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PREFACE

Software testing is an essential phase of the software development life cycle (SDLC);

it requires approximately 40% of resources in software development. Software defect

causes a discrepancy in actual output and expected output, which leads to system

failure. A software defect is a condition in a software product that does not meet

the software requirement (as stated in the requirement specifications) or end-user

expectation (which may not be specified but is reasonable). Software Defect Pre-

diction (SDP) is a method to predict the fault-prone module of a software system.

After detecting the fault-prone module, the project leader can optimally allocate

testing resources; more tester team members to more fault-prone software modules.

It reduces testing effort and leads to a decrease in the cost of software development.

Many software practitioners have proposed several SDP methodologies using statis-

tical techniques, machine learning methods, or deep learning architecture. There

are many hindrances for detecting faulty modules in software fault prediction sys-

tems, such as missing values or samples, data redundancy, irrelevance features, and

correlation. Many researchers have built various Software Bug Prediction (SBP)

models, which classifies buggy and clean modules associated with software metrics.

There are several challenges in the SDP domain, such as skew distribution in the

public datasets results in a class imbalance problem, overfitting, quality of a public

dataset. This thesis’s main objective is to reveal the favorable result by feature

selection, machine learning, or deep learning methods to detect defective and non-

defective software modules, estimating the number of a module in the target project,

and predicting data associated with the next version of a software project. Along

with addressing class imbalance and overfitting problems in the SDP domain and

produces unbiased results. Further, normally predicting based on one or more sim-

ilar projects may start showing deficient prediction for newer projects; to counter

this possibility of learning from across multiple projects may be useful. In this the-

sis, we also proposed a cross-project defect prediction method. Additionally, an

attempt has been made to include the prediction of certain software metrics apart

from classical software bug prediction. The proposed work in the thesis is classified

into four sections first that are based on a classification-based approach to identify

the faulty or clean module. Then we will discuss how to identify the number of

defects in every module in the upcoming version of a software project; it is one step

ahead of just identifying a module is faulty or not. Further, the cross-project defect



number prediction and prediction of the entire software project are discussed. These

approaches help in optimally allocating development and testing resources and leads

to produce high-quality software products.

First, we investigate various existing classification-based defect prediction methods

and propose a rudimentary classification-based framework, Bug Prediction using

Deep representation and Ensemble learning Technique (BPDET) for SBP. It com-

binedly applies by ensemble learning and deep representation. The software metrics

which are used for SBP are mostly conventional. Staked denoising auto-encoder

(SDA) is used for the deep representation of software metrics, which is a robust fea-

ture learning method. The proposed model is mainly divided into two stages: the

deep learning stage and two layers of the EL stage (TEL). The extraction of features

from SDA in the very first step of the model then applied TEL in the second stage.

TEL is also dealing with the class imbalance problem. The experiment mainly per-

formed NASA (12) datasets to reveal the efficiency of DR, SDA, and TEL. The

performance is analyzed in terms of Mathew co-relation coefficient (MCC), the area

under the curve (AUC), precision-recall area (PRC), F-measure, and time. Out of

12 dataset MCC values over 11 datasets, ROC values over 6 datasets, PRC values

overall 12 datasets, and F-measure over 8 datasets surpass the existing state-of-the-

art bug prediction methods. We have tested BPDET using Wilcoxon rank-sum test,

which rejects the null hypothesis at α = 0.025. We have also tested the stability of

the model over 5, 8, 10, 12, and 15 fold cross-validation and got similar results. Fi-

nally, we conclude that BPDET is stable and outperformed on most of the datasets

compared with existing EL-based methods and other benchmark techniques.

In the next work, we investigate various existing and baseline works over software

number fault prediction. Predicting the number of bugs in a software system in-

tensifies the software quality and turns down the testing effort required in software

development. It reduces the overall cost of software development. The evolution of

hardware, platform, and user requirements leads to develop the next version of a

software system. In this chapter, we formulate a problem statement and its novel so-

lution, i.e., we are considering the prediction of the bug count vector of a successive

version of a software system. After predicting the bug count vector in the next ver-

sion of a software, the developer team leader can adequately allocate the developers

in respective fault dense modules; in a more faulty dense module, more developers

are required. We have conducted our experiment over seven PROMISE repository



datasets of different versions. We build metadata using a concatenation of various

versions of the same software system for conducting experiments. We proposed a

novel architecture using deep learning called BCV-Predictor. BCV-Predictor pre-

dicts the bug count vector of the next version software system; it is trained using

metadata (collection of different dataset). To the best of our knowledge, no such

work has been done in these aspects. We also address overfitting and class imbalance

problems using the random oversampling method and dropout regularization tech-

nique. We conclude that BCV-Predictor is conducive to predicting the bug count

vector of the next version of the software project. We found five out of seven meta

datasets reach more than 80% accuracy. In all seven meta datasets, Mean Squared

Error (MSE) lies from 0.71 to 4.715, Mean Absolute Error (MAE) lies from 0.22 to

1.679, MSE and MAE over validation set lie between 0.84 to 4.865, and 0.22 to 1.709

respectively. We also compared the performance of the BCV-Predictor with eleven

baseline techniques and found the proposed approach statistically outperforms on

most of the dataset.

In the next work, we revisited the software fault number estimation and along

with existing work of cross-project number prediction. Both techniques help in

allocating resources before the testing phase more optimally. Due to a lack of an

adequate dataset, defects can be predicted by employing data from different projects

to train the classifier called cross-project defect prediction (CPDP). Cross-project

defect number prediction (CPDNP) is one step ahead of CPDP, in which we can

also estimate the number of defects in each module of a software system; we contem-

plate it as a regression problem. This work dealt with the CPDNP mechanism and

suggested a CPDNP architecture by employing a deep neural network and atten-

tion layer called DNNAttention. We synthesis substantial data named cross-heap

by utilizing an amalgamation of 44 projects from the PROMISE data repository.

We feed the cross-heap into DNNAttention to train and evaluate the performance

over 44 datasets by applying transfer learning. We have also address class imbal-

ance (CI) and overfitting problems by employing multi-label random oversampling

and dropout regularization, respectively. We compared the performance of DNNAt-

tention using MSE, MAE, and accuracy over eight baseline methods. We found

out of 44 projects, 19 and 20 have minimum MSE and MAE, respectively, and in

19 projects, accuracy yields by the proposed model surpasses exiting techniques.

Moreover, we found the improvement of DNNAttention over other baseline methods



in terms of MAE, MSE, and accuracy by inspecting 20% lines of code is substantial.

In most situations, the improvements are significant, and it has a large effect size

across all 44 projects.

The overall cost of software development is detrimental to determining the util-

ity of any software. However, the uncertain nature of this cost increases the risk

associated with the software. Hybrid regression analysis investigates the various

regression-based approaches and estimates all software features, including a number

of bugs in every module of the software system. Predicting the next version of the

software system helps reduce this cost, allowing a better allocation of developers and

testers for software development. In this chapter, we develop a novel approach for

the prediction of the next version of a software system. Our method predicts the bug

count and the metric values for each module in the software using a computational

framework consisting of two phases, the data augmentation phase and the next ver-

sion prediction phase. We perform our experimentation on 8 public datasets from

the PROMISE repository using all existing versions. To achieve unbiased results,

we conducted each experiment 50 times and took a mean value of it. The proposed

methodology has an accuracy of over 60% on 5 out of eight datasets, while MSE

and MAE lie between 45.34% to 185.5% and 30.59% to 131.21%, respectively. We

have also compared the proposed model’s performance with eight baseline learning

methods and found the proposed model significantly outperforms these techniques.


