
i

CERTIFICATE

This is to certify that the work contained in the thesis entitled “Observations on Software

Defect Prediction”, submitted by Sushant Kumar Pandey (Roll. No.:16071501) for the

award of the degree of doctor of philosophy to the Indian Institute of Technology, BHU,

Varanasi, is a record of bonafide research works carried out by him under my direct super-

vision and guidance. It is further certified that the student has fulfilled all the requirements

of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Signature of Supervisor

Prof. Anil Kumar Tripathi

Department of Computer Science and Engineering

Indian Institute of Technology (Banaras Hindu University)

Varanasi-221005, India

ii

DECLARATION

I, SUSHANT KUMAR PANDEY, certify that the work embodied in this thesis is

my own bona fide work and carried out by me under the supervision of ANIL KUMAR

TRIPATHI from January 2017 to June 2021, at the Computer Science and Engineer-

ing department, Indian Institute of Technology (BHU), Varanasi. The matter embodied

in this thesis has not been submitted for the award of any other degree/diploma. I declare

that I have faithfully acknowledged and given credits to the research workers wherever

their works have been cited in my work in this thesis. I further declare that I have not

willfully copied any other’s work, paragraphs, text, data, results, etc., reported in journals,

books, magazines, reports dissertations, theses, etc., or available at websites and have not

included them in this thesis and have not cited as my own work.

Date: Signature of Student

Place (Sushant Kumar Pandey)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our

knowledge.

Signature of Supervisor

(Prof. Anil Kumar Tripathi)

Signature of Head of Department/Coordinator of School

iii

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Observations on Software Defect Prediction

Name of Student: Sushant Kumar Pandey

COPYRIGHT TRANSFER

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University)

Varanasi, all rights under copyright that may exist in and for the above thesis submitted

for the award of the Doctor of Philosophy.

Date: Signature of Student

Place (Sushant Kumar Pandey)

Note: However, the author may reproduce or authorize others to reproduce material

extracted verbatim from the thesis or derivative of the thesis for author’s personal use

provided that the source and the Institutes’s copyright notice are indicated.

iv

Acknowledgments

“Knowledge is in the end based on acknowledgment.” -Ludwig Wittgenstein

Firstly, I would like to express my sincere gratitude to my advisor Prof. Anil Kumar

Tripathi, for the continuous support of my Ph.D. study and related research, for his pa-

tience, motivation, and immense knowledge. His guidance helped me in all the time of

research, conducting experiments, and writing of this thesis. I could not have imagined

having a better advisor and mentor for my Ph.D. study. In addition, I thank retired Prof.

Ravi Bhushan Mishra for his support and guidance in the coursework and initial state of

my research work.

Besides my advisor, I would like to thank to all the members of my Research Program

Evaluation Committee, Prof. Sanjay Kumar Pandey, and Dr.Sukomal Pal, for their in-

sightful comments and encouragement and the hard question which incented me to widen

my research from various perspectives. There guidance and directions help me throughout

my journey of PhD.

I would like to express my sincere thanks to Prof. K.K Shukla and Prof. Sanjay Kumar

Singh, for their kindness and valuable support in carrying out the research work. I would

like to convey my sincere gratitude to the other faculty members of the Department of

Computer Science and Engineering, Prof. Rajeev Shrivastava, Dr. R.S Singh, Dr. Bhaskar

Biswas, Dr. H.P Gupta, Dr. R.N.Chaudhary, Dr. A.K Singh, Dr. Tanima Dutta and Dr.

Vinayak Shrivastava for their extensive and inspiring guidance throughout this tenure.

I extend my sincere thanks to other faculty members of the CSE department for their

support. I want to thank my friends and colleague Mr. Tribikram Pradhan, Ms. Manisha

Singh, Mr. Ashwini Singh, Mr. Shivang Agarwal, Mr. Ashish Shrma, Mr. Nigmendra

Yadav, Mr. Ashish Ranjan, Ms. Dipty Tripathi, Mr. Amit Biswas, Mr. Anshul Gupta,

and Mr. Ashish Gupta for their motivation and valuable comments. I also extend my

thanks to other colleagues members of our department Mr. Ankit Jaiswal, Mr. Nirbhay

v

Tagore, Ms. Manisha Sighla, Ms. Pratishta Verma, Mr. Chintoo Kumar, Ms. Anita Saroj,

Ms. Naina Yadav, and along with other departmental colleagues of computer science and

engineering department and different departmental colleagues. This thesis would not have

been possible without their invaluable remarks and persistent help. I extend special thanks

to the non-teaching and technical staff in the department, particularly, Mr. Ravi Kumar

Bharti, Mr. Ritesh Singh, Mr. Shubham Pandey, Mr. Prakhar Kumar, Mr. Akhilesh

Kumar Pal, Mr. Manoj Kumar Rai, Mr. Viplav Biswas, and Mr. Dinesh Tiwari.

In the end, I am grateful to my parents, grandpa, siblings, cousins, friends, and acquain-

tances, who remembered me in their prayers for the ultimate success. I consider myself

nothing without them. They gave me enough moral support, encouragement, and moti-

vation to accomplish my personal goals. My two lifelines (parents) and Granpa who have

always supported me financially so that I only pay attention to the studies and achieving

my objective without any obstacle on the way. Finally thanks to lord Baba Vishwanath

for their belling.

Sushant kumar Pandey

Contents

Acknowledgments iv

Contents vi

List of Figures xi

List of Tables xiii

Abbreviations xv

Symbols xvi

PREFACE xix

1 Introduction 1
1.1 Software Defect Prediction . 2

1.1.1 Cross Version Defect Number Prediction 4
1.1.2 Cross Project Defect Prediction 5
1.1.3 Hybrid Regression Analysis 6

1.2 Limitations of Existing Software Defect Prediction Approaches 6
1.2.1 Limitation on Cross Version Defect Number Prediction 7
1.2.2 Cross Project Defect Prediction 7
1.2.3 Limitations on Hybrid Regression Analysis 8

1.3 Motivation . 9
1.4 Research Goal . 12
1.5 Contributions . 13

1.5.1 BPDET: Classification Based Software Defect Prediction Method 14
1.5.2 BCV-Predictor: Cross-Version Defect Count Vector Predictor 15
1.5.3 DNNAttention: Cross-Project Defect Number Prediction Ap-

proach . 16
1.5.4 Hybrid Regression Analysis: Entire Software Prediction 18

vi

Contents vii

1.6 Literature Review of Various SDP Methods 18
1.6.1 Literature Review of Classification based Model 19
1.6.2 Literature Review over Cross-Version Defect Prediction 20
1.6.3 Literature Review over Cross-Project Fault Prediction and At-

tention layer . 22
1.6.4 Literature Review Over Hybrid Regression and Deep Learning 23

1.7 Structure of the Thesis . 23

2 Preliminary 25
2.1 Software Metrics . 25
2.2 Dataset Description . 26

2.2.1 Challenges Over Datasets . 29
2.3 Methodologies . 30

2.3.1 Techniques Involve in Preprocessing 30
2.3.2 Learning Techniques . 31

2.4 Performance metrics . 36
2.5 Baseline Methods . 38

3 BPDET: Classification Based Software Defect Prediction Model 40
3.1 Introduction . 40
3.2 Architectural design . 41

3.2.1 Proposed model . 42
3.2.1.1 Implication of combining SDA and EL techniques . . 43
3.2.1.2 Data preprocessing 44
3.2.1.3 Deep learning phase 44
3.2.1.4 Ensemble learning phase 46

3.2.2 Experiment setup . 53
3.2.2.1 Datasets . 54
3.2.2.2 Tools and its parameters 54
3.2.2.3 Software metrics . 54
3.2.2.4 Performance evaluation parameters 54

3.3 Result and discussion . 55
3.3.1 Effect of corruption rate over performance of BPDET 63
3.3.2 Research queries discussion 65

3.3.2.1 Effectiveness of BPDET in terms of performance met-
rics compared with other fault prediction model . . . 65

3.3.2.2 How useful BPDET model compared with traditional
methods regarding the class imbalance and over-fitting
problem . 66

3.3.2.3 How much training time taken by the BPDET model 68
3.3.3 Significant analysis . 69
3.3.4 Insightful discussion . 71

3.4 Threats to validity . 72

Contents viii

3.5 Summary . 72

4 BCV-Predictor: Cross-Version Defect Count Vector Predictor 74
4.1 Introduction . 74
4.2 Problem statement . 76

4.2.1 Dataset description . 77
4.2.2 Software metrics . 77
4.2.3 Meta-dataset collection process 77

4.3 Proposed approach . 78
4.3.1 Preprocessing . 80
4.3.2 Deep learning architecture . 81
4.3.3 Proposed model . 81
4.3.4 Experimental arrangements 85
4.3.5 Performance metrics . 85
4.3.6 Baseline methods . 85
4.3.7 Results and explanations . 87

4.3.7.1 Justification of RQ-1 87
4.3.7.2 Justification of RQ-2 92

4.3.8 Insightful discussion . 92
4.3.8.1 Justification of RQ-3 96

4.3.9 Non-Parametric test . 96
4.4 Summary . 98

5 DNNAttention: Cross-Project Defect Number Prediction Approach100
5.1 Introduction . 100

5.1.1 Problem statement . 102
5.2 Premises . 103

5.2.1 Cross project defect number prediction 103
5.2.2 Software projects . 104
5.2.3 Evaluation metrics . 104

5.3 Proposed work . 104
5.3.1 Data synthesis . 105
5.3.2 Deep neural network . 107

5.3.2.1 Long short term memory 107
5.3.2.2 Attention layer . 108

5.3.3 Preprocessing . 108
5.3.4 Proposed algorithm . 109
5.3.5 Transfer learning phase . 111
5.3.6 Experimental setup . 112

5.4 Result and discussion . 113
5.4.1 What is the accuracy that DNNAttention reached while pre-

dicting defect numbers over the target projects? 114

Contents ix

5.4.2 What losses the DNNAttension sufferers while predicting de-
fect numbers over a new project? 116

5.4.3 Compare the performance of the proposed model over exiting
baseline methods? . 117

5.4.4 How much the DNNAtention subjugate the CI and overfitting
problem? How much is the proposed model stable? 119

5.4.5 Some insightful discussion . 119
5.5 Threats to validity . 120
5.6 Summary . 122

6 Predicting the next version of the Software System: A Hybrid
Regression Analysis 129
6.1 Introduction . 129
6.2 Problem Identification . 131

6.2.1 Problem definition . 131
6.3 Premises . 133

6.3.1 Deep Learning Architecture 133
6.3.2 Software systems . 133
6.3.3 Performance Measures . 133

6.4 Proposed Approach . 135
6.4.1 Proposed algorithm . 136
6.4.2 Experimental setup . 136
6.4.3 Optimization and Hyperparameters Tunning 137

6.5 Results and Discussion . 138
6.5.1 How is the proposed approach effective in predicting the bug

count of every module in the next version of a software system?139
6.5.2 How is the proposed approach effective in predicting the each

software metric values of every module in the next version of
a software system? . 140

6.5.3 How much the proposed model is significantly effective over
existing learning methods? . 140

6.5.4 Insightful discussion . 141
6.6 Threats to validity . 146
6.7 Summary . 146

7 Summary 150

8 Conclusion and Future Direction 153
8.1 Conclusion . 153
8.2 Future Direction . 156

A Publications 158
A.1 Journal Papers . 158

Contents x

A.2 Conference Papers . 159
A.3 Communicated Papers . 159

Bibliography 160

List of Figures

1.1 Basic architecture of software defect prediction technique. 3
1.2 Thesis Structure. 24

2.1 Percentage of studies for different dataset that are used in SFP. . . . 28
2.2 Underlying architecture of LSTM. 32
2.3 Attention layer architecture. 32
2.4 The architecture of Sequence to Sequence model using LSTM cell. . . 33

3.1 Working architecture of BPDET. 41
3.2 Design of Denoising auto encoder, the initial input is a and it is

corrupted to à, à is mapped with b, then finally c tries to regenerate
to a. The regeneration error is represented by MH(a,c). Taken from
[254]. 42

3.3 Staked denoising auto-encoder (SDA), the input layer nodes repre-
sented by the solid circle(green) at the bottom, the middle circles are
hidden layer nodes. The class label ci of deep representation is the
same as the input. 43

3.4 Comparison of MCC, ROC, PRC, F-measure between best fault pre-
diction techniques over all dataset. 58

3.5 Comparison of MCC, ROC, PRC, F-measure of BPDET over all 12
dataset. 64

3.6 Boxplot of positive parameters λ and δ for corruption rate(σd). 65
3.7 Variation of MCC, ROC, PRC and F-measure of BPDET with respect

to corruption rate for every dataset. 66
3.8 Boxplot representation of MCC. ROC, PRC and F-measure for every

dataset when the corruption rate(σd) varies. 67

4.1 Basic architecture of software bug count prediction model. 75
4.2 Meta-data collection process. 78
4.3 Graphical abstract of Proposed work. 79
4.4 Basic architecture of LSTM network, and LSTM cell. 80
4.5 Accuracy of all seven metadata. 90
4.6 Loss of all seven metadata. 93
4.7 Bar-graph of MAE, MSE, & accuracy over all meta-datasets. 94

xi

List of Figures xii

4.8 Boxplot of MAE, MSE, & accuracy over all meta-datasets after 300
epoch. 95

5.1 Underlying framework of cross project defect number prediction. . . . 103
5.2 Graphical abstract. 106
5.3 Underlying framework of Data Synthesis. 106
5.4 Bar-graph of MSE, MAE, & Accuracy over every project. 114
5.5 Accuracy of datasets. 123
5.6 Accuracy of datasets. 124
5.7 Accuracy of datasets. 125
5.8 Loss of datasets. 126
5.9 Loss of datasets. 127
5.10 Loss of datasets. 128

6.1 Structure of next version prediction of a software system. 129
6.2 The graphical abstract of proposed approach. 135
6.3 Comparison of average MSE, MAE, and Accuracy value(%) of all

learning model at different iteration. 142
6.4 Cost effectiveness of Proposed model compared with regular LSTM

in terms of MSE, MAE, and Accuracy. 144
6.5 Accuracy and loss versus epoch of all eight metadataset in data aug-

mentation phase. 147
6.6 Accuracy and loss versus epoch of all eight meta dataset in next

version prediction phase. 148

List of Tables

1.1 Method level metrics description. 2

2.1 Method level metrics description. 26
2.2 Object oriented level metrics description. 27
2.3 Dataset description before and after preprocessing. 28
2.4 PROMISE Dataset description. 29

3.1 Comparison of MCC over baseline and EL methods with BPDET.
Note** “-” symbol implies model cannot give output. 49

3.2 Comparison of MCC with various classification methods with BPDET.
Note** “-” symbol implies model cannot give output. 50

3.3 Comparison of ROC over baseline and EL methods with BPDET. . . 51
3.4 Comparison of ROC with various classification methods against BPDET. 52
3.5 Comparison of PRC with various EL method. 53
3.6 Comparison of PRC with various classification method. 57
3.7 Comparison of F-measure over baseline and EL methods with BPDET.

Note** “-” symbol implies model cannot produce output. 59
3.8 Comparison of F-measure with various classification method. Note**

“-” symbol implies model cannot give output. 60
3.9 Comparison of total training time(seconds) taken by the various en-

semble learning methods and some base classifier with respect to
BPDET. 61

3.10 Comparison of MCC, ROC, PRC, f-score on k-fold cross validation
over BPDET . 62

3.11 Adjustment of parameters(λ, δ) with defective rate to achieve thresh-
old T(σd). 69

3.12 Two different sample of BPDET and other best models. The full
description of the table in the section 3.3.3. 69

3.13 Ranking of values from samples. The full description of the table in
the section 3.3.3. 70

4.1 Meta-datasets description. 77
4.2 Performance of BCV-Predictor. 87
4.3 MAE comparison of BCV-Predictor with other techniques. 91
4.4 MSE comparison of BCV-Predictor with other techniques. 91

xiii

List of Tables xiv

4.5 Accuracy comparison of BCV-Predictor with other techniques. 91
4.6 Training time (second) of various models compared with BCV-Predictor. 97
4.7 Actual and predicted values of bugs in different samples. 98

5.1 Software projects description. 105
5.2 Performance of DNNAttention. 113
5.3 MSE comparison of DNNAttention over baseline methods. 115
5.4 MAE comparison of DNNAttention over baseline methods. 116
5.5 Accuracy comparison of DNNAttention over baseline methods. . . . 118
5.6 Training time (sec) comparison over cross-heap data of DNNAttention

over baseline methods. 118
5.7 Comparison of accuracy produced by the DNNAttention over most

optimal baseline model. 121

6.1 Dataset description. 132
6.2 Performance at data augmentation phase. 139
6.3 Performance at next version prediction phase. 142
6.4 Comparison of MSE (%) of next version prediction phase with base-

line learning methods. The results are in the form of mean ± standard
deviation. 143

6.5 Comparison of MAE (%) of next version prediction phase with base-
line learning methods. 143

6.6 Comparison of accuracy (%) of next version prediction phase with
baseline learning methods. 143

6.7 P-Value and Cliff’s Delta (δ) of proposed model (PM) compared with
the existing approaches in terms of MSE. 145

6.8 P-Value and Cliff’s Delta (δ) of proposed model (PM) compared with
the existing approaches in terms of MAE. 145

6.9 P-Value and Cliff’s Delta (δ) of proposed model (PM) compared with
the existing approaches in terms of Accuracy. 145

6.10 Effectiveness level [43] of cliff’s delta(δ). 146
6.11 Number of projects in which PM is statistically significantly improves

over existing approaches (+); performs more or less or approximately
equally well (=); and performs loses (–) compared to the baseline
techniques in form of MSE/MAE/Accuracy. 146

Abbreviations

S[D, B, F]P Software [Defect, Bug, Fault] Prediction

S[D, B, F]NP Software [Defect, Bug, Fault] Number Prediction

S[D, B, F]CP Software [Defect, Bug, Fault] Count Prediction

CPDP Cross Project Defect Prediction

CP[D, B, F]DNP Cross Project[Defect, Bug, Fault] Number Prediction

CPDCVP Cross Project Defect Count Vector Prediction

CV[D, B, F]P Cross Version [Defect, Bug, Fault] Prediction

CV[D, B, F]CP Cross Version [Defect, Bug, Fault] Count Prediction

BCV Bug Count Vector

SDA Staked Denoing Autoencoder

MLP Multi Layer Perceptron

SVM Support Vector Machine

EL Ensemble Learning

NB Naive Bayes

LR Logistic Regression

xv

Symbols

xt input sequnce at t time step

yt output sequnce at t time step

wc weight matrix for candiate cell

wi weight matrix for input gate

wf weight matrix for forget gate

wo weight matrix for output gate

bc bias value for candiate cell

bi bias value for input cell

bf bias value for forget cell

bo bias value for output cell

σ sigma activation function

f t forget get

at output sequence of t time step

Ct cell state value at t time step

C ′t new cell state value at t time step

it update state at t time step

ot output state at t time step

ot output state at t time step

Tx Fixed length input

Ty Fixed length output

si hidden state

Yt amount of attention

xvi

Symbols xvii

ht hidden state

V almae mean absolute error at validation set

V almse mean squared error at validation set

V alacc accuracy at validation set

V almae mean absolute error at validation set

ai1 input feature of a with ith module

deepi1 deep feature of a with ith module

Yfinal final output of ensemble learning phase

Dtr training data

Dts testing data

cPNDj combined probability of non-defective of jth module

cPDj combined probability of defective of jth module

λ, δ SDA parameters

Mi ith module

ζl input vector for layer l

η initial learning rate

gt gradient at time t

fi ith feature

v is exponential average of gradient

κq probability score of each bug q

Seq2Seq sequence to sequence

Dedicated to my Parents, and Grandpa

xviii

PREFACE

Software testing is an essential phase of the software development life cycle (SDLC);

it requires approximately 40% of resources in software development. Software defect

causes a discrepancy in actual output and expected output, which leads to system

failure. A software defect is a condition in a software product that does not meet

the software requirement (as stated in the requirement specifications) or end-user

expectation (which may not be specified but is reasonable). Software Defect Pre-

diction (SDP) is a method to predict the fault-prone module of a software system.

After detecting the fault-prone module, the project leader can optimally allocate

testing resources; more tester team members to more fault-prone software modules.

It reduces testing effort and leads to a decrease in the cost of software development.

Many software practitioners have proposed several SDP methodologies using statis-

tical techniques, machine learning methods, or deep learning architecture. There

are many hindrances for detecting faulty modules in software fault prediction sys-

tems, such as missing values or samples, data redundancy, irrelevance features, and

correlation. Many researchers have built various Software Bug Prediction (SBP)

models, which classifies buggy and clean modules associated with software metrics.

There are several challenges in the SDP domain, such as skew distribution in the

public datasets results in a class imbalance problem, overfitting, quality of a public

dataset. This thesis’s main objective is to reveal the favorable result by feature

selection, machine learning, or deep learning methods to detect defective and non-

defective software modules, estimating the number of a module in the target project,

and predicting data associated with the next version of a software project. Along

with addressing class imbalance and overfitting problems in the SDP domain and

produces unbiased results. Further, normally predicting based on one or more sim-

ilar projects may start showing deficient prediction for newer projects; to counter

this possibility of learning from across multiple projects may be useful. In this the-

sis, we also proposed a cross-project defect prediction method. Additionally, an

attempt has been made to include the prediction of certain software metrics apart

from classical software bug prediction. The proposed work in the thesis is classified

into four sections first that are based on a classification-based approach to identify

the faulty or clean module. Then we will discuss how to identify the number of

defects in every module in the upcoming version of a software project; it is one step

ahead of just identifying a module is faulty or not. Further, the cross-project defect

number prediction and prediction of the entire software project are discussed. These

approaches help in optimally allocating development and testing resources and leads

to produce high-quality software products.

First, we investigate various existing classification-based defect prediction methods

and propose a rudimentary classification-based framework, Bug Prediction using

Deep representation and Ensemble learning Technique (BPDET) for SBP. It com-

binedly applies by ensemble learning and deep representation. The software metrics

which are used for SBP are mostly conventional. Staked denoising auto-encoder

(SDA) is used for the deep representation of software metrics, which is a robust fea-

ture learning method. The proposed model is mainly divided into two stages: the

deep learning stage and two layers of the EL stage (TEL). The extraction of features

from SDA in the very first step of the model then applied TEL in the second stage.

TEL is also dealing with the class imbalance problem. The experiment mainly per-

formed NASA (12) datasets to reveal the efficiency of DR, SDA, and TEL. The

performance is analyzed in terms of Mathew co-relation coefficient (MCC), the area

under the curve (AUC), precision-recall area (PRC), F-measure, and time. Out of

12 dataset MCC values over 11 datasets, ROC values over 6 datasets, PRC values

overall 12 datasets, and F-measure over 8 datasets surpass the existing state-of-the-

art bug prediction methods. We have tested BPDET using Wilcoxon rank-sum test,

which rejects the null hypothesis at α = 0.025. We have also tested the stability of

the model over 5, 8, 10, 12, and 15 fold cross-validation and got similar results. Fi-

nally, we conclude that BPDET is stable and outperformed on most of the datasets

compared with existing EL-based methods and other benchmark techniques.

In the next work, we investigate various existing and baseline works over software

number fault prediction. Predicting the number of bugs in a software system in-

tensifies the software quality and turns down the testing effort required in software

development. It reduces the overall cost of software development. The evolution of

hardware, platform, and user requirements leads to develop the next version of a

software system. In this chapter, we formulate a problem statement and its novel so-

lution, i.e., we are considering the prediction of the bug count vector of a successive

version of a software system. After predicting the bug count vector in the next ver-

sion of a software, the developer team leader can adequately allocate the developers

in respective fault dense modules; in a more faulty dense module, more developers

are required. We have conducted our experiment over seven PROMISE repository

datasets of different versions. We build metadata using a concatenation of various

versions of the same software system for conducting experiments. We proposed a

novel architecture using deep learning called BCV-Predictor. BCV-Predictor pre-

dicts the bug count vector of the next version software system; it is trained using

metadata (collection of different dataset). To the best of our knowledge, no such

work has been done in these aspects. We also address overfitting and class imbalance

problems using the random oversampling method and dropout regularization tech-

nique. We conclude that BCV-Predictor is conducive to predicting the bug count

vector of the next version of the software project. We found five out of seven meta

datasets reach more than 80% accuracy. In all seven meta datasets, Mean Squared

Error (MSE) lies from 0.71 to 4.715, Mean Absolute Error (MAE) lies from 0.22 to

1.679, MSE and MAE over validation set lie between 0.84 to 4.865, and 0.22 to 1.709

respectively. We also compared the performance of the BCV-Predictor with eleven

baseline techniques and found the proposed approach statistically outperforms on

most of the dataset.

In the next work, we revisited the software fault number estimation and along

with existing work of cross-project number prediction. Both techniques help in

allocating resources before the testing phase more optimally. Due to a lack of an

adequate dataset, defects can be predicted by employing data from different projects

to train the classifier called cross-project defect prediction (CPDP). Cross-project

defect number prediction (CPDNP) is one step ahead of CPDP, in which we can

also estimate the number of defects in each module of a software system; we contem-

plate it as a regression problem. This work dealt with the CPDNP mechanism and

suggested a CPDNP architecture by employing a deep neural network and atten-

tion layer called DNNAttention. We synthesis substantial data named cross-heap

by utilizing an amalgamation of 44 projects from the PROMISE data repository.

We feed the cross-heap into DNNAttention to train and evaluate the performance

over 44 datasets by applying transfer learning. We have also address class imbal-

ance (CI) and overfitting problems by employing multi-label random oversampling

and dropout regularization, respectively. We compared the performance of DNNAt-

tention using MSE, MAE, and accuracy over eight baseline methods. We found

out of 44 projects, 19 and 20 have minimum MSE and MAE, respectively, and in

19 projects, accuracy yields by the proposed model surpasses exiting techniques.

Moreover, we found the improvement of DNNAttention over other baseline methods

in terms of MAE, MSE, and accuracy by inspecting 20% lines of code is substantial.

In most situations, the improvements are significant, and it has a large effect size

across all 44 projects.

The overall cost of software development is detrimental to determining the util-

ity of any software. However, the uncertain nature of this cost increases the risk

associated with the software. Hybrid regression analysis investigates the various

regression-based approaches and estimates all software features, including a number

of bugs in every module of the software system. Predicting the next version of the

software system helps reduce this cost, allowing a better allocation of developers and

testers for software development. In this chapter, we develop a novel approach for

the prediction of the next version of a software system. Our method predicts the bug

count and the metric values for each module in the software using a computational

framework consisting of two phases, the data augmentation phase and the next ver-

sion prediction phase. We perform our experimentation on 8 public datasets from

the PROMISE repository using all existing versions. To achieve unbiased results,

we conducted each experiment 50 times and took a mean value of it. The proposed

methodology has an accuracy of over 60% on 5 out of eight datasets, while MSE

and MAE lie between 45.34% to 185.5% and 30.59% to 131.21%, respectively. We

have also compared the proposed model’s performance with eight baseline learning

methods and found the proposed model significantly outperforms these techniques.

