Contents

Li	st of	Figure	es	xi
Li	st of	Table	5	xvi
\mathbf{Li}	st of	\mathbf{Symb}	ols	xvii
Li	st of	Abbre	eviations	xix
P	refac	е		xxi
1	Intr	oducti	on	1
	1.1	Bench	mark Datasets	4
	1.2	Objec	tives of the Research Work	6
	1.3	Contri	butions of the Thesis	8
	1.4	Applie	eation Scenarios	10
		1.4.1	Organization of the Thesis	11
2	Rela	ated w	ork	13
	2.1	Scene	Text Detection	13
	2.2	Scene	Text Recognition	17
	2.3	Scene	Text Spotting	19
	2.4	Motiv	ation	21
3	Clu	ttered	TextSpotter	23
	3.1	Propo	sed Architecture	25
		3.1.1	Backbone Network	26
		3.1.2	Oriented Region Proposal Network	28
		3.1.3	Context Encoding and Refinement Module	30
		3.1.4	Inter-class Interference Problem	33
		3.1.5	Recognition Module	34

	3.2	Exper	imental Results		38
		3.2.1	Ablation Study		40
		3.2.2	Comparison with State-of-the-Art Results		44
	3.3	Summ	nary		47
4	Blu	rred T	extSpotter		53
	4.1	Propo	sed Architecture		55
		4.1.1	Backbone Network		56
		4.1.2	Context Aggregation Attention (CAA) module		58
		4.1.3	Detection Module		61
		4.1.4	Recognition Module		63
	4.2	Exper	imental Results		65
		4.2.1	Implementation Details		65
		4.2.2	Ablation Study		67
		4.2.3	Comparison with State-of-the-Art Results		72
	4.3	Summ	nary		73
5	Fair	nted T	extSpotter		81
	5.1	Propo	sed Architecture		83
		5.1.1	Semantic Edge Supervised Backbone Network		84
		5.1.2	Bi-modal Context Encoding		85
		5.1.3	Localization-aware Oriented Region Proposal Network $\$		88
		5.1.4	Miss-classification Problem		91
		5.1.5	Recognition Module		91
	5.2	Exper	imental Results		94
		5.2.1	Implementation Details		95
		5.2.2	Ablation Study		97
		5.2.3	Comparison with State-of-the-Art Results $\ldots \ldots \ldots$		102
	5.3	Summ	nary		104
6	NA	ST dat	taset for Multilingual Arbitrary-shaped Scene Text Sp	ottin	g
	(\mathbf{M})	AST)			109
	6.1	Propo	sed Architecture		110
		6.1.1	Text Mask Computation		110
		6.1.2	Learnable Polygon Non-Maximum Suppression (LP-NMS)		113
		6.1.3	multilingual Text Recognition		115
		6.1.4	NAST Dataset Creation		118

		6.1.5	Autonomous Learning with GT Generation	119
	6.2 Experimental Results		120	
		6.2.1	Impact of Recognition Module for Word Recognition and Script	
			Identification	121
		6.2.2	Comparison with the state-of-the-art $\ldots \ldots \ldots \ldots \ldots$	122
		6.2.3	NAST dataset statistics	122
		6.2.4	Evaluation of Learning using GT Generation	123
	6.3	Summ	ary	124
7	Con	clusio	n and Future Work	129
References 1			132	
Li	List of Publications 1			146

List of Figures

1.1	Exemplification of Problem 1	7
1.2	Exemplification of Problem 2	8
1.3	Exemplification of Problem 3	8
1.4	Exemplification of Problem 4	9
3.1	Illustrating the necessity of Cluttered TextSpotter in scene text spotting.	
	of column (a) using baseline [1] and our network. Cluttered TextSpotter can spot oriented text instances in the scene images with a cluttered	94
2.0		24
3.2	The architecture of the proposed Cluttered TextSpotter	25
3.3	Architecture of the backbone network	28
3.4	Architecture of the oriented region proposal network.	29
3.5	Architecture of the context encoding and refinement module	31
3.6	Architecture of the recognition module	35
3.7	Effect of datasets on power consumption for different devices. \ldots .	46
4.1	Illustration of the necessity of Blurred TextSpotter. Columns (b) and (c) are the recognized text instances in the scene images of column (a) using baseline [1] and our network. It can spot oriented text instances	
	in the blurry scene images.	54
4.2	Overall Architecture of Proposed Network	55
4.3	Architecture of backbone network	57
4.4	Architecture of context aggregation attention module	59
4.5	Architecture of recognition module.	63
4.6	Effect of datasets on power consumption for different devices.	72

5.1	Illustration of natural images (first row) representing the necessity of		
	Fainted TextSpotter. Second and third rows are the recognized scene text		
	instances using FOTS [1] (baseline) and the proposed network, respectively	82	
5.2	Overall architecture of Fainted TextSpotter.	84	
5.3	Architecture of the backbone network.	84	
5.4	Architecture of bi-modal context encoding module	86	
5.5	Illustration of Fused Dilated Convolutions	87	
5.6	(a) The line chart about the counting number of components in different		
	orientations. (b) The red line correspond to center of the line chart	89	
5.7	Architecture of the proposed recognition module.	92	
5.8	Effect of devices on power consumption for different datasets. \ldots .	99	
6.1	Illustration of natural images (first row) representing the necessity of		
	our multilingual text spotter. Second row is the recognized scene text		
	instances by the proposed network	110	
6.2	Illustration of natural images (first row) representing the necessity of our		
	network for detecting curve text instances. Second row is the recognized		
	scene text instances by the proposed network	111	
6.3	Overall architecture of arbitrary shaped text spotter	111	
6.4	Illustration of IoU values of an arbitrary-shaped text mask	112	
6.5	Illustration of text mask prediction in mask branch	113	
6.6	The architecture of learnable polygon maximal suppression model. Here,		
	(i, j, z) in a mask represents the resolution (i, j) and depth (z) of the		
	feature map produced in that mask	114	
6.7	Architecture of the proposed recognition module.	115	
6.8	Statistics of NAST dataset.	127	

List of Tables

3.1	Effect of different variations of backbone network over ICDAR 2015 dataset.	41
3.2	Effect of variation in dilation rate on ICDAR 2015 $\left[2\right]$ and NAST dataset.	41
3.3	Effect of different branches of context encoding and refinement module.	42
3.4	Effect of different softmax functions on COCO-Text dataset	42
3.5	Effect of variation in size of RoI in detection on ICDAR 2013 [3] and	
	NAST dataset.	43
3.6	Effect of variation in scale of RoI in detection on ICDAR 2013 [3] and	
	NAST dataset.	43
3.7	Effect of different branches of recognition module on ICDAR 2015 and $% \mathcal{A} = \mathcal{A} = \mathcal{A}$	
	NAST dataset.	44
3.8	Effect of variation in the number of channel in text spotting on ICDAR	
	2015 [2] dataset	44
3.9	Effect of variation in size of RoI in text spotting on ICDAR 2015 [2]	
	dataset.	45
3.10	Effect of variation in scale of RoI in text spotting on ICDAR 2015 [2]	45
0.11		45
3.11	Specifications of the smartphones with Adreno-640 GPU that are used	46
9 10	Derformance comparison on SVT dataset	40
0.12 0.10	Performance comparison on SV1 dataset	41
3.13	Performance comparison on MSRA-1D500 dataset.	48
3.14	Performance comparison on COCO-Text dataset.	49
3.15	Performance comparison on ICDAR 2013 [3] and ICDAR 2015 [2] dataset.	50
3.16	Performance comparison on SVT dataset	51
3.17	Performance comparison on ICDAR 2013 dataset for the recognition. $% \mathcal{A} = \mathcal{A} = \mathcal{A}$.	51
3.18	Performance comparison on ICDAR 2015 dataset for the recognition. $% \mathcal{A} = \mathcal{A} = \mathcal{A}$.	52

3.19	Test time speed in terms of FLOPS, number of training parameters, and frames per second (FPS) on ICDAR 2015 dataset for detection (D),	
	recognition (R), or spotting (S). \ldots \ldots \ldots \ldots \ldots \ldots	52
4.1	Impact of different variations of MobileNetV2, IGCV2, and ShuffleNetV2 $$	
	as backbone networks on ICDAR 2015 dataset.	68
4.2	Performance comparison on ICDAR 2015 [2] and NAST dataset, where	
	M stands for $maxpool2D, 2 \times 2$, stride = 1	69
4.3	Effect of variation in size of RoI in detection on ICDAR 2013 [3] and	
	NAST dataset.	69
4.4	Effect of variation in scale of RoI in detection on ICDAR 2013 [3] and	
	NAST dataset.	70
4.5	Impact of different branches of attention module	70
4.6	Effect of different branches of recognition module over COCO-Text and	
	NAST dataset.	70
4.7	Effect of variation in the number of channel in text recognition on ICDAR	
	2015 [2] dataset	71
4.8	Effect of variation in size of RoI in text spotting on ICDAR 2013 [3]	
	dataset	71
4.9	Effect of variation in scale of RoI in text spotting on ICDAR 2013 [3]	
	dataset.	72
4.10	Specifications of the smartphones with Adreno-640 GPU that are used	
	for experimentation.	73
4.11	Performance comparison on ICDAR 2013 [3] dataset for text detection	
	in scene images.	74
4.12	Performance comparison on ICDAR 2015 [2] dataset for text detection	
	in scene images.	75
4.13	Performance comparison on MSRA-TD500 dataset.	76
4.14	Performance comparison on COCO-Text [4] dataset for text detection in	
	scene images.	76
4.15	Performance comparison on SVT [5] dataset for text detection in scene	
	images	77
4.16	Performance comparison on ICDAR 2013 datasets for the recognition.	77
4.17	Performance comparison on ICDAR 2015 datasets for the recognition.	78
4.18	Performance comparison on COCO-Text [4] and SVT [5] dataset for text	
	recognition in scene images.	78

4.19	Test time speed in terms of on FLOPS, number of training parameters,	
	and frames per second (FPS) on ICDAR 2015 dataset for detection (D) , recognition (R) or spotting (S)	70
	The recognition (iii), of spotting (5). \ldots \ldots \ldots \ldots \ldots \ldots	19
5.1	Effect of different variations of MobileNetV2, ShuffleNetV2 and IGCV2 $$	
	as backbone networks on ICDAR 2015 dataset	97
5.2	Effect of context encoding on COCO-Text and SVT datasets	98
5.3	Effect of different softmax functions on COCO-Text Dataset	98
5.4	Specifications of the smartphones with Adreno-640 GPU that are used	
	for experimentation	99
5.5	Effect of different modules of recognition branch over COCO-Text and	
	NAST dataset.	100
5.6	Effect of variation in size of RoI in detection on ICDAR 2013 [3] and	
	NAST dataset.	100
5.7	Effect of variation in scale of RoI in detection on ICDAR 2013 [3] and	
	NAST dataset.	100
5.8	Effect of variation in the number of channel in text recognition on ICDAR	
	2015 [2] dataset	101
5.9	Effect of variation in size of RoI in text spotting on ICDAR 2015 [2]	
	dataset.	101
5.10	Effect of variation in scale of RoI in text spotting on ICDAR 2015 [2]	
	dataset.	101
5.11	Performance comparison on ICDAR 2013 [3] dataset for text detection	
	in scene images	102
5.12	Performance comparison on ICDAR 2015 [2] dataset for text detection	
	in scene images	103
5.13	Performance comparison on MSRA-TD500 dataset.	104
5.14	Performance comparison on COCO-Text dataset for detection of texts	
	in scene images	105
5.15	Performance comparison on SVT dataset for detection of texts in scene	
	images	105
5.16	Performance comparison on ICDAR 2015 dataset for word spotting and	
	end-to-end recognition of texts in scene images.	106
5.17	Performance comparison on COCO-Text and SVT datasets for text recogni	ition
	accuracy and word spotting in scene images	106
5.18	Test time speed in terms of on FLOPS, number of training parameters,	
	and frames-per-second (fps) on ICDAR 2015 dataset.	107

6.1	Effect of different modules of recognition branch over RRC-MLT 2017	
	and NAST datasets for word recognition	122
6.2	Effect of different modules of recognition branch over RRC-MLT 2017	
	and NAST datasets for script identification.	122
6.3	Curve text detection performance on Total-Text [6] dataset. \ldots .	123
6.4	Performance comparison on RRC-MLT 2017 dataset for detection of text $% \mathcal{A}$	
	in scene images	124
6.5	Performance comparison on RCTW 2017 datasets for detection of text	
	in scene images	125
6.6	Performance comparison on RRC-MLT 2017 dataset for text recognition	
	and script identification in scene images	125
6.7	Performance comparison on SCUT-CTW1500 [7] for curve text detection	
	in scene images	126
6.8	Curve text recognition performance on Total-Text [6] dataset. \ldots .	126
6.9	Performance on Our Dataset with GT Learning	126

List of Symbols

Symbol	Description
r	Region proposal
h, \mathcal{H}	Height
w, \mathcal{W}	Width
Ι	Input Image
ζ, C	Number of channels
f	Forget gate
\mathfrak{W}, \mathbf{b}	Learnable parameters
\mathcal{P}, \mathbf{CP}	Conditional probability
x	x- Coordinates
y	y- Coordinates
0	Hadamard product
*	Convolution operation
$\sigma(\cdot)$	Sigmoid function
m	Input modulation gate
i	Input gate
0	Output gate
h	Hidden state
$lpha_t$	Weight vector
\mathbf{v}	Visual features tensor
$SP(\cdot)$	Spatial pooling
$\mathfrak{h}_{t-1}, \mathbf{G}_{t-1}$	Previous hidden state
t-th	Timestep
RF	Receptive field
$\delta(\cdot)$	Softmax function
У	Character classes

Abbreviations

Abbreviation	Description
CTS	Cluttered TextSpotter
CNN	Convolutional Neural Network
ASPP	Atrous spatial pyramid pooling
ROI	Region of- interest
RRT	Ring radius transform
ReLU	Rectified Linear Unit
EOS	End-of-sequence symbol
CDF	Cumulative density function
ITS	Intelligent Transportation Systems
DAS	Driver-Assistance System
DPP	Dilated pyramid pooling
CAA	Context Aggregation Attention
GRU	Gated recurrent unit
LSTM	Long-short term memory
NMS	Non-maximal suppression
CP	Conditional probability
IoU	Intersection-over-union
maxpool	Maxpool Operation
FTS	Fainted TextSpotter
BTS	Blurred TextSpotter
FCN	Fully Convolutional Network
SSD	Single Shot Detector
FPN	Feature Pyramid Network
SFP	Stacked Feature Pooling
GT	Ground Truth