.2 205 188 91.7% 10

lucene lucene-2.0 195 91 46.6% 22
lucene-2.2 247 144 58.2% 47
lucene-2.4 340 200 58.5% 30

jedit jedit-3.2 272 90 31.01% 45
jedit-4.0 306 75 24.51% 23
jedit-4.1 312 78 25.32% 23
jedit-4.2 367 48 13.08% 10

xerces xerces-1.2 440 115 16.14% 4
xerces-1.3 453 68 15.23% 30
xerces-1.4 588 429 72.95% 62
xerces-init 163 78 47.85% 11

velocity velocity-1.4 198 49 24.7% 7
velocity-1.5 214 141 65.8% 10
velocity-1.6 229 78 34.0% 12

poi poi-1.5 237 139 58.64% 20
poi-2.0 314 37 11.78% 2
poi-2.5 385 248 64.44% 11
poi-3.0 442 281 63.57% 19

2.2.1 Challenges Over Datasets

Shepperd et al. [220] claims over the quality of the NASA datasets. They found

a high rate of duplicate and noisy instances. They recommended that 1) reflects

the provenance of the datasets they used, 2) report any preprocessing is inadequate

detail to enable relevant replication, 3) effort required to understand data before

applying learning technique. [124] claimed that collected data contain noise because

the current fault collection practices are based on optional keywords, and faulty

instances are not correctly linked with changelogs. Since the quality of changelogs

varies across the projects, fault information can also vary from different projects;

Kumar et al. [129] claimed that in some projects, the fault information is not

available in the source. However, the cost parameter can be incorrectly collected.

Wagner et al. [256] suggested a few techniques to handle cost parameter issues.

Software projects that are developed within the organization (banking) may contain

Chapter 2. Preliminary 30

different fault patterns. The SFP technique results can be varied if the model is

directly applied without analyzing the fault pattern [8].

2.3 Methodologies

In this section we will illustrates principal methods that are employed in our work.

First we will explain the methods involve in preprocessing and then learning tech-

niques.

2.3.1 Techniques Involve in Preprocessing

Petric et al. [194], and Gray et al. [80] have questioned the standard of defect predic-

tion dataset. After analyzing their suggested solution to deal with problem-related

to the standard of the dataset. A recent study about the quality of NASA dataset

and suggestion to handle issues in NASA datasets were given by [220]. Duplicate

instances need to be deleted [81]. Missing data points handled by mean correspond-

ing values [257] as there will be no big mean difference after applying it.

Duplicate instance deletion: The software modules which have the same set of

software metrics and same class labels referred to as duplicate instances. Such kind

of problem can occur in the real world; even repeated instances can lead to the neg-

ative impact on machine learning algorithms, it can perform over-optimistic when it

is correctly classified as a part of test data. Moreover, they cause to make training

phase more time consuming and also reduces the performance of a learning model.

So these are the reasons to remove the duplicate instances. We have removed the

duplicate data instances from the dataset to avoid such problems in our experiments.

Missing value replacement: Usually, the instances contain various software met-

rics. There can be more reasons for missing instances, such as data collection done

carelessly or data capturing carelessness. If any instance has a missing value, then

it cannot satisfy the input criteria of our model. We have placed the missing value

with the mean of the corresponding metrics values. For example, a metrics (m)

contains 50 instances (m1 to m50), an instance m49 and m50 are missing, and both

of them will replace by mean of m1 to m48.

m49 = m50 =
1

48

48∑
n=1

mn (2.1)

Chapter 2. Preliminary 31

Normalization: Various software metrics values have a different order of magni-

tude; then, there is a need to scale the data over these metrics. We employ simple

min-max normalization technique [274] in chapter 3 to chapter 6. The transfor-

mation of normalized values done in between close interval of zero to one. Let a

metric m, its minimum value is min(m), and the maximum value is max(m). For

every value of mi of a metric m, let m̄ be its calculated normalized value, which is

calculated as:

m̄ =
mi −min(m)

max(m)−min(m)
(2.2)

Sampling Techniques: Sampling techniques are the redistribution of data points

in the dataset, which helps to avoid skewed distribution of positive or negative

instances. As we have discussed in section 2.2.1, the datasets have a different bug

label, and it has a skewed distribution, which causes class imbalance problems [100].

Many researchers have suggested a solution to this issue. When the data distribution

of positive and negative instances is approximately equal, there will be no class

imbalance problem. Two main sampling techniques are:

(a) Over-sampling techniques

(b) Under-sampling techniques

We have applied SMOTE [33] sampling technique in chapter 3. As after applied

the SMOTE sampling method in those techniques, the performance significantly

increased without any biases. SMOTE were widely applied in SBP domain [189, 266].

In few of our work we employed a random over-sampling method [3]. Multi-label

random oversampling [31] that in a preprocessing step in chapter 4, chapter 5, and

chapter 6. The dataset and the percentage of imbalance of a class p are as an input.

Mean Imbalance Ratio (MIR) and Imbalance Ration per Label (IRL) calculated

during the cloning of minority labels. Multi-label random oversampling clone the

minority class according to their IRL and discard the label, which has high IRL; a

complete explanation of this algorithm is given by Charte et al. [31].

2.3.2 Learning Techniques

In this section, we will discuss the various learning models that we have utilized;

we mainly discuss the long short term memory, attention layer, and sequence to

sequence model. The rest of the detailed content will be illustrated in the respective

Chapter 2. Preliminary 32

chapter.

Figure 2.2: Underlying architecture of LSTM.

Figure 2.3: Attention layer architecture.

1. Long short term memory: In traditional neural networks, all the inputs and

outputs are independent of each other, but in cases like when it is required to

predict the next word of a sequential sentence, the previous words are needed,

and hence there is a need to remember the previous words. It works fine when

there are short sequences to train and find challenging when the sequence

Chapter 2. Preliminary 33

Figure 2.4: The architecture of Sequence to Sequence model using LSTM cell.

is large. It also suffers from a vanish gradient problem [93] and exploding

gradient problem [187]. Long short term memory (LSTM) [94] overcomes these

challenges. The heart of an LSTM network is it’s a cell or say cell state which

provides a bit of memory to the LSTM so that it can remember the past or

present sequences. LSTM cell consists of three gates, “forget gate,” “input

gate,” and “output gate” as given in Fig. 2.2. The gates of LSTM have a

unique ability to add or remove information to the cell. xt, and yt are input

and output sequence at t time step. The wc, wi, wf , wo are the weight matrix

for candidate cell, input gate, forget gate, and output gate respectively, whereas

bc, bi, bf , and bo are bias value for candidate cell, input gate, forget gate, and

output gate, respectively. Tanh is an activation layer, its value lies between

[-1, 1], σ is activation function layer lies between [0, 1].

Step by step process of the LSTM cell is explained below.

(I) The first step of LSTM cell is to decide which information needs to be

flushed away from the cell state. This determines by the sigmoid function

of forget gate (f t). As it takes new input sequences from xt and previous

cell output sequence i.e., from a<t−1>.

f t = σ(wf [a
t−1, xt] + bf) (2.3)

(II) The next step decides which information needs to be stored in the cell

state. It has two segments; the first sigmoid layer decides which values will

Chapter 2. Preliminary 34

need to be updated, second tanh layer creates a vector for new candidates

values, C’<t> can be added to the state. After that, it combines these two

and updates (i<t>) the state.

it = σ(wi[a
t−1, xt] + bi) (2.4)

C ′<t> = tanh(wc[a
<t−1>, xt] + bc) (2.5)

(III) After that, it update the old cell state, C<t−1>, into the new cell state

C<t>.

C<t> = it ∗ C ′<t> + f t ∗ C<t−1> (2.6)

(IV) In the final step, it decides what output needs to be provided. It first runs

the sigmoid layer that decides which output will be provided, and then

it pulls a cell state to tanh. It triggers that output sequence, which had

agreed to be output.

ot = σ(wo[a
t−1, xt] + bo) (2.7)

a<t> = ot ∗ tanh ∗ C<t> (2.8)

2. Attention Layer: The attention layer [14] was initially introduced for neural

language translation. Later it has been widely applied in many real-world

applications such as multilingual machine translation [64], image captioning

[278], image classification [258], cross-project defect prediction [34] etc,. We

have utilized Bahdanau [14] attention model in our thesis work. Fig. 2.3 shows

the basic architecture of Bahdanau’s attention architecture. The attention

layer mainly provides extra weights to the input sequences. The hidden state

(si) is computed by using Eqn. 2.9. The attention layer has mainly three

different stages; first, it generates attention weights to the input sequence using

equation 2.10. Here amount of attention Yt should pay to αt′ . Second, it also

generates the context vector using equation 2.11.

si = f(si−1, yi−1, ci) (2.9)

at,s =
exp(score(Yt, Ŷt′))∑Tx

t′=1(exp(score(Yt, Ŷt′)))
(2.10)

Chapter 2. Preliminary 35

ct =
∑
t′

at,sŶt′ (2.11)

at = f(ct, ht) = tanh(Wc[ct;ht]) (2.12)

The context vector computes the probability distribution of the source sequence

in every single sequence by holding all cell’s output to input. The Eqn 2.12

refers to attention vector generation. The complete details Bahdanau attention

layer is given in the article [14].

3. Sequence to sequence model (Seq2Seq): It is also known as encoder-

decoder model [245]. It map fixed-length input (Tx) to a fixed-length output

(Ty), where Tx 6= Ty. It consists of three sections, first is encoder, intermediate

(encoder vector) and third is decoder. The underlying architecture of sequence

to sequence model using the LSTM unit is shown in Fig. 2.4.

Encoder: It is a stack of many recurrent units (GRU, LSTM), where every

unit accepts a single element of an input sequence, then collects information

from it, and finally propagates information in the forward direction. Each

input vector is represented as xi where i is the order of that input vector. The

hidden state ht is computed using equation 2.13

ht = f(W h ∗ ht−1 +W hx ∗ xt) (2.13)

Encoder vector: It is the final hidden layer of the encoder and acts as the de-

coder’s initial hidden state. The main objective of this phase is to encapsulate

the information of all input elements which help the decoder make accurate

predictions.

Decoder: It is a stack of many recurrent units where each unit predicts an

output sequence yt at a time step t. Every recurrent unit accepts a hidden

state from the previous unit and produces an output as well as its hidden

state. Hidden state hi and output yt are calculated using equations 2.14 and

2.15 respectively as:

ht = f(W h ∗ ht−1) (2.14)

yt = SOFTMAX(W s ∗ ht) (2.15)

Chapter 2. Preliminary 36

2.4 Performance metrics

Our work employed both classification (chapter 3) and regression-based (chapter 4

to chapter 6) performance measures. In this section, we will briefly illustrate perfor-

mance measures which are used in this thesis. First, we will discuss the classification,

then regression-based performance measures.

Classification based performance measure: Area under the curve (AUC) of

ROC (receiver operating characteristic curve), F-measure, Mathews correlation co-

efficient (MCC), and precision-recall area (PRC) are employed in chapter 3. The

thesis considered a convention that the faulty module will be positive samples, and

non-faulty modules will be negative samples. Evaluation of classifier more inclu-

sively in class imbalance situation, the AUC and F-measure usually applied [196]

in such condition. F-measure examine both precision and true positive rate (TPR)

or recall, as it is the harmonic mean of precision and recall, which means it gives

information about the number of defective instances that the model predicts in the

total number of defective instances and the number of defective instances the model

predicts in all instances. Whereas AUC lies between [0,1], the area under the ROC

curve measures the comparative performance between true positive rate (TPR) and

false positive rate (FPR). More is the area under the ROC curve, better will be the

performance of the classifier.

F −measure =
2 ∗ TPR ∗ Pricision
TPR + Precision

(2.16)

AUC =

∑
rank(ins+class)−

X(X + 1)

2
X ∗ Y

(2.17)∑
rank(ins+class) is represented as the sum of the rank of every positive sample,

X and Y are all positive and negative samples, respectively. Mathews co-relation

Coefficient (MCC) [158] is also a classifier evaluation methodology; it considers all

true positive and false positive and all true negative and false negative into an

account. The value of MCC lies between [-1, +1], the higher the value of MCC

than highly efficiently the model will predict toward imbalanced datasets. MCC is

widely used in the SBP model and other predictive techniques; the formula of MCC

Chapter 2. Preliminary 37

is showing below.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.18)

TN, TP, FN, FP are true positive, true negative, false negative, and false positive,

respectively. Precision-recall curve (PRC) [49], as from the name is made of preci-

sion and recall. Precision is the fraction of pertinent instances amongst all retrieve

instances, whereas recall is a fraction of relevant instances that are extracted from

a total number of related instances. When comparing precision and recall to each

other, if precision increases, then recalls decreasing and vice-versa. To achieve the

balance among both, the precision-recall curve comes to play the role. PRC can

observe the trade-off between precision and recall.

Sometimes the precision-recall curve is more useful than ROC because the ROC

only gives an idea of how the classifier is performing in general because it considers

the positive and negative class equally. If someone is interested in how the classifier

is engaged in a particular class then PRC can be more informative. The MCC is

more functional when classes are of different sizes, which means it is effective to

address the class imbalance problem. It also measures the biased nature of binary

classifiers. The PRC curve also targets to class imbalance, as PRC is not considered

“True negative,” it measures the balance between the two classes.

Regression based performance measure: To evaluate the performance of the

regression based approaches, the brief illustration of all used performance matrices

are given below.

1. Mean Absolute Error (MAE): It measures the mean magnitude of the

error in a prediction set without considering its direction of prediction. It is

the mean over the testing sample of the absolute difference between the actual

observation. Here every individual difference has equal weights. Thesis also

considered MAE over validation set (Valmae).

MAE =
1

n

n∑
i=1

| yi − ŷi | (2.19)

2. Mean Squared Error (MSE): It is the overall sum of the data points and

the square of the difference between the predicted and actual target variables,

Chapter 2. Preliminary 38

divided by the number of data points. Thesis also considered MSE over vali-

dation set (Valmae).

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.20)

3. Accuracy: It is the fraction of corrected predictions over total predictions. If

more is the accuracy more accurately the model is predicting. Its value lies

between 0 to 1, where 1 indicates all the correct predictions, 0 means no correct

prediction, and 0.5 means random predictions occur. Thesis considered both,

overall accuracy and accuracy over validation set as denoted by valacc.

Accuracy =
NumberofCorrectedPredictions

TotalNumberofPredictions
. (2.21)

2.5 Baseline Methods

This section briefly discusses state-of-the-art techniques for different domains, classification-

based, cross-version defect count prediction, and cross-project defect number estima-

tion. We compared the performance of our proposed techniques with these bench-

mark techniques.

Classification based SFP:

1. Tong et al. [249] employed stacked denoising autoencoders (SDA) together

with ensemble learning to construct an SFP model; they used SDA for feature

extraction of software metrics, and two layers of ensemble learning. They found

deep features are more prominent in defect prediction compared with standard

software features and found efficient results over existing methods.

2. There are few conventional classification model such as Naive Bayes (NB) [168],

JRip or Ripper[165], Support Vector Machine (SVM) SVM is a discriminative

classifier [237, 89], Multilayer perceptron (MLP) [Ruck et al.], and Instance-

based learning (IBK) [5].

3. Three well know types of classical ensemble learning-based SBP models are:

Bootstrap aggregating (Bagging) [24], AdaBoost [67], Breiman [24] and ran-

dom forest [25]. EL techniques also successfully applied in SBP, through various

models. [225] proposed an approach for SBP using cost-sensitive estimation

Chapter 2. Preliminary 39

and voting algorithm and [295] also proposed using cost-sensitive estimation

with boosting neural network. Ensemble learning was applied recently on im-

balance data by [122].

Cross-version defect count prediction:

(I) As such few classical techniques are Linear Regression (LR), MLP [153], IBK

[5], Additive Regression (AR) [272], M5rules [201, 56], and M5P [201].

(II) There are few regression based ensemble learning methods: Bagging [241],

Gaussian Process (GP) [230], Decision Stump [96], Random Forrest [28], and

Regression by Decentralization (RD) [65]. Most of these methods have been

widely used in software bug count prediction and other estimation/prediction

applications.

Cross-project defect number prediction:

AR [272], Bagging [241, 190], IBK [5], M5rules [201, 56], MLP [153, 121], Regression

by Decentralization [65], RF [28, 29], and Zero-R [277]. There are saveral baseline

approaches that are overlapping between CVDNP and CPDCP.

Hybrid regression analysis: Entire software prediction: As such there is no

such state of the art methods so we mainly compared with the classical deep learning,

and machine learning architectures. Detailed discussion is present in chapter 6.

1. Deep learning architectures are LSTM, Gated Recurrent Unit (GRU) [41], Con-

volution Neural Network (CNN) [109], and Recurrent Neural Network (RNN)

[291].

2. Traditional machine learning techniques are RF [29, 28], AdaBoost [9], J48

[206], and Support Vector Machine (SVM) [229].

