
Chapter 5

Fainted TextSpotter

Text instances in natural scene images typically contain immense semantic information

that conveys meaningful information to the reader. Scene text instances are hard to

classify due to wide variations in underlying background, fonts, textures, and lighting

conditions. In the previous Chapter 3 and Chapter 4, we presented two text spotters to

fix the challenges obtained by cluttered and blurry scene images for text detection and

recognition. In this chapter, we handle the problem of faint text edges in scene images.

We propose a deep network architecture, named as Fainted TextSpotter. Scene text

spotting in an adverse weather outbreak and hostile conditions is a more complicated

process due to the presence of fog, rain, and smog during image capturing. This results

in an outbreak of faint edges, poor contrast, low illumination, and inter-class interfer-

ence, as shown in Fig 5.1. This chapter considers the faint edges challenge in the text

spotting process. While identifying a text instance in a scene image with fainted edges,

we humans first emphasize on all the edges in the image (both fainted and non-fainted)

and then focus the attention of edges, which seems to associate with the text instances.

We follow the same model by learning semantic edge supervised feature maps followed

by focusing attention on pixel-wise spatial features and channel-wise relationships. This

helps to resolve the problem faint text edges due to poor contrast.

82

In this chapter, we propose an end-to-end trainable deep neural network that can

address the issue of spotting arbitrary-oriented text instances in scene images, captured

in adverse meteorological conditions. It localizes words, predicts script class, and per-

forms word spotting for every rotated bounding box. It is a multilingual fast scene

text spotter that utilizes hierarchical spatial context, channel-wise inter-dependencies,

and semantic edge supervision to localize and recognize words and predict script class

in scene images using smartphones. We explore inter-class interference to reduce the

misclassification problem. An efficient recognition module for character segmentation,

word-level recognition, and script identification is incorporated. We use benchmark

datasets to demonstrate the efficacy of our spotting network.

Figure 5.1: Illustration of natural images (first row) representing the necessity of
Fainted TextSpotter. Second and third rows are the recognized scene text instances
using FOTS [1] (baseline) and the proposed network, respectively.

The rest of the chapter is organized as follows. In the first section, we describe

the proposed architecture of the text spotter. In the next section, we demonstrate the

5.1. Proposed Architecture 83

experimental results. In the last section, we conclude the chapter.

5.1 Proposed Architecture

In this section, we propose a robust and efficient network, denoted by Fainted TextSpot-

ter, for arbitrary-oriented text spotting in scene images. It has the following modules:

• First, we incorporate a light-weight backbone network using MobileNetV2. To able

to improve text edge categorization for a holistic scene text interpretation, we integrate

category-aware semantic edge learning with our network. Semantic edge supervision

addresses the problem of an edge pixel being associated with multiple classes due to a

hostile environment.

• Second, we design a context encoding module that incorporates class-aware inter-

channel relationships to recalibrate adaptively and trilayer dilated feature pyramid to

capture hierarchical spatial context. A range of dilation rates and large effective recep-

tive field eliminates the gridding artifacts. It helps in robust and dense localization of

text instances.

• Third, we introduce a light-head region proposal network with oriented RoIs to ob-

tain oriented region proposals by the involvement of classification confidence along with

localization accuracy. We map the features of a rotated region proposal using bilinear

sampling to a canonical dimension. This normalizes the rotation and scale maintaining

aspect-ratio and positioning of each character. The localization accuracy score compen-

sates for the missing text region by conserving the entire text region during training.

• Finally, we utilize inter-class distance and intra-class density using Gaussian softmax

to address the issue of misclassification due to hostile environment and ambient noises.

We also add a recognition module for character segmentation, word-level recognition,

and identification of corresponding text script using Bi-CLSTM, self-attention, and

circulant matrix.

84 5.1. Proposed Architecture

cls.

BBox

Image

word
pred.

score

script
ident.

localization

context

bi−modal

encoding

aware
oriented

Input
O

semantic

edge

module

recognition

softmax

gaussian

networkproposal

region

network

supervised

backbone

network
I

Figure 5.2: Overall architecture of Fainted TextSpotter.

5.1.1 Semantic Edge Supervised Backbone Network

The aim of this section is to obtain a backbone network that encodes a multi-label

category-aware semantic edge learning by allowing low-level features to participate and

augment high-level semantic classification using a skip-layer architecture. It is light-

weight and hardware-efficient in nature. We have not restricted a pixel to be associated

with either text or non-text class. Hence, we incorporate the basic blocks of Mo-

bileNetV2 [115]. It uses bottleneck depth separable convolutions with residuals. The

architecture of the backbone network consists of a convolution layer that has 32 filters

with size 3 × 3, followed by 37 residual bottleneck layers with one 1 × 1 convolution

layer having 1280 filters, as illustrated in Fig. 5.3.

2−channel

map
activation

2−

conv6dconv4bconv3b

semantic edge supervised

grouped

SUPERVISION
EDGE

SEMANTIC O

fused feature map

1x1
conv

D

CONCATENATION
SHARED

A

A

bottleneck
layer with
expansion
factor of 6

1x1 conv
upsample

2−channel
1x1 conv
upsample

Image
Input

I

of feature
resolution

to the

map

upsample residual bottleneck layers

B(5)

C(3) B(4)C(1) C(2)

B(5)

co
n
v
2

co
n
v
5

co
n
v
3

co
n
v
6

co
n
v
8

co
n
v
1

co
n
v
7

co
n
v
9

co
n
v
4

Figure 5.3: Architecture of the backbone network.

Formally, an input image is represented by I ∈ R2H×2W×3. We use a filter of size

5.1. Proposed Architecture 85

3×3, dropout, RELU6, and batch normalization during training for residual bottleneck

layers. We consider the value of output stride as 16, which can provide a dense feature

extraction. We remove the strides at fourth layer and apply category-aware semantic

edge supervision [134] using a 1 × 1 convolution layer and bilinear up-sampling. We

impose supervision on top of the last layer (conv9) to produce a semantic edge super-

vised fused feature map B of the same spatial resolution as feature map A (output

feature map of conv2), i.e., {H ×W}. We perform side feature extraction to outputs a

single channel feature map C(j) and apply shared concatenation to replicate the bottom

features on conv3b, conv4b, and conv6d to separately concatenate with both text and

non-text activations as follows:

B(5) ={(C,B(4)
text), (C,B

(4)
non−text)} (5.1)

where C = {C(1), C(2), C(3)}.

The output concatenated activation map B(5) is further classified using 2-grouped con-

volution to generate a bi-channel activation map D. We also classify the non-text edges

to keep a check on whether a text edge is wrongly associated with the non-text class.

We use 1 × 1 convolution on D and then apply weighted element-wise product with

the upscaled feature map K ∈ RH×W×1280 (conv9) to obtain the output feature map

O ∈ RH×W×1280 as follow:

O = {d�
1k1, · · · ,d�

H×WkH×W}, (5.2)

where {d�
i,ki} are the i− th elements of D� and K feature maps.

5.1.2 Bi-modal Context Encoding

The goal of this section is to tackle the fainted text edges, poor contrast, image blurs,

perspective distortion, and ambient noises in scene images. We therefore exploit hi-

86 5.1. Proposed Architecture

erarchical spatial features and channel-wise inter-dependencies together to address the

issue of unreliable outcomes and ill-localized text edges, as shown in Fig. 5.4. A text

edge in the feature map O can be associated with the background also. To reduce

the flop count, we compute a feature map R ∈ RH×W×128 (thin feature map) that has

less channels, where channels are decreased from 1280 to 128. We use an adaptive

recalibration of inter-channel responses with hierarchical spatial contextual features to

model the salient feature maps to intensify its representation explicitly. Hierarchically

captured spatial context information is useful for delicate segmentation tasks with com-

plex artifacts. It provides attention to focus on salient spatial regions. The channel

dependencies help to rescale the semantic edge supervised feature map to highlight the

important channels.

O
L

channel−wise
recalibrate

R P

NZ

FDC 3FDC 1 FDC 2

pooling

attention
global

bi−modal context encoding

i/p 64

128o/p64

128

64o/p

64i/p i/p

o/p

large seperable convolution
ζ/10

ζζ/2

ζ

σ(·)δ(·)

∗

ς:
ς:

ς:ς:
ς:ς:

Figure 5.4: Architecture of bi-modal context encoding module.

In the first branch, we consider a large context region with wide spatial variance. To

achieve this, we explore a comparatively large receptive field but maintain spatial resolu-

tion avoiding striding layers [116]. This prevents overfitting in pixel-wise prediction and

an increase in the number of parameters. We incorporate three layers of fused dilated

convolutions. We observe the variation in dilation rates can effectively enlarge recep-

tive fields of convolutional kernels. This in turn gathers the surrounding discriminative

information and transfers to non-discriminative text regions boosting the presence of

5.1. Proposed Architecture 87

these regions in the text localization maps. This avoids gridding effects. Each layer

incorporates three parallel convolutions with 3×3 kernels maintaining the same output

dimensions. The dilation rates are ∂ = {1, 2, 3} and receptive field RF = 49. The

layers have output channel ς = {64, 64, 128}. The output feature map P is normalized

and channels are enhanced to 1280 (same as O), as shown in Fig. 5.5.

conv
kxk

conv
1x1

dilation rate: 1
3x3 conv

dilation rate: 2

dilation rate: 3

3x3 conv

3x3 conv

RF=49

Figure 5.5: Illustration of Fused Dilated Convolutions.

In the second branch, we employ a spatial squeeze and channel excitation, a variant

of SENet [135], as shown in Fig. 5.2. We adopt global attention pooling on feature

map O to obtain channel-wise statistics. The vector Z ∈ Rζ is obtained by shrinking

el ∈ RHW×1 through spatial dimensions HW = H ×W for l − th channel using global

attention pooling. The l − th pooled score zl,k with k class (k ={text, non-text}) is

given by:

zk,l = 1τel wk, (5.3)

where 1 ∈ RHW×1, ∀ distinct l ∈ {1, · · · , ζ}, andwk ∈ R1×1 is the class-specific weights.

It helps to embed global spatial knowledge in vector Z, which is transformed by applying

sigmoid activation σ(·) to obtain the scalar N as follows:

N = σ(w1δ(w2Z)), (5.4)

such that w1 ∈ Rζ×β and w2 ∈ Rβ×ζ are the scores of two fully-connected layers. The

parameter β denotes the reduction ratio to encode the channel-wise inter-dependencies,

where we choose the value of β = 2 [135], and the operator δ(·) indicates the ReLU

function.

88 5.1. Proposed Architecture

The output feature map L is obtained by rescaling the transformation output with

the activations using channel-wise product between the context enrich feature map P

and the channel-excited scalar N as follows:

L = [p1n1, · · · ,pHWnHW], (5.5)

where pi and ni are the i− th elements of feature map P and scalar N , respectively.

5.1.3 Localization-aware Oriented Region Proposal Network

The objective of this section is to provide an oriented R-CNN subnet, which also ac-

quires the confidence of localization for precisely regressing bounding boxes followed

by mapping of the RoI features into canonical dimension to normalize rotation and

scale, as depicted in Fig. 5.2. We first produce a feature map with a small number of

channels (thin feature maps) to perform RoI pooling. In our experiments, we find that

an improvement in accuracy measure and memory usage is obtained. This is because

the computations are reduced during both training and inference by performing RoI

pooling on the thin feature maps. We therefore reduce R-CNN overhead by reducing

the channels to 128 from 1280 to compute a thin feature map J ∈ RH×W×128. We

introduce RoI pooling to get fixed shaped feature maps. We also incorporate rotated

anchors [23] and IoU-Net learning [136] to obtain rotated region proposals and predict

the intersection-over-union (IoU) between each rotated bounding box and the corre-

sponding matched ground-truth, respectively. IoU-Net [136] disentangle classification

confidence of being text instance and RoI localization accuracy using IoU-guided non-

maximal suppression (NMS) and class-aware IoU predictors followed by precise RoI

pooling for bounding box refinement.

The rotated bounding box of a region proposal r is defined by five tuples u =

(x, y, h, w, θ). The geometric center is represented by the coordinate (x, y). The shorter

side (height) and the long side (width) are represented by h and w, respectively. We

define θ as the orientation angle between the positive direction of the x−axis to the

5.1. Proposed Architecture 89

long side of the rotated bounding box in a parallel direction. Rotated anchors make use

of aspect-ratio, orientation, and scale parameters. We change the aspect-ratio to {1:2,

1:5, 1:8} for considering a wide range of texts. We kept the scales as 8, 16, and 32.

Orientation Computation. Let us assume that text lines in their neighbourhood

have almost similar spatial pattern and the orientation of characters in a text line are

closely related. Motivated by skew computation algorithms for projection profile [137],

we propose a mechanism for projection for computing orientation of text instances, as

shown in Figure 6.8. We further assume that the orientation angle of a text line is

ϕ in a text block. The offset for vertical-coordinate is ρ and draw out a straight line

in the text block over the centroid of each character, as depicted in Figure 6.8. We

compute the value of counting components Ω(ϕ, ρ) equals the number of the character

components intersect the straight line. We finally compute the feasible orientation ϕi

by counting the peak value of the components in the right direction as follows:

ϕi = arg max
ϕ

max
ρ

Ω(ϕi, h). (5.6)

Assume that we have obtained six orientations, i.e., {−π/6, 0, π/6, π/3, π/2, 2π/3}

to maintaining a trade-off between computational efficiency and orientation coverage.

This able us to obtain 270 anchors for the proposed R-CNN subnet.

0

2

4

6

8

10

12

−π/6 0 π/6 π/3 π/2 2π/3

C
ou

nt

Angle

h

θ

(a) (b)

Figure 5.6: (a) The line chart about the counting number of components in different
orientations. (b) The red line correspond to center of the line chart.

Bounding-box Refinement. Any change in input distribution may affect the ro-

tated bounding box regression iteration and consequently may lead to non-monotonic

90 5.1. Proposed Architecture

localization improvement. To handle this problem, the optimization-based bounding

box refinement technique [136] is included for robust localization accuracy estimation

and as an early-stop indicator with adaptive steps. The problem of bounding box

refinement is reformulated to obtain optimal a, such that,

a = arg min
Θ

{−ln(IoU)(Ψ(u,Θ),ugt)}, (5.7)

where ugt is the corresponding ground-truth bounding box for region proposal r. Precise

RoI Pooling layer (PrPool) [136] computes the gradient of IoU with reference to u to

find an optimal solution. It has a continuous gradient preventing any quantization

of bounding box coordinates. We perform average pooling by computing a two-order

integral:

PrPool(bin, L) =

� x2

x1

� y2
y1

ß(�x, �y) d�xd�y
(x2 − x1)× (y2 − y1)

, (5.8)

where we consider ß to be continuous at any (�x, �y) using bilinear interpolation and

(�x, �y) is continuous coordinates. The feature map ß is given by:

ß(�x, �y) =
�

i,j

�wi,j ×max(0, 1− |�x− i|)×max(0, 1− |�y − j|). (5.9)

The bounding box coordinates are iteratively fine-tuned by the obtained gradient. The

predicted IoU between the detected bounding box and the corresponding matched

ground-truth is maximized, where the predicted IoU indicates the localization confi-

dence of each bounding box.

The size and rotation of each detected region may vary and therefore it is essential

to map the features into canonical dimensions. We incorporate bilinear sampling of [94]

that can map a region �o ∈ Rh�×w�×ς into a tensor o ∈ Rh×w×ς of fixed-height, as follows:

ox,y =

h�

x�=1

w�

y�=1

�ox�,y�Γ(x
� −Υx�(x))Γ(y� −Υy�(y)), (5.10)

where Γ is the bilinear sampling kernel such that Γ(φ) = max(0, 1 − |φ|) and Υ is a

point-wise coordinate transformation, which projects coordinates {x�, y�} of the fixed-

sized tensor �o to the coordinates {x, y} in the detected region o. The number of

5.1. Proposed Architecture 91

channels remains unchanged. It permits shift and scaling along x− and y−axes, whereas

rotational parameters are straightaway considered from the region parameters. This

helps to normalize rotation and scale persisting aspect-ratio and character position.

This is important for persisting accuracy in text spotting task.

5.1.4 Miss-classification Problem

The inter-class distance and intra-class density can play an important role in measuring

the effectiveness of a network. We therefore address the issue of reducing inter-class in-

terference by investigating inter-class distance and intra-class density of features learned

by deep networks. Intra-class density indicates the proximity of the features within the

same class and inter-class distance denotes how distinct the features of different classes

are. We assume that the features of a class is more likely to have a Gaussian dis-

tribution and therefore compute gaussian softmax of [117], known as G−softmax, for

classification on D, such that,

P(Di) =
exp(C ×Δ(Di, µi,σi) +Di)�

j=1 exp(C ×Δ(Dj , µj ,σj) +Dj)
, (5.11)

where Δ is the cumulative density function (CDF) of a Gaussian distribution, Di is

the i − th element of D, and µ is the mean and σ represents the standard deviation.

If the value of C = 0, then we will get the conventional softmax function. The use

of G−softmax helps to approximate many distributions for every class during training,

whereas the traditional softmax function learns from the current observation only. Fur-

thermore, it directly quantifies inter-class distance and intra-class density from µ and

σ. This implies that the improvement of over inter-class interference improves of mean

accuracy, even in the presence of faint edges and cluttered background.

5.1.5 Recognition Module

The aim of a text recognition module is to process an image and recognize the word.

We incorporate a location-aware embedding followed by a self-attention mechanism for

92 5.1. Proposed Architecture

recognition of text instances, as shown in Fig. 5.7. We first apply the location-aware

embedding mechanism, alike recognition module in Chapter 3, on the original input

feature tensor (region proposal) to obtain the position embedded feature tensor E of

shape (G,U,G + U), where {G,U} is set to {16, 32}. The location-aware embedding

feature tensor E is calculated as E �(i, j, :) = onehot(i, U), E ��(i, j, :) = onehot(j, G),

and E = concat(E �, E ��), where onehot(ı, k) indicates a k−length vector containing

ı−index element with unit value and rest as zero. We aggregate the location-aware

embedding feature tensor with the original tensor to obtain aggregate tensor F is of

size (G,U, ζ + G + U), where ζ is the number of channels of the input feature tensor

which is set to 128.

best
proposals

< >EOS

embedding

"s"

"c"

Bi−CLSTM

Bi−CLSTM

Bi−CLSTM

location−aware pred: school
score: 95.2

character
embedding

self
attention
module

··
·

Figure 5.7: Architecture of the proposed recognition module.

Next, we predict a sequence of character classes y = (y1, · · · ,yt, · · · ,yT) iteratively

for T steps. At a step t, the feature tensor is F , the last hidden state is Gt−1, and the

last predicted character class is yt−1. Unlike [118], we have used Bi-CLSTM [119] to

keep the network light-weight. We expandGt−1 from a vector to a feature tensor ht−1 by

copying, where ht−1 is of shape (G,U, V) and V is the hidden size of the recurrent neural

network that is set to 128. LSTM accepts an input sequence x = (x1, · · · ,xt, · · · ,xT),

where each of xt is a vector corresponding to step t. The output sequence y is computed

5.1. Proposed Architecture 93

by using the following LSTM equations iteratively from t = {1, · · · , T}:

it =σ(Wixxt +Wiyyt−1 +Wicct−1 + bi), (5.12)

ft =σ(Wfxxt +Wfyyt−1 +Wfcct−1 + bf),

mt =σ(Wmxxt +Wmyyt−1 + bm), (5.13)

ct =ft � ct−1 +mt � it, (5.14)

ot =σ(Woxxt +Woyyt−1 +Wocct + bo), (5.15)

ht =ot � tanh(ct), (5.16)

yt =Wyhht, (5.17)

where symbols i, m, o, f , c, h, and y are respectively input gate, input modulation

gate, output gate, forget gate, cell state, cell output, and projected output. The �

operator represents the element-wise product. The weight matrices are denoted by W

terms. The b terms indicate bias vectors. Bi-CLSTM uses a square matrix, known as

circulant matrix, where each row (or column) vector is the circulant reformat of the

row (or column) vectors. We assume that any matrix can be transformed into a set of

circulant matrix blocks to obtain a block-circulant matrix. We compute the attention

weight αt as follows:

αt(i, j) =
exp(ξt(i, j))�G

i�=1

�U
j�=1 exp(ξt(i

�, j�))
, (5.18)

ξt = Wt × tanh(Ws ×Ht−1 +Wf × F + bε), (5.19)

where ξt and αt are of shape (G,U). Wt, Ws, Wf , and bε are trainable weights, and

bias, respectively. We then update the glimpse gt of step t by imposing the attention

weight to the original feature tensor F as follows:

94 5.2. Experimental Results

gt =
G�

i=1

U�

j=1

αt(i, j)× F (i, j). (5.20)

We cascade the glimpse gt with the input xt of Bi-CLSTM and a character embedding

class yt−1 of the last predicted character as follows:

Φ(yt−1) = Wy × onehot(yt−1,k) + by, (5.21)

xt = concat(gt,Φ(yt−1)), (5.22)

where b and W are bias and trainable weights of the linear transformation, respectively.

In the sequence decoder, k is the number of classes that includes 36 classes for alphanu-

meric characters in English (Latin) and 1 classes for end-of-symbol (EOS) symbol.

Then, the conditional probability (CP) at step t is obtained by a linear transformation

and a softmax function as follows:

CP(yt) = softmax(Wo × xt + bo) (5.23)

and yt ∼ CP(yt). (5.24)

Greedy decoding of network output is utilized during all the experiments. However,

our recognition network is generalized, language independent, and open-dictionary. Fur-

thermore, in order to include real-world examples of rotated and vertical text instances,

we preserve the direction of reading at the word-level. Finally, we perform script iden-

tification using a majority voting over the predicted characters yt.

5.2 Experimental Results

To validate the effectiveness of Fainted TextSpotter, we conduct exhaustive experiments

for scene text detection and end-to-end word spotting. We have used a pretrained model

on SynthText [8] dataset for three epochs with weights for both detection and recog-

nition. The weights are initialized from ImageNet [9] for detection and randomly con-

5.2. Experimental Results 95

sidered from N (0, 1) distribution for recognition. We also adopt three training/testing

splits for evaluation. We perform a comprehensive five of experiments on six publicly

available benchmark datasets. We consider precision, recall, and f-measure as the met-

rics for evaluating the accuracy of detection. We report the recognition accuracy results

in terms of strong, weak, and generic lexicons. Runtime complexity is measured by the

number of flop counts, training parameters, and frames-per-second.

5.2.1 Implementation Details

The overall training process contains two stages, i.e., pre-trained on SynthText dataset

and then fine-tuned on the benchmark datasets on which it is to be tested. We set

batch sizes of RPN [123] is taken as 256 while Fast R-CNN as 512 per image. Our

network is implemented with Intel E5-2670v3 CPU running at 2.30 GHz and NVIDIA

Titan X graphic card.

•Training. We simultaneously train our detection and recognition models for three

epochs on a combined training dataset consisting of ICDAR 2015, MSRA-TD500,

RCTW 2017, COCO-Text, and SVT. We randomly crop up to 30% of its width and

height of an input image. The training in end-to-end fashion utilizes curriculum learn-

ing [120] strategy to train the model gradually to more complex data. We randomly

first select 600k images from 800k synthetic images for 120k iterations with a learning

rate 10−3, where recognition task is trained by fixing the detection branch. Then, an-

other 80k iterations are utilized for detection only with a learning rate is set to 10−4.

In the next 20k iterations, sampling tensors are obtained from detection results and the

model is trained end-to-end in this stage. Finally, about 30k real-world images from six

benchmark datasets are used in the next 70k iterations that enhance the generalization

ability using data augmentation [15, 122]. We randomly rotate the input images in a

certain angle range of [−30◦, 30◦] for data augmentation. To incorporate character-level

supervision, we set the batch size to 4 with learning rate 10−4.

96 5.2. Experimental Results

We use standard stochastic gradient descent with adam optimiser having a weight

decay of 0.001 and a momentum of 0.9. The input images are fed in mini batches of 8

images. In the presence of fainted edges in a scene image, some background textures

are very similar to text instance. It is therefore difficult for a network to distinguish.

This makes training unbalanced, leading to slow convergence. We use hard a negative

mining strategy to suppress them. The training on a dataset is performed into two

stages. For the first stage of training, the negative ratio between the negatives and

positives is set to 3:1. It is changed to 6:1 in the second stage of the training. To make

our network robust, we choose a multi-scale training scheme [121]. Furthermore, we

use python script to impose synthetic fog and rain on the training images of benchmark

datasets and fed additionally in the network. This is because the images with ambient

noises are very less.

Interference. Inference stage evaluates all datasets within a single model, where the

scales of the input images depend on the datasets. In case of evaluation of cropped word

recognition accuracy of the Fainted TextSpotter, words smaller than two characters are

ignored. For each word, a set of hypothesis is formed adding to the ground-truth text a

small number of lexicons. In our experimentation, we apply RPN to obtain predefined

300 text proposals in a forward pass followed by detection and recognition tasks. We

incorporate strong, weak, and generic dictionaries for testing purpose [96]. The strong

lexicon assigns 100 words per-image including all words that appear in the image. In the

weak lexicon, all words present in the complete test set of the dataset are considered.

The generic dataset consists of 90k words. It is to be noted that the words of length

greater than three in dictionaries are kept and excludes signs and numbers. End-to-end

and word-spotting models are preferably used for evaluation. In an end-to-end model,

all words are recognized accurately, even though a detected string is not present in the

dictionary. The word-spotting model, in turn, investigate only about the existence of

a word of the dictionary in the images.

5.2. Experimental Results 97

5.2.2 Ablation Study

In this section, we explore abundant ablation studies to evaluate detection and recogni-

tion accuracy and runtime complexity of the proposed network. We perform extensive

experiments to investigate different aspects of our network.

• Impact of backbone network. We conduct a comprehensive set of experiments to

select a backbone network. We study the impact of MobileNetV2, MobileNetV2+ASPP,

MobileNetV2+ Semantic Edge Learning (Ours), SSDLite, ShuffleNetV2 [124], and

IGCV2 [125] as a backbone network on the overall performance of the proposed net-

work. Table 5.1 depicts that our backbone network outperforms other networks in

terms of accuracy with an optimal number of training parameters. The network is not

kept much deeper to restrict the number of training parameters.

Table 5.1: Effect of different variations of MobileNetV2, ShuffleNetV2 and IGCV2 as
backbone networks on ICDAR 2015 dataset.

Backbone Fm. Flops Params MAdds
(G) (M)

MobileNetV2 [115] 88.5 0.9 3.5 2.9

MobileNetV2+ASPP [115] 89.7 1.1 5.3 5.9

MobileNetV2+Semantic Edge Learning
(Ours)

90.1 1.2 5.9 6.1

SSDLite [115] 89.1 0.8 2.5 1.4

ShuffleNetV2 [124] 88.7 2.8 10.9 8.7

IGCV2 [125] 87.6 4.6 23.8 10.7

• Impact of context encoding module. In the Fainted TextSpotter, the context

encoding module has a spatial context branch and a channel dependency branch. We

evaluate the impact of each branch on the overall performance of the proposed network,

as shown in Table 5.2. We make ablation studies, where we consider our network as the

baseline and create three more models. We include the spatial context branch of context

encoding module and name the rest as SC-TextSpotter. Only channel dependency

branch of the context encoding module is used in this model, which is denoted by CD-

TextSpotter. The last one excludes both the branches of context encoding. It provides

98 5.2. Experimental Results

a means to eradicate the contribution of context encoding branches to the performance

of the overall network. This branch is known as BN-TextSpotter. It is clear from the

results that context encoding module has a significant role in Fainted TextSpotter.

Table 5.2: Effect of context encoding on COCO-Text and SVT datasets.

Model COCO-Text SVT
Precision Recall F-measure Pr. Re. Fm.

SC- TextSpotter 73.2 68.5 70.8 84.7 74 78.8

CD- TextSpotter 72.9 67.8 70.3 86.1 75.9 79.6

BN- TextSpotter 70.6 65.2 67.9 83.9 73.1 76.4

Ours 74.9 68.7 70.5 87.1 76.3 80.7

• Impact of detection module. We conduct experiments for evaluation of detec-

tion results using softmax (vanilla) [138], Large-Margin Softmax (L-softmax) [139] and

G−softmax [117] functions. Table 5.3 demonstrates that G−softmax function out-

performs the softmax and L-softmax functions on COCO-Text dataset. G−softmax

quantifies the density and distance of features. It is evident that with the improvement

in intra-class density and inter-class distance, the average f-measure of the detection

network also increases.

Table 5.3: Effect of different softmax functions on COCO-Text Dataset.

Function Precision Recall F-measure

Softmax 69.8 61.2 65.5

L-softmax 71.7 60.1 66.3

G−softmax (σ = 0.5, µ = 0) 73.8 67.2 68.7

G−softmax (σ = 1, µ = 0) 73.3 66.5 69.9

G−softmax (σ = 5, µ = 0) 72.3 67.6 68.8

G−softmax (σ = 1, µ = -0.1) 74.9 68.7 70.5

G−softmax (σ = 1, µ = 0.1) 75.9 66.9 68.7

G−softmax (σ = 1, µ = 0.05) 75.5 66.6 68.1

• Impact of different devices. We implement the proposed text spotter on seven

different resource-constraint devices, as shown in Fig. 5.8. The technical specifications,

such as processing speed and memory, are given in Table 5.4. We measure the power

consumption of aforesaid smart devices using a Monsoon power monitor. It is evident

5.2. Experimental Results 99

form the Figure 5.8 illustrate that the proposed Fainted TextSpotter is compatible with

smart devices.

0

20

40

60

80

D1 D2 D3 D4 D5 D6 D7

Po
w

er
(%

)

Devices

ICDAR 2013
ICDAR 2015

MSRA-TD500

COCO-Text
SVT

Figure 5.8: Effect of devices on power consumption for different datasets.

Table 5.4: Specifications of the smartphones with Adreno-640 GPU that are used for
experimentation.

Smartphone Operating Internal RAM
System Memory

D1 Samsung Galaxy S10+ Android 9 1 TB 12 GB

D2 Asus ROG Phone II Android 9 1 TB 12 GB

D3 Xiaomi Mi 9 Pro 5G Android 10 512 GB 12 GB

D4 Oneplus 7 Pro Android 9 256 GB 12 GB

D5 Google Pixel XL4 Android 10 128 GB 6 GB

D6 LG G8X ThinQ Android 9 1 TB 6 GB

D7 Sony Xperia 5 Plus Android 10 1 TB 6 GB

• Effect of different branches of recognition module on COCO-Text and

NAST dataset. Table 5.5 elaborates that each branches of the recognition module

is important and plays a vital role in classification of text instances. Bi-LSTM is an

essential part for precise sequential modeling.

• Impact of size of RoI on detection module for ICDAR 2013 and NAST

dataset. We evaluate the influence of aspect-ratios and scales of the ROIs for the

detection of scene text instances. Table 5.6 and Table 5.7 depict that the choice of

aspect-ratio and scales in our network shows better f-measure for the detection of text

100 5.2. Experimental Results

Table 5.5: Effect of different modules of recognition branch over COCO-Text and
NAST dataset.

Location-aware Bi-CLSTM Self- Word recognition
Embedding Attention COCO-Text NAST

✗ ✓ ✗ 62.5 32.5

✗ ✓ ✓ 71.3 40.3

✓ ✓ ✗ 68.4 39.2

✓ ✓ ✓ 82.7 45.7

instances. This is because we capture both at word level and text-line level. There-

fore, detected text instances are small but long in nature. Also, the use of spatial and

channel-wise attention minimize the false positive in the recall.

Table 5.6: Effect of variation in size of RoI in detection on ICDAR 2013 [3] and NAST
dataset.

Aspect- ICDAR 2013 NAST
ratio Precision Recall F-measure Precision Recall F-measure

1:2, 1:3, 1:5 89.4 88.6 89.1 52.4 51.2 51.8

1:3, 1:6, 1:9 91.8 91.3 91.5 51.3 50.6 50.9

1:2, 1:6, 1:9 87.8 88.2 88.3 53.6 52.4 53.2

1:3, 1:5, 1:7 89.3 88.6 88.6 58.4 56.9 57.6

1:2, 1:5, 1:8 94.9 95.7 94.9 59.3 60.4 59.8

Table 5.7: Effect of variation in scale of RoI in detection on ICDAR 2013 [3] and
NAST dataset.

Scale ICDAR 2013 NAST
Precision Recall F-measure Precision Recall F-measure

4, 8, 16 91.4 90.6 91.1 52.2 50.3 51.2

8, 16, 24 92.3 91.6 91.6 56.6 55.8 56.2

8, 16, 32 94.9 95.7 94.9 59.3 60.4 58.9

16, 24, 32 94.1 94.5 94.3 57.4 57.2 57.3

16, 32, 64 92.5 90.8 91.6 55.1 53.3 54.2

• Impact of size of RoIs in Recognition module. The aspect-ratios, scales, and

number of channels of the RoIs affect the recognition process. With the increase in the

number of channels, the recognition accuracy increases; however, it also increases the

5.2. Experimental Results 101

computational overhead. Therefore, we maintain an accuracy-cost trade-off, as shown

in Table 5.8. The choice of aspect-ratios and scales taken in the proposed network helps

in precise detection, which enhances the recognition efficiency, as analyzed in Table 5.9

and Table 5.10.

Table 5.8: Effect of variation in the number of channel in text recognition on ICDAR
2015 [2] dataset.

Number of Params (M) End-to-End Word-Spotting
channel strong weak generic strong weak generic

16 2.83 82.6 79.3 75.7 84.8 81.1 78.2

32 4.54 85.6 82.8 78.3 88.6 85.9 81.4

128 6.21 91.5 89.6 84.9 94.2 92.6 88.2

256 9.67 91.6 88.3 84.6 94.6 91.3 86.3

512 12.89 91.8 89.8 85.2 95.1 92.4 89.7

Table 5.9: Effect of variation in size of RoI in text spotting on ICDAR 2015 [2] dataset.

Aspect- End-to-End Word-Spotting
ratio strong weak generic strong weak generic

1:2, 1:3, 1:5 85.8 82.9 79.7 89.7 86.4 82.2

1:3, 1:6, 1:9 88.5 86.7 83.5 92.8 87.8 84.3

1:2, 1:6, 1:9 86.1 82.4 78.5 90.4 87.2 85.9

1:3, 1:5, 1:7 87.4 85.3 82.4 93.6 91.1 86.3

1:2, 1:5, 1:8 91.5 89.6 84.9 94.2 92.6 88.2

Table 5.10: Effect of variation in scale of RoI in text spotting on ICDAR 2015 [2]
dataset.

Scale End-to-End Word-Spotting
strong weak generic strong weak generic

4, 8, 16 85.6 83.4 77.5 89.5 85.6 81.5

8, 16, 24 88.2 87.2 82.4 92.7 89.8 86.4

8, 16, 32 91.5 89.6 84.9 94.2 92.6 88.2

16, 24, 32 90.6 88.7 86.1 93.3 91.8 87.3

16, 32, 64 88.2 85.1 81.8 91.7 89.4 85.7

102 5.2. Experimental Results

5.2.3 Comparison with State-of-the-Art Results

In this section, we compare our network with the state-of-the-art approaches [1,8,12,15,

19, 44, 46, 48, 50, 53, 68, 92, 93, 95–97, 99, 102, 104, 130, 132, 133, 140–145] on five different

publicly available benchmark datasets. We also perform a comparative study of the

both parameter count and computational cost of our network with the existing models.

• Detection results on different datasets. Fainted TextSpotter is compared with

recent approaches in terms of precision, recall, and f-measure. Tables 5.11, 5.12,

and 5.13 depict that Fainted TextSpotter outperforms the existing literature on all

ICDAR 3013, ICDAR 2015 and MSRA-TD500 datasets in terms of f-measure. Our net-

work perform better in the presence of noises, as shown in Table 5.14 and TableTable 5.15

where images in COCO-Text and SVT datasets have blurring artifacts and perceptual

distortion, respectively.

Table 5.11: Performance comparison on ICDAR 2013 [3] dataset for text detection in
scene images.

Methods ICDAR 2013
Precision Recall F-measure

SegLink [17] 87.7 83 85.3

WordSup [37] 93.3 87.5 90.3

LATD [34] 91 77 83

Raghunandan et al. [42] 88.4 66.4 75.8

Tang & Wu [47] 91.1 86.1 88.5

Lyu et al. [35] 93.3 79.4 85.8

FOTS [1] - - 88.2

He et. al. [96] 91 88 90

TextBoxes++ [98] 86 74 80

Mask TextSpotter [104] 94.8 89.5 92.1

ASTS (baseline) [107] - - 91.7

ASTS (weakly) [107] - - 93.5

Text Perceptron (2-stage) [112] 92.7 88.7 90.7

Text Perceptron (end-to-end) [112] 94.7 88.9 91.7

TextNet [128] 93.2 89.3 91.2

Boundary [110] 93.1 87.3 90.1

RRD [36] 88 75 81

Ours 94.9 95.7 94.9

5.2. Experimental Results 103

Table 5.12: Performance comparison on ICDAR 2015 [2] dataset for text detection in
scene images.

Methods ICDAR 2015
Precision Recall F-measure

EAST [15] 83.3 78.3 80.7

SegLink [17] 73.1 76.8 75.0

WordSup [37] 79.3 77 78.1

LATD [34] 87.8 78.1 82.7

Li et. al. [99] 71.6 93.4 81.1

Lyu et al. [35] 94.1 70.7 80.7

FOTS [1] 91 85.1 87.9

Li et. al. [95] 91.4 80.5 85.6

He et. al. [96] 87 86 87.0

TextBoxes++ [98] 87.2 76.7 81.7

TextDragon [105] 92.4 83.7 87.8

Mask TextSpotter [104] 86.6 87.3 87.0

ASTS (baseline) [107] - - 87.8

ASTS (weakly) [107] - - 89.9

Text Perceptron (2-stage) [112] 91.6 81.8 86.4

Text Perceptron (end-to-end) [112] 92.3 82.5 87.1

TextNet [128] 89.4 85.4 87.3

Boundary [110] 89.8 87.5 88.6

RRD [36] 85.6 79 82.2

Ours 91.1 89.8 90.7

•Recognition results on different datasets. Fainted TextSpotter is compared with

state-of-the-art literature for word spotting and end-to-end text recognition. Table 5.16

demonstrates that our network is improved by more than 5% for all 3 lexicons on ICDAR

2015 dataset with respect to FOTS [1] (baseline). The proposed network achieves state-

of-the-art results for word spotting on SVT dataset, as shown in Table 5.17. We obtain

comparable results for COCO-Text dataset in terms of text recognition accuracy.

• Speed and Model Size. The use of light-weight backbone and region proposal

networks drastically reduces both parameter count and computational cost. Table 5.18

demonstrates the test time speed of the proposed Fainted TextSpotter network when

compared with state-of-the-art scene text detection methods. We have reported the

flops, number of training parameters (params), and frames-per-second (fps) of our net-

work to evaluate the running time complexity.

104 5.3. Summary

Table 5.13: Performance comparison on MSRA-TD500 dataset.

Methods Precision Recall F-measure

GISCA [30] 86.3 77.1 81.4

East [15] 87.2 67.4 76

RefineText [21] 83.2 80.2 81.7

OPMP [56] 86 83.4 84.7

Mask-Most Net [52] 85.5 74.1 79.4

Yao et. al. [57] 76.5 75.3 75.9

Lyu et. al. [35] 87.6 76.2 81.5

He et. al. [16] 77 70 74

RRPN [23] 82 69 75

Raghunandan et. al. [42] 67.2 77.2 72.4

Dey et. al. [43] 52 85 65

Khare et. al. [44] 45 53.3 48.8

TextField [49] 87.4 75.9 81.3

Mask TTD [54] 85.7 81.1 83.3

Tian et. al. [24] 84.2 81.7 82.9

Seglink [17] 86.0 70.0 77.0

DSRN [65] 87.6 71.2 78.5

Ours 87.9 86.2 86.6

5.3 Summary

In this paper, an efficient network for arbitrary-oriented text spotting in scene images

based on light-weight deep neural network is proposed. Our network detects text in-

stances, signs, and markings with high accuracy and speed using hierarchical spatial

context information and inter-channel dependencies of edge supervised feature map

of the light-weight backbone network, which is enriched in spatial information. The

proposed text spotter can localize and recognize multilingual text instances in scene

images, which are captured in adverse weather conditions, in resource-constrained de-

vices, like smart devices. We have reduced misclassification by addressing the problem

of inter-class interference using Gaussian softmax. The proposed Fainted TextSpotter

also provides text script class. We have evaluated our network with publicly available

benchmark datasets. Our Fainted TextSpotter outperforms previous methods in terms

of efficiency and performance.

5.3. Summary 105

Table 5.14: Performance comparison on COCO-Text dataset for detection of texts in
scene images.

Methods COCO-Text
Precision Recall F-measure

EAST [15] 36.4 29.5 32.9

SegLink [17] 28.7 39.6 34.1

MaskTextSpotter [118] 66.8 58.3 62.3

Raghunandan et al. [42] 55.3 58.1 56.7

LATD [34] 74 51 61

Cheng et. al. [45] 60 33 42

Cheng & Wang [130] 48 38 42

Yao et al. [57] 43.2 27.1 33.3

TextBoxes++ [98] 60.8 56.7 58.7

Lyu et al. [35] 61.9 32.4 42.5

RRD MS [36] 64 57 61

FCRNall + multi-filt [8] 23.6 25.2 24.7

He et al. [46] 64.5 48.7 56.6

Dey et al. [43] 50.1 62.3 56.2

Tang & Wu [48] 49.6 67.4 58.5

TextBoxes [97] 54.7 46.3 50.5

Khare et al. [44] 35.9 30.2 33

Ours 74.9 68.7

Table 5.15: Performance comparison on SVT dataset for detection of texts in scene
images.

Methods SVT
Precision Recall F-measure

EAST [15] 50.3 32.4 39.4

SegLink [17] 30.2 42.4 35.7

MaskTextSpotter [118] 70.4 65.1 67.7

Raghunandan et al. [42] 60.4 68.7 64.2

LATD [34] 78.1 56.3 67.3

Cheng et. al. [45] 65.6 35.2 50.4

Cheng & Wang [130] 53.4 36.3 44.8

Yao et al. [57] 49.5 34.7 42.1

TextBoxes++ [98] 68.7 62.4 65.5

Lyu et al. [35] 66.2 37.9 52

RRD MS [36] 69.5 60.2 64.8

FCRNall + multi-filt [8] 26.2 26.7 27.4

He et al. [46] 87 73 79

Dey et al. [43] 55 68 61

Tang & Wu [48] 54.1 75.8 63.1

TextBoxes [97] 67.2 60.8 63.8

Khare et al. [44] 41.6 44.3 42.9

Ours 87.1 76.3 80.7

106 5.3. Summary

Table 5.16: Performance comparison on ICDAR 2015 dataset for word spotting and
end-to-end recognition of texts in scene images.

Methods Word Spotting End-to-End
strong weak generic strong weak generic

Neumann & Matas [131] 35 19.9 15.6 35 19.9 15.6

Deep TextSpotter [94] 58 53 51 54 51 47

Li et. al. [95] 94.2 92.4 88.2 91.1 89.8 84.6

TextBoxes [97] 93.9 91.9 85.9 91.5 89.6 83.8

Mask TextSpotter [118] 79.3 74.5 64.2 79.3 73 62.4

He et. al. [96] 85 80 65 82 77 63

FOTS [1] 84.6 79.3 63.2 81 75.9 60.8

FOTS MS [1] 88 83.3 68.9 84.5 80.1 66.3

TextBoxes++ [98] 76.5 69 54.4 73.3 65.9 51.9

CharNet [78] 85.4 77.6 69.8 85.1 81.3 71.1

TextDragon [105] 86.2 81.6 68 82.5 78.3 65.2

Qin et. al. [146] 87.3 80.5 71.6 85.5 81.9 69.9

Boundary [110] 82.5 77.8 65.3 79.7 75.2 64.1

Text Perceptron [112] 84.1 79.4 67.9 80.5 76.6 65.1

Li et. al. [99] 89.6 87.1 70 86 83.4 66.9

ASTS [107] 87.7 82.9 68.9 84.8 79.8 66.5

Ours 94.2 92.6 88.2 91.5 89.6 84.9

Table 5.17: Performance comparison on COCO-Text and SVT datasets for text recog-
nition accuracy and word spotting in scene images.

COCO-Text SVT
Methods Recognition Word Spotting

Accuracy SVT SVT-50

Baseline A [4] 82.9 63.7 77.2

Baseline B [4] 61 42.3 58.1

Baseline C [4] 23.4 32.4 46.7

Mask TextSpotter [118] 75.3 61.5 79.4

FCRNall + multi-filt [8] 66.4 55.7 67.7

TextBoxes [97] 62.1 64 72.4

Jaderberg et al. [93] 71.7 53 76

Li et al. [95] 69.2 66.2 84.9

TextBoxes++ [98] 66.9 64 84

Neumann and Matas [131] 61.6 56.2 68.1

Alsharif et al. [132] 49.2 39.5 48

Jaderberg et al. [92] 52.5 45.3 56

Wang et al. [133] 57.2 46 62.5

Ours 82.7 67.2 84.9

5.3. Summary 107

Table 5.18: Test time speed in terms of on FLOPS, number of training parameters,
and frames-per-second (fps) on ICDAR 2015 dataset.

Methods FLOPs (G) Params (M) fps D/R/S
EAST [15] 4.685 24.1 13.2 D

FOTS [1] 9.997 34.9 7.8 S

E2E-MLT [102] 2.946 4.7 - S

FCRN [8] - - 20 S

Jaderberg et al. [93] - - 2 S

Enhanced EAST [144] - - 7.9 D

Li et al. [99] - - 3.7 S

Mask TextSpotter [118] - - 3.1 S

Ours 0.973 5.9 28.5 S

