
Chapter 4

Blurred TextSpotter

In scene text spotting, detection and recognition tasks are highly correlated. Detec-

tion is responsible for accurate bounding box over the detected scene text and helps

in improvement of the recognition accuracy, while in the recognition text script are

identified by eliminating false positives. Traditional text spotting is challenging due

to large variations in scale, symbols, text shape, orientations, aspect ratios, font size,

font style, and script. In this chapter, we present a text spotter for text detection and

recognition in blurry scene images. It is another form of challenge in text detection

compared to occlusion, which is mentioned in previous Chapter 3. Nowadays, scene

images are captured very often using smartphones, cameras, and webcams. These cap-

tured images mostly suffer from camera shake and defocus issues, which makes the text

spotting complex in captured images unless the experts click the images, as shown in

Fig. 4.1. Blurred text instances occur mainly because of camera motion (motion blur),

camera shake artifact, defocus blur, and the surface movement containing scene text

instances. In a vision-based application like driver assistance system, drones, and robot

navigation, blurred text instances cause serious issues by increasing the ill-localization

of text instances in scene images. The perspectively distorted, blurred, and shaky text

edges make the process of spotting very complicated and lead to misclassification. In

54

the case of blurry and shaky scene images, we humans try to understand the context

related to text instances and then pay attention on transformation invariant features

to overcome the effect of perceptual distortion. We model our work based on the afore-

mentioned process by capturing multi-scale context information followed by enhancing

the transformation modeling capability of the network to classify scene texts in the

presence of camera shake, motion blur, and geometric distortions.

(a) (b) (c)

Figure 4.1: Illustration of the necessity of Blurred TextSpotter. Columns (b) and (c)
are the recognized text instances in the scene images of column (a) using baseline [1]
and our network. It can spot oriented text instances in the blurry scene images.

We therefore propose a deep network architecture in this chapter to handle blurred

texts in the natural scene image. The overall architecture of the proposed blurred text

spotter text spotting is shown in Fig. 4.2. The backbone network of the proposed

system is composed of MobileNetV2, dilated pyramid pooling, and encoder-decoder

4.1. Proposed Architecture 55

architecture to capture multi-scale contextual information. We append spatial and

channel-wise activations with the backbone network. We also use a region proposal

network to obtain text proposals and an efficient recognition module using Bi-LSTM

and attention-GRU for end-to-end spotting and word-level recognition.

The rest of the chapter is organized as follows. In the first section, we describe

the proposed architecture of the text spotter. In the next section, we demonstrate the

experimental results. In the last section, we conclude the chapter.

4.1 Proposed Architecture

In this section, we propose a text spotter named as Blurred TextSpotter that is robust

to blur noise and effectively reduces the misclassification problem in text detection and

spotting in blurry scene images. It is robust in nature. The overall architecture of the

proposed text spotter is shown in Fig. 4.2.

Recognition

Module

Context

Module
Attention

Backbone

Network

Aggregation
Module

Detection

Score

Pred.

OBBoxcls.
Image

Figure 4.2: Overall Architecture of Proposed Network.

Blurred TextSpotter has the following modules:

• Firstly, we incorporate MobileNetV2 in the proposed backbone network, which

makes it light-weight in nature. We also integrate stacked feature pooling and

encoder-decoder architecture to capture multi-scale contextual information. This

helps to prevent degradation problems. It helps to capture low-level fine details

with high-level semantics.

• Next, we develop an attention module for precisely detect the text instances even

in the presence of blur, perspective distortion, and inter-class interference. It

56 4.1. Proposed Architecture

provides both spatial and channel-wise attention.

• Then, we design an oriented region proposal network to obtain text proposals. It

is light-weight in nature.

• Lastly, we include a recognition module using C-LSTM within Bi-LSTM and

attention-GRU for end-to-end spotting and word-level recognition.

4.1.1 Backbone Network

In this section, we propose a robust backbone network to extract multi-scale context

enriched feature maps while preserving low, mid, and high-level spatial cues. We have

incorporated basic blocks of MobileNetV2 [115]. It is used as a bottleneck depth sep-

arable convolutional layer with residuals. We include an encoder-decoder architecture

to extract finer spatial information and prevent degradation problems in the backbone

network. We have integrated MobileNetV2 with stacked feature pooling (SFP) blocks

in the decoder of the backbone network to extract multi-scale contextual information

without increasing the complexity of the model.

An input image I is fed into the encoder branch with a spatial resolution ofH×W×3,

where {H,W} is height and width of the image and 3 represents RGB channel. Initially,

we have used a 3× 3 convolution layer with 32 number of filters to produce the feature

map with size H×W×32. Next, we feed these feature maps into 37 residual bottleneck

layers (conv2 to conv8) followed by one 1 × 1 convolution layer with 1280 number of

filters that produce the output feature map with size H/16 ×W/16 × 1280, as shown

in Fig. 4.3. The stride value at the conv4 layer is changed from 2 to 1 to capture dense

features. ReLU6 and batch normalization layers are accumulated on the top of each

layer in the residual block to maintain the learning process and decrease the training

iterations required to train the backbone network.

In the decoder branch, first, we apply the SFP block on the output feature map of

conv9. An SFP block consists of three dilated convolutions with a kernel of size 3×3 and

4.1. Proposed Architecture 57

point−wise

upsampling

s=1=1,

3x3,

s=1=2,

3x3,

s=1=3,

3x3,

element−wise
addition

operation

1x1 conv

k=2, s=1

1x1,

MAX 2D,

A

2
2

2
4

2
1

1
2

2
1

1
2

2
4

x

1
6

x3
2

x

2
1

4

3
2

0
x

Image
Input

1
2

8
0

x9
6

x

1
6

0
x3

2
x

residual bottleneck layers

2
2

8

2
2

8

2
1

42
5

6

6
4

x
2

5
6

conv6b
I

conv4b conv9conv3b

Backbone

convolution
deformable

Network

∂ ∂ ∂

ζ/n ζ/n ζ/n

ζ/n

Figure 4.3: Architecture of backbone network.

dilation rate ∂ = {1, 2, 3}, and each maintains the number of channels at ζ/n, where

ζ represents the number of channels of output feature map of conv9. This helps to

capture multi-scale context information along with spatial cues. A fourth incorporated

operation is a 2D max-pooling layer with stride = 1, and the size of the kernel is set

to 2 × 2. It is used to max-out activations over the local window. It is followed by

1 × 1 convolution layer to downsample the number of channels by a factor n, where

n = 4. These four operations extract dense feature maps simultaneously. We stacked

the output obtained from four (denoted by n) operations across channel dimensions

to obtain the resultant with ζ channels. Next, we apply bilinearly upsampling to

the output stacked feature map by a factor of 2. This upsampled feature map is

concatenated with the stacked feature map of conv6b. In the case of conv3b, conv4b,

and conv6b, prior to applying SFP block, the channels are upscaled to ζ using 1 × 1

convolution. The concatenate stacked feature map of conv9 + conv6b are bilinearly

upsampled by a factor 2 and merged with the stacked feature map of conv4b. The

58 4.1. Proposed Architecture

concatenated stacked feature map of conv4b + conv6b + conv9 are concatenated with

stacked feature map of conv3b to get the feature map A� ∈ R112×112×1280. The final

output feature map A is obtained by applying a deformable convolution over A� to

enhance the transformation modeling capability of the network. The kernel size of

deformable convolution is 3× 3 with stride one. A ∈ R112×112×1280 is the output feature

map of the CEB network. All concatenation operations are element-wise addition.

4.1.2 Context Aggregation Attention (CAA) module

Intra-class compactness and inter-class separability of features denote how far are the

features with different labels and thus are correlated to the quality of the learned

features. Due to the presence of blurred edges, both the intra-class compactness and the

inter-class separability are simultaneously minimized, which leads the learned features

to become less discriminative. Semantic segmentation describes a problem of assigning

one label to each pixel of an image with N different classes. We propose a context

aggregation attention module to improve the intra-class compactness and inter-class

separability by aggregating contextual information, which will improve the average

precision.The feature map A is fed into CAA-module as input, as shown in Fig. 4.4. The

CAA module has two branches, i.e., spatial-wise attention and channel-wise attention.

In the spatial-wise attention branch, we squeeze the channels using 1 × 1 convolution

operation on feature map A. The channel squeezed feature map is reshaped to have

a size of HW × 1, which is denoted by Q. We then apply the first spatial activation

layer, named as SA(·), as follows:

ri = qi × σ(wir ×R(qi) + bir), (4.1)

where ri and qi are the values at i−th position in the feature map R and Q, respectively.

wj and bj are learnable parameters. σ(·) is the sigmoid activation function. Next, we

conduct maxpool operation to reduce the size by a factor of 2. The reduced feature

4.1. Proposed Architecture 59

F

channel activation

gaussian softmax spatial activation spatial pooling

1x1,1
reshape

deconv

deconvmaxpool

maxpool

A

1xC 1xC/2 1xC 1xC

HxWx1

HWx1 HW/2 x1 HWx1 HWx1

1xC 1XC/2 1xC 1xC

HWx1 HW/2 x1
2

HWx1 HWx1

recalibration ReLUelement−wise sum

CAA

CA(·)
SA(·) SP(·)

SP(·)

R(·) CA(·)

R(·) SA(·)

R(·) δg(·)

R(·)

δg(·)

δg(·)

�
R(·)

�

�

�

�

Figure 4.4: Architecture of context aggregation attention module.

map S is then passed through the second spatial activation layer to obtain the feature

map U , defined by:

ui = si × σ(wiu ×R(si) + biu), (4.2)

where ui and si are the elements at i − th position in the feature map U and S,

respectively. We further incorporate the third spatial activation layer after applying

deconv operation on U to obtain the feature map X as follows:

xi = vi × σ(wix ×R(vi) + bix), (4.3)

where xi and vi are i−th element of X and the upscaled feature map V , respectively. It

is assumed that the distribution of text-specific features with respect to the underlying

background is a Gaussian distribution and thus include Gaussian softmax activation on

X to obtain output feature map K, which is stated as follows:

ki = R(xi)×
wik e(R(xi)+λΨ(R(xi),µi,ϕi)) + bik�

j=1 e
(R(xj)+λΨ(R(xj),µj ,ϕj))

, (4.4)

60 4.1. Proposed Architecture

where ϕ and µ denote standard deviation and mean of Gaussian distribution. The

cumulative density function (CDF) is represented by Ψ(·) and ki is the value at the

i− th position in K. We reshape the feature K to obtain O of dimension H ×W × 1.

The softmax function is dependent on λ for its usability. If λ = 0, it will be the

traditional softmax function. Gaussian softmax approximates the distributions related

to text-specific features. It considers large variations in the samples for training. The

traditional softmax function typically learns from the current observing sample. The

use of µ and ϕ helps to address intra-class compactness and inter-class separability.

In the channel-wise attention branch, we first perform spatial pooling, denoted by

SP (·), which reshapes the feature map A to dimension HW × C followed by channel-

wise average pooling to obtain a feature map D of size 1×C. Then, we apply the first

channel activation layer, represented by CA(·), as follows:

zi = di × σ(wiz ×R(di) + biz), (4.5)

where zi and di are the values at i−th position in the feature map Z andD, respectively.

Next, we perform maxpool operation to reduce the channel size to C
2
. The reduced

feature map E ∈ R1×C/2 is then again passed through the second channel activation

layer to obtain feature map G as follows:

gi = ei × σ(wig ×R(ei) + big), (4.6)

where gi and ei are i−th element of the feature map G and E, respectively. We perform

deconv operation to upscale the channel to C followed by the third channel activation

layer to compute the obtained feature map L as follows:

li = mi × σ(wil ×R(mi) + bil), (4.7)

4.1. Proposed Architecture 61

where li and mi are the elements at i − th position in the feature map L and M ,

respectively. We use Gaussian softmax activation on L to obtain output feature map

P , which is given by:

pi = R(li)×
wip e(R(li)+λΨ(R(li),µi,ϕi)) + bip�

j=1 e
(R(lj)+λΨ(R(lj),µj ,ϕj))

, (4.8)

where pi is the i− th value in the feature map P . The feature map A is rescaled with

the attention maps of spatial and channel-wise attention branches as follows:

�O ={o1 a1, · · · ,oH×W aH×W} (4.9)

and �P = {p1 a1, · · · ,pC aC}, (4.10)

where �O and �P are the rescaled map of spatial and channel-wise attention branches.

oi and ai are the i− th values in O and reshaped feature map A. These rescaled maps

are finally concatenated using element-wise addition to obtain the output feature map

F as follows:

fi = w1 �oi +w2 �pi + bif , (4.11)

where �oi, �pi, and fi is the i− th element in the feature maps �O, �P , and F . The output

of CAA-module is feature map F .

4.1.3 Detection Module

In this section, we aim to describe the text regions by using region-level features. We

reduce the overhead latency of region proposals by using light-head feature maps. To

obtain light-head text proposals, we use large separable convolution to get a thin fea-

ture map with number of channels as 128, which improves the speed of the detector.

We reduce channels of the feature map F into a compact feature map. We apply the

detection task on a thin feature map to reduce the overhead of oriented region pro-

62 4.1. Proposed Architecture

posal network and abandon global average pooling to improve performance. Oriented

bounding-boxes are used for classification and regression. The output text proposals,

denoted by N ∈ RH�×W �×C�
, is fed to the recognition module.

Inspired by [1], we have incorporated RoIRotate for extracting salient features in

a text proposal. We apply bilinear interpolation that helps to ignore misalignments

between text proposals and the captured features. Further, RoIRotate gives variable-

length output features, which is more appropriate for text spotting. We compute affine

transformation parameters for text proposals based on the ground truth coordinates

and share shared feature maps for each region to obtain canonical horizontal feature

maps of text regions, which is formulated as:

†x = lcosθ † sinθx, (4.12)

†y = †cosθ + lsinθy, (4.13)

s =
h†

†+ b
, (4.14)

w† = s(l + r), (4.15)

M =

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

s 0 0

0 s 0

0 0 1

1 0 †x
0 1 †y
0 0 1

(4.16)

where M is the matrix for affine transformation. {h†, w†} denote the spatial reso-

lution of feature maps obtained after the transform. (x, y) indicates the coordinates of

an element in shared feature maps. The distance to the top, bottom, left, right sides

of the text proposal is represented by (†, b, l, r). θ is the orientation. The final text

proposals are computed by:

∀i ∈ [1...ht], ∀j ∈ [1...wt], ∀c ∈ [1...C] (4.17)

4.1. Proposed Architecture 63

and for

V c
ij =

hs�

n

ws�

m

U c
nmκ(x

s
ijm;Δx)κ(yijn;Δy) (4.18)

xs
i

ysi

1

= M−1

x†
i

y†i

1

(4.19)

where V c
ij and U c

nm are the (i, j) output value and (n,m) input value in channel c.

{hs, ws} define spatial resolution of the input. The sampling kernel κ(·) has {Δx,Δy}

parameters. It is a bilinear interpolation process. The output the text proposal are

represnted by N . The aspect-ratio and scales of text proposals are kept same of archi-

tecture in Chapter 3, i.e., {1 : 2, 1 : 5, 1 : 8} and {8, 16, 32}, respectively.

4.1.4 Recognition Module

Humans have a great ability to focus on particular spatial features like texture, color,

and shape in a scene to understand the overall context, referred as a cognitive visual

mechanism. In computer vision, the ability of humans are replicated by integrating

attention mechanism into the deep learning model that adaptively focus on the most

important areas.

sum of product
point−wise operation
1x1 conv

N

v
e
c
to

r

c
o

n
te

x
t

fe
a
tu

re

ti
m

e
s
ta

m
p

 =
t

h
id

d
e
n

 s
ta

te
 a

t

timestamp =t−1
hidden state at

at timestamp =t−1
predicted vector

tanh

n
o

rm
.

s
o

ft
m

a
x

norm. = normalization

attention
score GRUBi−CLSTM

label

sequence

∗

∗ ŷt

Figure 4.5: Architecture of recognition module.

In this section, we incorporate a robust recognition module to concentrate on the rel-

evant text and overlook visual clutter. Our recognition module takes the text proposal

64 4.1. Proposed Architecture

N as input from our network, as shown in Fig. 4.5. First, feature maps are channel-wise

reduced using 1 × 1 convolution filter to obtain C dimension feature map. Next, we

have utilized bidirectional circular long-short term memory (Bi-CLSTM) with B hidden

states to generate label sequence. Finally, attention-based gated recurrent unit (GRU)

is stacked on the top of Bi-CLSTM to improve the performance of recognizing the label

of a text sequence. Inspired by [129], we incorporated the attention mechanism with

GRU to predict the accurate label of a given sequence. Given the previous hidden state

ht−1 of GRU, we estimate the attention vector with a sequence feature vector Xt at

t− th timestep, which is calculated as:

Zi,t = W�
z tanh(U

�
h ht−1 +U�

xXi + bz), (4.20)

where Zi,t is un-normalized attention value of Xi sequence and {Wz,Uh,Ux,bz} are

the attention model trainable parameters. We normalized Zi,t to estimate attention Vi,t

score, which is computed as:

Vi,t =
exp(Zi,t)�K
j=1 exp(Zj,t)

, (4.21)

where K is the length of feature maps. The glimpse of a given feature vector X is

estimated by:

Lt =
K�

i=1

Vi,tXi, (4.22)

where Lt emphasizes the important context of text at every t step. After obtaining the

context vector Lt, we feed it into GRU as an extra input with a previous output value

4.2. Experimental Results 65

obtained by integrating ht into softmax. The hidden state ht of GRU is calculated as:

ht = Φ(ht−1,Lt, ŷt−1), (4.23)

ŷt = δ(Wyht + by) (4.24)

where ŷt−1 and ŷt are the predicted vectors at time t − 1 and t, respectively. {W, b}

are learnable parameters, and {Φ(·), δ(·)} represents GRU, and softmax function to

calculate probabilities of text sequence.

4.2 Experimental Results

To evaluate the efficiency of Blurred TextSpotter (BTS) by conducting a comprehensive

set of experiments for text detection, word spotting, and end-to-end recognition in scene

images. ImageNet [9] and Synthtext [8] datasets is used as a pretrain model in our

Blurred TextSpotter. Standard metrics are used for performance measures in terms of

accuracy and number of training parameters. We consider five benchmark datasets for

our experimentation.

4.2.1 Implementation Details

Similar as Chapter 3, a pretrained model is used on Synthtext [8] dataset in the detection

process for three epochs that have weights initialized with ImageNet [9] dataset. In the

case of a recognition task, we randomly assign the weights, which is initialized from

N (0, 1) distribution. We first use synthtext dataset [8] for training followed by fine-

tuning on the benchmark datasets on which the network will be tested. We incorporate

data augmentation to improve the robustness of our text spotter. Three training/testing

splits are utilized for validation. Blurred TextSpotter is implemented on Intel E5-2670v3

CPU at 2.30 GHz speed and NVIDIA Titan X graphic card.

• Training. We train our detection and recognition models simultaneously on a com-

66 4.2. Experimental Results

bined dataset which is composed of ICDAR 2015, ICDAR 2013, SVT, COCO-Text,

and Total-Text training datasets for three epochs with a sample ratio of 2:2:1:1:1:1. A

random crop of up to 30% of its height and width is performed as preprocessing. The

mini-batch size is kept 8 in the initial phase of experimentation. We maintain the batch

sizes 256 and 512 for RPN and Mask R-CNN.

We perform end-to-end training, which is challenging with the presence of notable

complexities in learning, unbalanced distribution of image data, and convergence rates.

Synthtext [8] compute synthetic images for both character-level and word-level anno-

tations. There is still a big gap between realistic and synthesized images, which may

create difficulty in training our model to generalize real-world images. To bridge the

gap and to accelerate the process of convergence, the curriculum learning approach is

incorporate that helps to train the network progressively from complex data. A joint

model is used to train multiple tasks that can propagate the generalization capability

from synthesized images to real-world data. We randomly select 600k from the 800k

synthetic images. We train the recognition task with 120k iterations and a learning rate

10−3, where the detection branch is frozen. Another 80k iterations are used only for

detection, where the learning rate is 10−4. Next, 60k scene images of COCO-Text, IC-

DAR 2013, SVT, Total-Text, and ICDAR 2015 datasets are considered 70k iterations,

which utilize data augmentation [17, 122] for enhancing the generalization capability.

We keep the batch size as 4 for character-level supervision in the synthetic dataset with

the learning rate at 10−4.

Stochastic gradient descent and adam optimizer having a weight decay of 0.001

and a momentum of 0.9 is applied. The size of mini-batches is 8 images. The images

are randomly rotated between [−30◦, 30◦] angles precisely. In the presence of blurred

scene images, some text instances will be similar to the background pattern. It is thus

difficult for a network to distinguish and make the training unbalanced, which leads

to slow convergence. We therefore incorporate hard negative mining strategy [17]. We

4.2. Experimental Results 67

train a dataset in two steps. In the first step, we set the negative ratio between the

negatives and positives as 3:1. For the second step, it is modified to 6:1. We use data

augmentation methods [122, 123] and multi-scale training [121] due to the lack of real

samples for fine-tuning. We resize the shorter sides of the input images in multi-scale

training to (600, 800, 1000, 1200, 1400) scale randomly. We also use an input image with

a larger size at the third stage of training to achieve better detection of multi-scale text.

• Interference. We apply a single model in the inference stage to evaluate the datasets,

where scales of the input images is based on the datasets. We provide a predefined

number, i.e., 300 text region proposals in a forward pass, which are utilized to compute

the detection and recognition outputs. Three lexicons, i.e., strong, weak, and generic

dictionaries are used for testing reference [96]. The strong lexicon includes most words

that are present in the image or 100 entries per image. In the weak lexicon, all words

appear in the dataset. The generic dataset consists of 90k words. We choose the

words that are of length three or more in dictionaries. It however excludes signs and

numbers. We select end-to-end and word-spotting models for evaluation. In the end-

to-end model, all the words are recognized accurately, even if a detected string absent

in the dictionary. In case of word-spotting model, we only look for the existence of the

word of the dictionary. Thus, the word-spotting model is lenient by ignoring numbers,

symbols, and words that are of a length less than 3. Our evaluation is performed on a

single scale without referring to any lexicon.

4.2.2 Ablation Study

In this section, we perform ablation studies for detection and recognition of text in-

stances in scene images. We perform a comprehensive set of experiments to explore

different aspects of our network. We conduct all experiments on split 1 of ICDAR

2013, ICDAR 2015, NAST, COCO-Text, MSRA-TD500, and SVT datasets. The stan-

dard metrics precision (P), recall (R), and f-measure (F) are used for evaluation of

68 4.2. Experimental Results

detection accuracy. We perform experimentation to compare our recognition results

depending on strong, weak, and generic lexicons.

• Effect of backbone network. We conduct exhaustive experiments to select a back-

bone network that is rich in spatial information on the ICDAR 2015 dataset with an

optimal number of parameters. We study the impact of MobileNetV2, SSDLite Mo-

bileNetV2+ASPP, MobileNetV2+ASPP+Encoder-Decoder, MobileNetV2+SFP+ Encoder-

Decoder + Deformable layer (Ours), IGCV2 [125], and ShuffleNetV2 [124] as backbone

network on the overall performance (f-measure) of Blurred TextSpotter. Table 4.1 shows

that with an optimal number of training parameters, our backbone model outperforms

other models. We keep the network less deeper in order to limit the number of training

parameters. A deformable layer helps in precise detection.

Table 4.1: Impact of different variations of MobileNetV2, IGCV2, and ShuffleNetV2
as backbone networks on ICDAR 2015 dataset.

Backbone F Flops Params MAdds
(G) (M) (B)

MobileNetV2 [115] 92.7 0.9 3.8 2.9

SSDLite [115] 93.1 0.8 3.5 1.5

MobileNetV2+ASPP (one layer) [115] 93.6 1.3 5.4 6.1

MobileNetV2+ASPP+ Encoder-Decoder 93.8 1.6 6.2 6.3

MobileNetV2+SFP+ Encoder-Decoder 94.1 1.5 6.0 6.2

MobileNetV2+SFP+ Encoder-Decoder +
Deformable layer (Ours)

94.4 1.6 6.1 6.2

MobileNetV2+SFP+ Encoder-Decoder +
Deformable layer (2 layer)

94.4 1.9 6.4 6.4

IGCV2 [125] 91.5 4.8 23.4 10.5

ShuffleNetV2 [124] 91.9 3.1 11.0 8.8

• Impact of SFP layer and Deformable layer. We evaluate the importance of SFP

layer in the proposed network. We also show the effect of different set of dilation rates

and maxpool operation. It is observed from Table 4.2 that the presence of SFP layer

increases the recall measure of the network. Since, text instances are relatively small

in size with respect to the other objects present in the scene images, therefore, the a

SFP layer with dilation rates {1, 2, 3} and a maxpool layer provides a better recall of

4.2. Experimental Results 69

the network.

Table 4.2: Performance comparison on ICDAR 2015 [2] and NAST dataset, where M
stands for maxpool2D, 2× 2, stride = 1.

Methods ICDAR 2015 NAST
Precision Recall F-measure Precision Recall F-measure

BTS (without ASPP) 81.1 73.3 77.2 45.4 40.3 42.8

BTS-(M,1,3,5) 87.3 84.8 85.8 53.6 47.1 50.3

BTS-(M,1,2,4) 86.2 80.6 83.4 55.5 50.2 52.8

BTS-(M,1,2,5) 87.7 83.5 85.2 52.3 46.3 49.3

BTS-(M,1,3,4) 87.9 83.7 85.4 52.8 46.7 49.4

BTS-(1,2,3,4) 90.4 88.9 89.8 56.2 51.6 53.9

BTS-(1,2,3,5) 88.1 85.2 86.7 54.8 49.5 52.2

BTS-(1,2,4,5) 87.6 86.1 86.5 54.2 49.8 52.4

BTS-(1,3,4,5) 86.4 85.8 85.9 53.1 49.9 52.1

Ours (M,1,2,3) 93.9 96.6 94.1 57.5 59.2 58.3

• Impact of size of RoIs in detection module. We evaluate the influence of aspect-

ratios and scales of the RoIs for the detection of scene text instances. Table 4.3 and

Table 4.4 depict that the choice of aspect-ratio and scales in our network shows better

precision for the detection of text instances. This is because we capture both at word

level and text-line level. Therefore, detected text instances are small but long in nature.

Table 4.3: Effect of variation in size of RoI in detection on ICDAR 2013 [3] and NAST
dataset.

Aspect- ICDAR 2013 NAST
ratio Precision Recall F-measure Precision Recall F-measure

1:2, 1:3, 1:5 88.7 87.3 88.4 54.2 53.1 53.6

1:3, 1:6, 1:9 91.3 92.5 91.9 53.9 54.5 54.2

1:2, 1:6, 1:9 89.2 88.6 88.9 52.5 53.8 53.2

1:3, 1:5, 1:7 90.6 89.7 90.1 55.6 54.7 55.1

1:2, 1:5, 1:8 94.7 95.5 94.8 57.5 59.2 58.3

• Impact of Attention module. In the Blurred TextSpotter, the attention mod-

ule consists of spatial and channel-wise attention. We evaluate the influence of each

branch on the overall network, as shown in Table 4.5. We conduct ablation studies

considering the BTS network as the baseline and create four more models. We exclude

70 4.2. Experimental Results

Table 4.4: Effect of variation in scale of RoI in detection on ICDAR 2013 [3] and
NAST dataset.

Scale ICDAR 2013 NAST
Precision Recall F-measure Precision Recall F-measure

4, 8, 16 91.4 90.2 90.8 50.6 48.8 49.4

8, 16, 24 93.5 91.3 92.4 54.2 55.3 54.7

8, 16, 32 94.7 95.5 94.8 57.5 59.2 58.3

16, 24, 32 94.2 93.8 94.0 53.7 52.4 53.0

16, 32, 64 92.8 92.1 92.4 52.3 55.9 54.1

Table 4.5: Impact of different branches of attention module.

Models ICDAR 2013 SVT
Precision Recall F-measure Precision Recall F-measure

BTS-X 91.9 91.4 91.5 82.8 71.1 75.3

BTS-S 93.2 92.9 93.1 85.2 76.4 78.1

BTS-C 94.1 93.1 93.9 86.3 76.8 78.4

BTS-G 94.2 94.1 94.1 85.9 76.9 79.1

Ours 94.7 95.5 94.8 87.9 77.5 79.8

the attention module and name the rest as BTS-X and perform experimentation using

split 1 of ICDAR 2013 and SVT datasets. Similarly, spatial attention is only used in

this model, which is denoted by BTS-S. In the next model, channel-wise attention is

only incorporated. This model is known as BTS-C. In the last model, we only use the

Gaussian softmax normalization, which is indicated by BTS-G.

• Impact of branches in recognition module. The recognition module has three

branches, i.e., GRU, attention module and Bi-LSTM layers. Table 4.6 demonstrates

that all the branches are important for recognition with high accuracy.

Table 4.6: Effect of different branches of recognition module over COCO-Text and
NAST dataset.

GRU Bi-CLSTM Attention Word recognition
Mechanism COCO-Text NAST

✗ ✓ ✗ 53.6 36.2

✗ ✓ ✓ 63.1 45.6

✓ ✓ ✗ 55.7 41.8

✓ ✓ ✓ 69.3 53.4

4.2. Experimental Results 71

• Impact of size of RoIs in recognition module. The aspect-ratios, scales and

number of channels of the RoIs affects the recognition process. With the increase in

number of channels the recognition accuracy increases however it also increases the

computational overhead. Therefore, we maintain a accuracy-cost trade-off, as shown in

Table 4.7. The choice of aspect-ratios and scales taken in the proposed network helps

in precise detection, which in turn enhances the recognition efficiency, as analyzed in

Table 4.8 and Table 4.9.

Table 4.7: Effect of variation in the number of channel in text recognition on ICDAR
2015 [2] dataset.

Number of Params (M) End-to-End Word-Spotting
channel strong weak generic strong weak generic

16 2.83 76.5 77.2 74.6 85.6 83.1 62.8

32 4.54 81.3 83.6 80.2 89.3 86.5 65.6

128 6.21 86.7 89.8 85.4 94.6 92.8 73.9

256 9.67 87.1 86.3 85.3 94.8 90.2 72.1

512 12.89 87.6 86.9 86.4 95.1 91.5 74.3

Table 4.8: Effect of variation in size of RoI in text spotting on ICDAR 2013 [3] dataset.

Aspect- End-to-End Word-Spotting
ratio strong weak generic strong weak generic

1:2, 1:3, 1:5 86.8 87.2 82.7 90.8 87.5 82.4

1:3, 1:6, 1:9 92.5 89.5 84.6 94.4 91.3 85.1

1:2, 1:6, 1:9 87.1 85.3 80.3 92.1 89.6 86.7

1:3, 1:5, 1:7 89.4 87.1 81.8 95.3 92.8 85.3

1:2, 1:5, 1:8 94.1 91.5 88.7 96.4 94.8 88.9

• Impact of different devices. We implement the proposed text spotter on several

smartphones, as shown in Fig. 4.6. The technical specifications, such as processing

speed and memory, are shown in Table 4.10. We use a Monsoon power monitor that

can measure the power consumption of smart devices, alike literature [126]. It is to be

noted from the result that our BTS network is competent with smart devices.

72 4.2. Experimental Results

Table 4.9: Effect of variation in scale of RoI in text spotting on ICDAR 2013 [3]
dataset.

Scale End-to-End Word-Spotting
strong weak generic strong weak generic

4, 8, 16 87.3 85.1 81.5 89.5 86.3 82.5

8, 16, 24 91.2 86.5 83.8 92.7 90.1 86.7

8, 16, 32 94.1 91.5 88.7 96.4 94.8 88.9

16, 24, 32 93.6 89.6 85.2 94.4 93.8 88.8

16, 32, 64 90.5 86.8 84.3 93.1 91.4 87.6

0

20

40

60

80

D1 D2 D3 D4 D5 D6 D7

Po
w

er
(%

)

Devices

ICDAR 2013
ICDAR 2015

MSRA-TD500

COCO-Text
SVT

Figure 4.6: Effect of datasets on power consumption for different devices.

4.2.3 Comparison with State-of-the-Art Results

In this section, we compare our Blurred TextSpotter with the existing methods [1, 17,

38, 94, 96, 99, 102–105, 107, 112] on five different benchmark datasets. We conduct a

comparative study for the parameter count of our network with the state-of-the-art

methods.

• Detection results on different datasets. We compare Blurred TextSpotter with

the recent literature for both detection and recognition on precision, recall, and f-

measure evaluation metrics. We can conclude from the results in Table 4.11 and Ta-

ble 4.12 that accuracy of detection in the case of Blurred TextSpotter is higher than 2%

in terms of f-measure on ICDAR 2013 and ICDAR 2015 datasets in comparison with

the baseline methods. BTS performs better in terms of recall on COCO-Text and SVT

4.3. Summary 73

Table 4.10: Specifications of the smartphones with Adreno-640 GPU that are used for
experimentation.

Smartphone Operating Internal RAM
System Memory

D1 Samsung Galaxy S10+ Android 9 1 TB 12 GB

D2 Asus ROG Phone II Android 9 1 TB 12 GB

D3 Xiaomi Mi 9 Pro 5G Android 10 512 GB 12 GB

D4 Oneplus 7 Pro Android 9 256 GB 12 GB

D5 Google Pixel XL4 Android 10 128 GB 6 GB

D6 LG G8X ThinQ Android 9 1 TB 6 GB

D7 Sony Xperia 5 Plus Android 10 1 TB 6 GB

datasets, as depicted in Table 4.14 and Table 4.15. The proposed spotter outperforms

existing methods in the MSRA-TD500 dataset, as shown in Table 4.13.

• Recognition results on different datasets. The proposed Blurred TextSpotter

accomplish state-of-the-art word spotting accuracy for all three lexicons, as shown in

Table 4.16 and Table 4.17, for ICDAR 2013 and ICDAR 2015 datasets. BTS performs

better than the existing methods for end-to-end text recognition in terms of both strong

and generic lexicons. Table 4.18 depicts that our network provides good results even

for blurred and distorted text instances in COCO-Text and SVT datasets.

• Speed and Model Size. The use of a cost-effective and light-weightrobust backbone

network, region proposal network, and recognition module drastically decreases the

parameter count and the computational overhead. Table 4.19 illustrates the test time

speed in terms of flops, number of training parameters (params), and frames-per-second

(fps). This evaluates the running time complexity.

4.3 Summary

In this paper, a robust solution is proposed for efficient sensing and spotting text in-

stances in blurry scene images. The proposed Blurred TextSpotter uses MobileNetV2

and stacked feature pooling in the encoder-decoder architecture for the backbone net-

work, which is rich in multi-scale contextual information. This mitogate the degra-

74 4.3. Summary

Table 4.11: Performance comparison on ICDAR 2013 [3] dataset for text detection in
scene images.

Methods ICDAR 2013
Precision Recall F-measure

SegLink [17] 87.7 83 85.3

WordSup [37] 93.3 87.5 90.3

LATD [34] 91 77 83

Raghunandan et al. [42] 88.4 66.4 75.8

Tang & Wu [47] 91.1 86.1 88.5

Lyu et al. [35] 93.3 79.4 85.8

FOTS [1] - - 88.2

He et. al. [96] 91 88 90

TextBoxes++ [98] 86 74 80

Mask TextSpotter [104] 94.8 89.5 92.1

ASTS (baseline) [107] - - 91.7

ASTS (weakly) [107] - - 93.5

Text Perceptron (2-stage) [112] 92.7 88.7 90.7

Text Perceptron (end-to-end) [112] 94.7 88.9 91.7

TextNet [128] 93.2 89.3 91.2

Boundary [110] 93.1 87.3 90.1

RRD [36] 88 75 81

Ours 94.7 95.5 94.8

dation problem. We provide spatial and channel-wise attention and also enhances the

intra-class compactness and inter-class separability of features. This minimizes the mis-

classification problem. We incorporate oriented region proposal network for obtaining

text proposals. We proposed an efficient recognition module to text spotting. It is

hardware-efficient and light-weight in nature. We have demonstrated abundant experi-

mental results on several benchmark datasets to show the efficacy of our network. Our

network outperform recent literature in terms of f-measure.

4.3. Summary 75

Table 4.12: Performance comparison on ICDAR 2015 [2] dataset for text detection in
scene images.

Methods ICDAR 2015
Precision Recall F-measure

EAST [15] 83.3 78.3 80.7

SegLink [17] 73.1 76.8 75.0

WordSup [37] 79.3 77 78.1

LATD [34] 87.8 78.1 82.7

Li et. al. [99] 71.6 93.4 81.1

Lyu et al. [35] 94.1 70.7 80.7

FOTS [1] 91 85.1 87.9

Li et. al. [95] 91.4 80.5 85.6

He et. al. [96] 87 86 87.0

TextBoxes++ [98] 87.2 76.7 81.7

TextDragon [105] 92.4 83.7 87.8

Mask TextSpotter [104] 86.6 87.3 87.0

ASTS (baseline) [107] - - 87.8

ASTS (weakly) [107] - - 89.9

Text Perceptron (2-stage) [112] 91.6 81.8 86.4

Text Perceptron (end-to-end) [112] 92.3 82.5 87.1

TextNet [128] 89.4 85.4 87.3

Boundary [110] 89.8 87.5 88.6

RRD [36] 85.6 79 82.2

Ours 93.9 96.6 94.4

76 4.3. Summary

Table 4.13: Performance comparison on MSRA-TD500 dataset.

Methods Precision Recall F-measure

DSRN [65] 87.6 71.2 78.5

GISCA et. al. [30] 86.3 77.1 81.4

East [15] 87.2 67.4 76

RefineText [21] 83.2 80.2 81.7

MSR [58] 87.4 76.7 81.7

OPMP [56] 86 83.4 84.7

Mask-Most Net [52] 85.5 74.1 79.4

Yao et. al. [57] 76.5 75.3 75.9

Lyu et. al. [35] 87.6 76.2 81.5

He et. al. [16] 77 70 74

RRPN [23] 82 69 75

Raghunandan et. al. [42] 67.2 77.2 72.4

Dey et. al. [43] 52 85 65

Khare et. al. [44] 45 53.3 48.8

TextField [49] 87.4 75.9 81.3

Mask TTD [54] 85.7 81.1 83.3

Tian et. al. [24] 84.2 81.7 82.9

PAN [60] 84.4 83.8 82.1

Ours 88.4 87.5 87.9

Table 4.14: Performance comparison on COCO-Text [4] dataset for text detection in
scene images.

Methods COCO-Text
Precision Recall F-measure

Baseline A [4] 83.7 23.3 36.4

Baseline B [4] 89.7 10.7 19.1

Baseline C [4] 18.5 4.7 7.4

EAST [15] 50.4 32.4 39.5

TextBoxes++ [98] 55.8 56 55.9

MaskTextSpotter [104] 66.8 58.3 62.3

LATD [34] 74 51 61

Cheng et. al. [45] 60 33 42

Cheng & Wang [130] 48 38 42

Boundary [110] 59 67.7 63

RRD [36] 38 34 36

Yao et al. [57] 43.2 27.1 33.3

Lyu et al. [35] 69.9 26.2 38.1

WordSup [37] 45.2 30.9 36.8

Ours 89.7 68.1 78.2

4.3. Summary 77

Table 4.15: Performance comparison on SVT [5] dataset for text detection in scene
images.

Methods SVT
Precision Recall F-measure

EAST [15] 50.3 32.4 39.4

SegLink [17] 30.2 42.4 35.7

Raghunandan et al. [42] 60.4 68.7 64.2

Tang & Wu [47] 54.1 75.8 63.1

FCRNall + multi-filt [8] 26.2 26.7 27.4

He et al. [46] 87 73 79

Dey et al. [43] 55 68 61

Tang & Wu [48] 58.8 76.2 66.4

TextBoxes [97] 67.2 60.8 63.8

Khare et al. [44] 41.6 44.3 42.9

Ours 87.9 77.5 79.8

Table 4.16: Performance comparison on ICDAR 2013 datasets for the recognition.

ICDAR 2013
Methods End-to-End Word-Spotting

strong weak generic strong weak generic

Li et. al. [99] 90.2 88.9 84.5 95 93.7 88.7

FOTS [1] 88.8 87.1 80.8 92.7 90.7 83.5

MLTS (spatial atten-
tion) [101]

88 85 72 - - -

MLTS (channel-wise atten-
tion) [101]

87 84 70 - - -

He et. al. [96] 91 89 86 93 92 87

Deep TextSpotter [94] 89 86 77 92 89 81

TextBoxes++ [98] 93 92 85 96 95 87

TextBoxes [97] 91 89 84 94 92 87

Mask TextSpotter [104] 93.3 91.3 88.2 92.7 91.7 87.7

ASTS (baseline) [107] 90.5 89.2 83.6 94.4 93.1 86.5

ASTS (weakly) [107] 92.8 91.5 85.9 95.9 94.7 88.5

Boundary [110] 88.2 87.7 84.1 - - -

Text Perceptron (2-
stage) [112]

90.8 90 84.4 93.7 93.1 86.2

Text Perceptron (end-to-end)
[112]

91.4 90.7 85.8 94.9 94 88.5

TextNet [128] 89.7 88.8 82.9 94.5 93.4 86.9

Ours 94.1 91.5 88.7 96.4 94.8 88.9

78 4.3. Summary

Table 4.17: Performance comparison on ICDAR 2015 datasets for the recognition.

ICDAR 2015
Methods End-to-End Word-Spotting

strong weak generic strong weak generic

Li et. al. [99] 90.2 88.9 84.5 95 93.7 88.7

FOTS [1] 88.8 87.1 80.8 92.7 90.7 83.5

MLTS (spatial atten-
tion) [101]

88 85 72 - - -

MLTS (channel-wise atten-
tion) [101]

87 84 70 - - -

He et. al. [96] 91 89 86 93 92 87

Deep TextSpotter [94] 89 86 77 92 89 81

TextBoxes++ [98] 93 92 85 96 95 87

TextBoxes [97] 91 89 84 94 92 87

Mask TextSpotter [104] 93.3 91.3 88.2 92.7 91.7 87.7

ASTS (baseline) [107] 90.5 89.2 83.6 94.4 93.1 86.5

ASTS (weakly) [107] 92.8 91.5 85.9 95.9 94.7 88.5

Boundary [110] 88.2 87.7 84.1 - - -

Text Perceptron (2-
stage) [112]

90.8 90 84.4 93.7 93.1 86.2

Text Perceptron (end-to-end)
[112]

91.4 90.7 85.8 94.9 94 88.5

TextNet [128] 89.7 88.8 82.9 94.5 93.4 86.9

Ours 94.1 91.5 88.7 96.4 94.8 88.9

Table 4.18: Performance comparison on COCO-Text [4] and SVT [5] dataset for text
recognition in scene images.

COCO-Text SVT
Methods End-to-End Spotting

strong weak generic None 50

Baseline A [4] 68.4 28.3 40 - -

Baseline B [4] 54.4 9.9 16.8 - -

Baseline C [4] 4.1 1.6 2.3 - -

Mask TextSpotter [104] 65.8 37.3 47.6 - -

FCRNall + multi-filt [8] - - - 55.7 67.7

TextBoxes [97] - - - 64 84

Jaderberg et al. [93] - - - 53 76

Li et. al. [95] - - - 66.2 84.9

TextBoxes++ [98] - - - 64 84

Neumann & Matas [131] - - - - 68.1

Alsharif et al. [132] - - - - 48

Jaderberg et al. [92] - - - - 56

Wang et al. [133] - - - 46

Ours 70.1 65.4 69.3 67.6 85.8

4.3. Summary 79

Table 4.19: Test time speed in terms of on FLOPS, number of training parameters,
and frames per second (FPS) on ICDAR 2015 dataset for detection (D), recognition
(R), or spotting (S).

Methods Flops (G) Params (M) fps D/R/S

FOTS [1] 9.997 34.98 9.0 S

EAST [15] 4.685 24.1 13.2 D

E2E-MLT [102] 2.946 4.7 - R

OctShuffleMLT [103] 1.525 4.8 - R

OctShuffleMLT [103]+E2E-MLT [102] 0.829 1.6 - R

Craft [38] 10.239 20.8 - D

Li et. al. [99] - - 3.7 S

Deep TextSpotter [94] - - 9 S

Ours 1.15 6.21 23.4 S

