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PREFACE

Semantic image labelling, also known as pixel-based classification, is a task of segmenting
the objects within an image by pixel-level spectral similarity. Semantic image labelling
has also referred to as image parsing, which is a process of decomposing the image in
different regions and constructing a structured input. In this thesis, we summarise the four
aspects of research in the semantic labelling, i.e., classical machine learning(ML), feature
engineering, deep learning(DL), and relaxation labelling(RL).

The above mentioned four aspects of semantic labelling lead to realizing that it is not a
separate domain but a natural step in moving from coarse to fine interpretation. The original
procedure could have been derived from a classification scheme, which predicts the label
for a complete input. This process is also known as image category classification in the
literature. This process has various applications such as bio-metric image classification,
classification of tumor in a different grade, classification of different classes of species, digit
classification using digit databases, emotion detection using face databases, and category
classification using features from CBIR systems. A vast set of image databases, such as
MNIST, CIFAR, ORL, YALE, etc., are available to validate the category classification
methods.

In the previous classification methods, i.e., coarse grain, the classifiers predict the objects
or provide a rank list in case of many objects. The next step is to localize and detect the
objects within the image, which is a fine grain inference. The main aim of such inference is
not only to provide classes but also some specific information such as the spatial location of
classes, centroids, and bounding boxes. These kinds of fine-grain classification processes
have performed on pixel-level, not image level. Therefore, they are computationally costly.
Such inferences in various literature have denoted semantic labelling, pixel-based semantic
classification/segmentation, or semantic image parsing. Consequently, we can summarise
the semantic parsing as an image-based method to achieve fine-grain predictions. The goal
is to make a dense prediction for the label of each pixel in such a way that each pixel is
labelled with its class of enclosed regions. These kinds of fine-grained studies are the main
interest of this thesis.

Another important aspect is to select the complex data-sets for semantic labelling. We

have used low dimensional RGB images such as sift-flow, pascal-voc data-sets, and high

Vi



dimensional hyperspectral( HD-HSI) data-sets to perform the semantic labelling based
experiments. The facial expression based images in ORL, YALE-A, and B, COIL data-sets
have been used for category prediction also.

We have discussed the classical machine learning methods, some feature engineering,
and knowledge embedding techniques to develop accurate and efficient frameworks. The
salient and CNN feature-based approaches have been adapted to achieve effective and
robust features from raw data. Feature selection and dimension embedding have also played
a pivotal role in proposed frameworks. Deep learning and CNN based approaches have
been used to design the custom CNN architecture and exploited the significant results
from the image. Some relaxation labelling-based methods have also detailed to improve
the CNN and classical ML-based probabilistic outcomes significantly. The advantages
and drawbacks of the proposed frameworks have discussed. The comparative analysis for
benchmark image sets and evaluation matrices have also been performed. Finally, some
encouraging future works have drawn out, and the conclusion has drawn for pixel-wise

semantic scene labelling or image parsing.
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