
Chapter 5

Link Prediction in Complex Networks

Based on Significance of Higher-Order

Path Index (SHOPI)

While network analysis is almost 70 years old, less studies focus on the structure of paths

in complex networks. When humans or other entities traverse a complex network, they

usually do not take the shortest path, but they also do not move randomly. The structure

of these paths is an important research area where few works are available. This chapter 1

studies the path feature of social networks.

5.1 Introduction

Earlier, we have studied about several structure or topology based link predictors in the

literature review section. Structural similarity-based methods extract information about

the underlying structures or topology range from local to global, including quasi-local

1Published in Physica A: Statistical Mechanics and its Applications
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(more than local and less than global information). Some of which are the

neighborhood-based methods (i.e., Common Neighbors (CN) [56], Jaccard [62],

Adamic/Adar (AA) [58], Resource Allocation (RA) [59], Preferential attachment (PA)

[57], etc.) that use local information, path-based methods (i.e., Katz index [55], Inverse

path distance [17] Average commute time (ACT) [81], PageRank [40],

Leicht-Holme-Newman Index [70], Random walk with restart (RWR) [72], etc.), which

explore global information of the underlying network. Quasi-local methods employ as

much information as global methods and computationally efficient as the local methods.

So these approaches are trade-offs between local and global methods. Example of such

methods include local path index (LP) [53], local random walk (LRW) [53], superposed

random walk (SRW) [53], etc.

From the viewpoint of paths, the existing works can be categorized in the following

taxonomy shown in Figure 5.1. Initial categorization includes deterministic and random

walk approaches where random walks are used to find the next vertex in the path. The

next level hierarchy (categorization) states about the contribution of paths (homogeneous

and heterogeneous) to the similarity score computation. Homogeneous methods include

the summation of the total number of paths with equal contributions, e.g., CN, LP, Katz,

etc. Heterogeneous methods, on the other side, incorporates different contributions of

different path based on some priority or another scheme, e.g., AA, RA, Significant Path

(SP) [281], Effective Path (EP) [282], etc. Earlier work [282] models the influence

between two nodes as the connectivity of paths between them where the connectivity of

a path is defined as the product of transfer probability of each link involved in the path.

Further, [281] proposed an index based on the heterogeneity of paths where the larger

score is assigned to the node pair having lower degree intermediate nodes in the smaller

path (they called such paths as significant).

The proposed work viz., SHOPI falls into the heterogeneous category where different

common neighbors of the node pair are penalized based on their connections to other
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nodes so that information leaks through them can be minimized. Moreover, paths of

longer lengths are also penalized but lightly compared to Katz and LP.

Path-based link prediction approaches 

Deterministic
approaches

Heterogeneous
contribution of paths

Homogeneous
contribution of paths
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FIGURE 5.1: Path-based approaches to link prediction

The major contribution of this work is as follows

• Motivated by the resource allocation process in networks, this work employs a

higher-order path index as a discriminating feature and find missing links in

complex networks.

• An iterative algorithm viz., SHOPI (Link prediction based on S̄ignificance of

H̄igher Ōrder P̄ath Īndex) and computational complexity are included in the work.

• This work is experimentally evaluated on twelve networks from different areas to

show its performance.

• Effects of higher-order paths and different values of the parameter ψ have also

experimentally evaluated.
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The common neighbor approach can be viewed with another angle called path-based

method, i.e., “friends of a friend is also a friend” can be realized using a path2 of length

2. Several studies are available in the literature that exploits the path as a discriminating

feature for link prediction. The path can be of varying length, and several paths may

exist between two nodes. These path features can be utilized to compute the similarity

score between two nodes or as features in a machine learning framework. For example,

negated shortest path (NSP) [17], Katz [55], LP index [53], SR [84], PR [40], etc. Katz

index is based on the ensemble of all paths and directly sums these paths to compute the

similarity between two nodes. This index incorporates matrix inversion for

implementation, so it is quite complex and realized for small networks. LP considers

path up to length 3 when degeneracy states need to be resolved in the calculation. As this

index does not consider inverse matrix computation, it is somehow simpler to compute.

Negated shortest path or inverse path distance incorporates the shortest paths between

two nodes to compute similarity and takes O(|E|logn) time using Dijkstra’s algorithm.

These methods, based on ensemble of paths, are deterministic. Random walk based

methods that collect paths information viz., SR, PR, hitting time, etc., are also available

[17] in the literature. Recent works [54, 88, 89] argue that features extracted from paths

of length 3 are more relevant than 2 length paths. Kovàcs et al. [54] show relevancy of 3

length path features in protein-protein interaction (PPI) networks extensively. They

proposed a degree normalized similarity method based on 3 path length, namely the path

of length 3 (L3), and showed a significant accuracy improvement in PPI. Pech et al. [88]

proposed a theory showing the number of 3-hop path to be a simple and degenerated

index induced from a more complex linear optimization. Meanwhile, Muscoloni et al.

[89] introduced Cannistraci-Hebb (CH) network automata and local community

paradigm (LCP) [68] in a framework and proposed a novel method called CH2-L3.

CH2-L3 is based on paths of length 3 that maximize the internal community links and

minimizing external links. They showed a significant improvement of prediction

2A path is a sequence of links connecting a sequence of nodes in the network. The path length is the
number of links in the path.
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accuracy on resource allocation network automata both in L2 (path length 2) and L3

(path length 3) in several networks.

5.2 Proposed work

Evidence suggests that most real networks especially, social networks, show three

consistent topological properties, namely, small-world phenomenon [28, 29], clustering

[11, 12] and scale-free properties [9]. Their corresponding features are the path,

clustering coefficient, and degree distribution. In this work, we exploit the path features

of different lengths to compute the similarity score between two nodes of the underlying

network. This work is based on the resource allocation process [283] in networks, i.e., a

sender (first node) sends a resource or information to a destination (second node) either

through a direct connection or through common neighbors. In our link prediction

framework, the information flows through the common neighbors. The amount of

resources received by the receiver represents the similarity between two nodes (sender

and receiver). We employ this concept and compute two path length score.

Our work is based on the idea of the resource allocation process wherein the amount of

information received by the destination node derives the similarity between them. We try

to maximize the information received at the destination node by restricting the

information leaks through their common neighbors and hence maximizing the similarity

between these two nodes. Figure 5.2 shows the spreading and receiving of resources

(information) through common neighbors. The chance of leaking information through

the common neighbors of (p,q) is higher than that of (x,y) because more connections

are emerging from the common neighbors of (p,q) compared to that of (x,y). In other

words, the amount of information (I2 + I4) received by the node y is higher than the

information (I6 + I8) received by the node q. This results in the node pair (x,y) to have

more similarity score than the node pair (p,q).
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Significance of the path index of length 2 The above concept can be encoded by the

social theory called degree of the common neighbors. Mathematically, the similarity score

having 2 path length between any node pair (x,y) can be expressed as

S
′
(x,y) = ∑

z∈Γx∩Γy

1
kz
, (5.1)

where kz is degree of the node z.
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FIGURE 5.2: Path length-2 score calculation: the score between x and y, S(x,y)= 1
3 +

1
3 =

2
3 , and the score between p and q, S(p,q) = 1

4 +
1
4 = 1

2 .
Clearly, S(x,y)> S(p,q) because the common neighbors of the node pair (x,y) leaks less

information compared to that of the node pair (p,q).

Significance of path index of higher order 3 Every path of length l > 2 can be

decomposed into path of length (l− 1) and an edge connected to it. For example, all

possible paths of length 3 (i.e., x− i1 − cn1 − y, x− cn1 − i1 − y, and x− i1 − i2 − y)

3In this paper, higher and longer are used interchangeably
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between the two nodes x and y is shown in the Figure 5.3, where i1 and i2 are the two

intermediate nodes other than common neighbors in the paths and cn1 is a common

neighbor between these two nodes. Now, the likelihood score of two nodes being

connected is the product of the likelihood score of path (l−1) and the significance score

of the constituent edge. Mathematically, longer path score can be expressed as

S(x,y) =
lmax

∑
l=3

f1× f2×ψ
(l−2), (5.2)

where f1 is the significance score of the constituent edge and f2 is the score of previous

iteration. Here, lmax is a constant equal to 6 (due to small-world behavior of most social

networks) and ψ is penalization parameter that penalizes longer paths. The significant

score is computed from the 2 path length score only for the first iteration (i.e. for 3 path

length score computation). In other words, The equation 5.2 has been used to calculate

the score of the paths of length greater than 2 with the help of 2 length path score. For

example, 3 length path can be decomposed into two parts: first an edge and second a path

of length 2. Though, we can compute score of 2 length path using equation 5.1. Next, we

have to compute the edge score. f 1 in the equation 5.2 captures edge score calculation

and f 2 captures the 2 path length score computed from previous iteration.

The computational procedure for longer paths can be well understood with the help of the

Figure 5.3. Let i1 and i2 be two intermediate nodes other than common neighbors (cn1,

cn2, cn3, and cn4) of the node pair (x,y). The longer path equation (i.e. equation 5.2)

contains three parts; f1, f2, and penalization function ψ . Three possible paths of length 3

are shown in the figure. f1 is the significance score (computed from the two length path

score only for the first time) of the edges x− i1 of the leftmost and the rightmost figure and

x− cn1 of the middle figure. The second part f2 is the score of 2 path length of previous

iteration as shown by paths i1− cn1− y (the leftmost), cn1− i2− y (the middle one), and

i1− i2− y in the Figure 5.3. The cumulative effects ( f1× f2) of the significance score f1

and two path length score f2 results in the three path length score. Further, more higher

length score can be computed in the similar way iteratively, as shown in the Algorithm
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2. The algorithm 2 shows an iterative procedure to compute missing links in the complex
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FIGURE 5.3: Three possible paths (blue colored edges) between the node pair (x,y)
during the computation of path length-3 score.

networks.

Algorithm description The input to the algorithm is a graph (or network), and output is

the matrix with the score of all node pairs. This algorithm mainly consists of the following

phase; Initialization, computation, and updation. The initialization phase assigns the two

matrices score and prev with the two path length score between every node pair of the

network (Line 1−6). The computation phase of the algorithm iteratively computes scores

for higher path length based on the two length path score matrices (Line 7−14). Finally,

the updation phase iteratively updates these two matrices based on the score computed in

the previous phase (Line 15−18).
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Algorithm 2: SHOPI
Input: Graph G(V,E)
Output: Score matrix scoren×n of size n×n

1 Computation of 2 path length score
2 prevn×n = scoren×n← 0 . Initialization phase
3 foreach Node pair (i, j) ∈ G do
4 z←CNi, j . z is the common neighbor of (i, j)
5 scorei, j← 1

kz
. kz is the degree of the node z

6 previ, j← scorei, j

7 Computation of higher path length score . Computation phase
8 for Path length l ∈ (lmax−2) do
9 tempn×n← 0 . Initialization of temp matrix

10 foreach Node pair (i, j) ∈ G do
11 foreach Node neighbour Ni of i do
12 f1← scorei,Ni

13 f2← prevNi, j

14 tempi, j+= f1× f2×ψ(l−2) . ψ is the penalization parameter

15 foreach Node pair (i, j) ∈ G do
16 scorei, j = scorei, j + tempi, j
17 . Updation phase
18 previ, j = tempi, j

19 return The Score matrix; scoren×n

5.3 Experimental study

5.3.1 Evaluation metrics

The link prediction problem is treated as a binary classification task [63], so most of the

evaluation metrics of any binary classification task can be used in link prediction

evaluation. The evaluation of a binary classification task having two classes can be

represented as a confusion matrix [180], as given in Figure 5.4.

In the confusion matrix,

. True Positive (TP): The positive data item (Link Available) predicted as positive

(Predicted).
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FIGURE 5.4: Confusion Matrix

. True Negative (TN): The negative data item (Link Not Available) predicted as

negative (Not Predicted).

. False Positive (FP): The negative data item (Link Not Available) predicted as

positive (Predicted).

. False Negative (FN): The positive data item (Link Available) predicted as negative

(Not Predicted).

Based on the confusion matrix, several metrics can be derived as follows [180].

True Positive Rate (TPR)/Recall/Sensitivity

T PR =
#T P

#T P+#FN
. (5.3)

False Positive Rate (FPR)

FPR =
#FP

#FP+#T N
. (5.4)

True Negative Rate (TNR)/Specificity

T NR =
#T N

#T N +#FP
. (5.5)

Precision =
#T P

#T P+#FP
. (5.6)
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In the above equations, # represents “the number of”.

Our approach is evaluated on two metrics viz., area under the ROC curve (AUROC) [52,

182] and average precision [180].

Area under the Receiver Operating Characteristics Curve (AUROC). An roc curve is

a plot between the true positive rate (sensitivity) on the Y-axis and the false positive rate

(1-specificity) on the X-axis. The true positive rate and false positive rate can be evaluated

using equation 5.3 and 5.4 respectively. The area under the roc curve [182] is a single

point summary statistics between 0 and 1 that can be computed using the trapezoidal rule

which sums all the trapezoids under the curve. The value of the AUROC of a predictor

should be greater than 0.5, which is the value of a random predictor, i.e., higher the value

of AUROC, better the performance of the predictor.

Average Precision (AP). This metric is also a single point summary value computed

based on varying threshold4 values of recall. The average precision value is equal to the

precision averaged over all values of recall between 0 and 1, i.e.,

AP =
∫ 1

r=0
p(r)dr,

where p is the precision at different threshold value of recall r.

Practically, integral is approximated to sum over the precision at each threshold value,

multiplied by the change in recall i.e.,

AP =
R

∑
k=1

p(k)4r(k), (5.7)

where4r(k) is the change in recall on the set R of different threshold values.

4https://sanchom.wordpress.com/tag/average-precision/
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5.3.2 Datasets description

This work used twelve network datasets from four different fields (viz., collaboration

networks, social networks, citation networks, and biological networks) to study the

performance of our approach. Jazz, Netscience, Ca-GrQc, and Ca-HepTh are

collaboration networks, Dolphins, Political blogs, Facebook, and Twitter are social

networks. Smagri, Cora belong to citation networks and Protein-protein interaction

(PPI), Celegansneural belongs to biological networks.

Jazz5 [178] is the collaboration network of jazz musicians where each musician

corresponds to a node, and an edge between two nodes shows that the two musicians

have played music together in a band. Netscience6 [179] is a coauthorship network of

scientists working on network theory and experiment compiled by Newman in 2006.

Ca-GrQc7 and Ca-HepTh4 are collaboration networks of arXiv General Relativity and

High Energy Physics Theory, respectively. Dolphins3 [175] is an undirected social

network of 62 bottlenose dolphins in a community living off Doubtful Sound, New

Zealand. Political blogs3 [273] is a directed network of hyperlinks in Political blogs

leaning towards the conservatives and the democrats preceding US election 2004.

Facebook4 [284] is social network of 4039 user profiles and network data consisting of

193 circles (i.e. friend-lists) extracted from 10 ego-networks. Twitter2 is a directed

network where each node corresponds to a twitter user, and each directed edge from user

A to user B represents that the user A mentioned the user B in a tweet using the

“@username”. SmaGri8 [285] is a citation network from Garfield collection produced by

HistCite software. The network is the result of searches in Web of Science. Cora2 [286]

is also a directed citation network where a node represents scientific paper, and a directed

edge from A to B represents that the paper A cites the paper B.

Protein-protein-interaction9 (PPI) [274] is a biological network of proteins in a cell

5http://konect.uni-koblenz.de/networks/
6http://www-personal.umich.edu/ mejn/netdata/
7https://snap.stanford.edu/data/
8http://vlado.fmf.uni-lj.si/pub/networks/data/
9https://icon.colorado.edu/#!/networks
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TABLE 5.1: Topological information of real-world network datasets

Class Network |V | |E| 〈D〉 〈K〉 〈C〉 r H

Collaboration networks Jazz 198 2742 2.235 27.697 0.620l 0.020 1.395
Netscience 1589 2742 5.823 3.451 0.878 0.461 2.010
Ca-GrQc 5242 14496 6.049 5.531 0.687 0.659 3.051
Ca-HepTh 8361 15751 7.025 3.768 0.636 0.293 2.305

Social networks Dolphins 62 159 3.302 5.129 0.258 -0.043 1.326
Political blogs 1490 16718 2.738 22.44 0.361 -0.221 3.621
Facebook 4039 88234 3.693 43.691 0.617 0.063 2.439
Twitter 5182 84851 3.028 32.748 0.295 -0.192 4.083

Citation networks SmaGri 1059 4917 2.981 9.286 0.349 -0.192 4.083
Cora 2708 5278 6.310 3.898 0.293 -0.065 2.798

Biological networks PPI 2375 11693 5.096 9.847 0.388 0.453 3.475
Celegansneural 297 2148 2.447 14.465 0.308 -0.163 1.800

where a node represents a protein and edge denotes the interaction between two proteins.

Celegansneural3 [11]: A neural network of C. Elegans compiled by D. Watts and S.

Strogatz in which each node refers a neuron and, an edge joins two neurons if they are

connected by either a synapse or a gap junction.

The basic structural properties of 12 networks are tabulated in the Table 5.1 wherein |V |,

|E|, 〈D〉, and 〈K〉 are number of vertices, number of edges, average distance, and average

degree of the network respectively. 〈C〉, r, and H are average clustering coefficient,

coefficient of assortativity, and degree of heterogeneity, respectively.

5.3.3 Results analysis

We have performed a comprehensive experiment of the proposed method viz., SHOPI,

with the baseline methods on a different class of networks. We evaluate our method

against two evaluation metrics mentioned in section 5.3.1. As the proposed method focus

on different paths and parameters, so its sensitivity to parameters is also represented.

AUROC Table 5.2 shows the AUROC results of the proposed and baseline methods

on 12 network datasets. The best result against each dataset is shown in bold-face. We
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observe that the SHOPI best performs mostly on collaboration (i.e., Jazz, Netscience,

and Ca-HepTh) and social networks (i.e., Political blogs, Facebook, and Twitter). For

biological networks, the LP is the best on the PPI network, and SHOPI is best on the

Celegansneural network. On the PPI network, SHOPI shows better results than

neighborhood-based methods and comparable to the embedding method (i.e.,

Node2vec). Jaccard performs best on the Ca-GrQc dataset, and AA is best on the

Dolphin dataset. On citation networks, LP and Node2vec perform individually best for

SmaGri and Cora networks, respectively. Our method performs equivalent to the Katz

method on the SmaGri dataset. One thing to note that, on citation networks, the CAR

method shows lower performance even worst than a random predictor. The same

behavior is observed on Ca-HepTh and Dolphins datasets. The reason might be the

absence or least number of local community structures in the citation datasets.

We conclude that the proposed SHOPI is significantly better than neighborhood methods

and other path-based methods (i.e., Katz and LP) on collaboration and social networks.

Our method shows lower AUROC results with the neighborhood methods on citation

networks. The reason may be the large number of components available in the network.

SmaGri and cora networks contain a total of 36 and 78 connected components

respectively. The largest component in the SmaGri is 1024 nodes networks while other

35 nodes are isolated. Moreover, Cora contains a largest component with 2485 nodes and

other components are with lower degree less that 10. Another 56 out of 78 components

contain only two nodes that contribute zero to the proposed index. This results in less

number of paths of different lengths and contributing less to the similarity score. This

phenomenon also observed in the Table 5.4 against the citation networks where there is a

large change in the AUROC values from path of length 3 to path of length 6. Though

large number of connected components are also available in the Netscience, Ca-GrQc,

Ca-HepTh datasets but the size of their components other than largest ones are not very

small or isolated. Moreover, these networks are highly clustered resulting in more three

length paths. And hence SHOPI performs better on these datasets.
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TABLE 5.2: AUROC Results

CN AA JC PA CAR Katz LP Node2vec SHOPI

Jazz 0.9481 0.9520 0.9504 0.7895 0.9314 0.9357 0.9433 0.8732 0.9565
Netscience 0.9412 0.9287 0.9506 0.6390 0.5328 0.9262 0.9403 0.8924 0.9511
Ca-GrQc 0.9215 0.9162 0.9294 0.7417 0.6055 0.9160 0.9281 0.9089 0.9225
Ca-HepTh 0.8957 0.8949 0.8874 0.7281 0.4388 0.8893 0.9024 0.8750 0.9086

Dolphins 0.7454 0.7765 0.7697 0.7264 0.3571 0.7562 0.7693 0.7507 0.7454
Political blogs 0.9410 0.9333 0.9079 0.9342 0.7399 0.9466 0.9498 0.8666 0.9508
Facebook 0.9918 0.9932 0.9895 0.8328 0.9447 0.6076 0.9912 0.9915 0.9938
Twitter 0.9321 0.9338 0.8997 0.9221 0.7385 0.4452 0.9389 0.8522 0.9426

SmaGri 0.8588 0.8498 0.7905 0.8368 0.4443 0.8692 0.8916 0.7452 0.8685
Cora 0.7057 0.7389 0.7345 0.6712 0.4594 0.8304 0.8209 0.8779 0.7863

PPI 0.8883 0.9001 0.8900 0.8154 0.7461 0.9384 0.9409 0.9101 0.9129
Celegansneural 0.8154 0.8382 0.7927 0.7351 0.8465 0.8796 0.8709 0.7956 0.8851

TABLE 5.3: Average Precision (AP) Results

CN AA JC PA CAR Katz LP Node2vec SHOPI

Jazz 0.3302 0.3354 0.2674 0.1064 0.3216 0.3118 0.3157 0.0860 0.3409
Netscience 0.1622 0.1714 0.0976 0.0033 0.1087 0.1845 0.1473 0.0817 0.1350
Ca-GrQc 0.2236 0.2300 0.0632 0.0191 0.2172 0.2142 0.2209 0.0489 0.1471
Ca-HepTh 0.0505 0.0748 0.0304 0.0005 0.0287 0.0001 0.0550 0.0304 0.0679

Dolphins 0.0313 0.0517 0.0403 0.0290 0.0070 0.0284 0.0333 0.0244 0.0410
Political blogs 0.0766 0.0748 0.0173 0.0338 0.0633 0.0897 0.0849 0.0084 0.0693
Facebook 0.2446 0.2619 0.1724 0.0190 0.2353 0.0521 0.2293 0.1252 0.2940
Twitter 0.0419 0.0458 0.0057 0.0192 0.0347 0.0031 0.0382 0.0057 0.0349

SmaGri 0.0266 0.0281 0.0026 0.0150 0.0132 0.0183 0.0284 0.0036 0.0312
Cora 0.0052 0.0128 0.0038 0.0008 0.0002 0.0100 0.0092 0.0069 0.0132

PPI 0.0916 0.0909 0.0328 0.0654 0.0912 0.0295 0.1404 0.0415 0.0929
Celegansneural 0.0299 0.0383 0.0167 0.0206 0.0117 0.0424 0.0346 0.0189 0.0447

Average precision (AP) Table 5.3 depicts the average precision results of SHOPI

against several datasets. It shows the best results on Jazz and Facebook belong to

collaboration and social network respectively. Moreover, It performs best on both

datasets of citation networks, and Celegansneural of biological network. AA method

achieves best results on Ca-GrQc, Ca-HepTh, Dolphins and Twitter datasets. The

precision results of the SHOPI is comparable to the AA and second-best performer on

these datasets except Ca-GrQc. Katz method shows the best results on Netscience and

Political blogs datasets, and the LP is the best performer on PPI dataset which significant

compared to other methods. Our method is second-best performer on PPI dataset.
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Effects of the parameter value ψ and sensitivity analysis This work includes paths of

different lengths as features to compute the similarity between two nodes of the network.

The equation to compute this score incorporates a parameter ψ . We investigate the effect

of this parameter ψ on the accuracy (i.e., AUROC and AP) by applying five different

values of it ranging from 0.01 to 0.20.

AUROC sensitivity The effect of ψ on the AUROC values corresponding to the SHOPI

and the two existing methods viz., Katz index, and LP index is shown in Figure 5.5. From

the table, we observe that the SHOPI is having no significant effects of ψ on collaboration

networks [See Figs. 5.5a, 5.5b, 5.5c, 5.5d] and social networks [See Figs. 5.5e, 5.5f, 5.5g,

5.5h] except Dolphins where a significant effect observed. We observed that our method

shows higher AUROC values on almost all values of ψ when compared to the LP on

collaboration and social network datasets. On citation and biological datasets, the SHOPI

and the LP show more effect of ψ . The parameter ψ greatly affects the Katz index on

all datasets, as shown in the figure. The Katz index shows high AUROC value when the

parameter ψ is very low near to zero and decreased heavily with increasing values of this

parameter. The LP method is almost not affected by this parameter.

AP sensitivity Figure 5.6 shows the effects of the parameter ψ on average precision

(AP) of the SHOPI, Katz index, and LP method. The X-axis shows the different values of

ψ , and the corresponding AP values are shown on the Y-axis. The Katz index here, greatly

influenced by increasing values of the parameter on all datasets, as shown in the figure.

The SHOPI and the LP show almost the same behavior on different values of ψ . This

parameter affects these two methods on citation and biological datasets to some extent.

On the Dolphins dataset, they show almost the same fluctuation on different ψ values.

The SHOPI is having larger AP compared to the LP method on Jazz and Ca-HepTh,

while lower value on Netscience and Ca-GrQc (in collaboration category). The Katz

index has the best performance on the Netscience, Political blogs, and PPI datasets when
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FIGURE 5.5: AUROC results sensitivity corresponding to different parameter values of
ψ
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FIGURE 5.6: AP results sensitivity corresponding to different parameter values of ψ

the parameter value ψ = 0.01 [See Figs. 5.6b, 5.6f, 5.6k] and Dolphins dataset when

ψ = 0.05 [See Fig. 5.6e].
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TABLE 5.4: Effects of considering longer path lengths on the accuracy of link prediction

AUROC AP
l=3 l=3,4 l=3,4,5 l=3,4,5,6 l=3 l=3,4 l=3,4,5 l=3,4,5,6

Jazz 0.960343 0.963813 0.963826 0.955036 0.312052 0.331052 0.329758 0.313891
Netscience 0.939394 0.937596 0.930313 0.926952 0.152573 0.152268 0.151059 0.123492
Ca-GrQc 0.923291 0.928715 0.922134 0.913700 0.170711 0.175578 0.177503 0.131930
Ca-HepTh 0.879348 0.885693 0.884419 0.908637 0.067320 0.071834 0.068330 0.067944
Dolphins 0.758650 0.724387 0.752349 0.761566 0.040543 0.029157 0.031164 0.033114
Political blogs 0.941831 0.945521 0.936282 0.946530 0.066493 0.074494 0.070124 0.064945
Facebook 0.995228 0.994226 0.994176 0.995033 0.303534 0.308186 0.307047 0.316250
Twitter 0.937118 0.937104 0.934142 0.939811 0.036918 0.038936 0.037355 0.027084
SmaGri 0.828404 0.824603 0.852049 0.868572 0.025766 0.023815 0.028900 0.031848
Cora 0.749547 0.724683 0.743721 0.786383 0.013809 0.011471 0.011824 0.013730
PPI 0.897994 0.904383 0.895074 0.911787 0.125360 0.119760 0.109083 0.092934
Celegansneural 0.856932 0.868140 0.856421 0.885100 0.042001 0.040550 0.043622 0.044754

Significance of higher order paths This work considers path as a discriminating

feature. It considers path up to length six as the average length of the path between any

two nodes is six (also called six degrees of separation) in most social networks. We also

observed that the network datasets considered for our experiments have average path

lengths less or equal to six except Ca-GrQc (〈D〉 = 6.049), Ca-HepTh (〈D〉 = 7.025),

and Cora (〈D〉 = 6.310). The influence of considering the longer paths on the accuracy

(AUROC and AP) of the proposed approach is shown in Table 5.4. We observe that there

is no significant difference in the AUROC values with path length l = 3 and path length

l = 6 on social network category (See rows corresponding to the Dolphins, Political

blogs, Facebook, Twitter). Moreover, the significant difference observed on Ca-HepTh,

Citation networks (See rows corresponding to the SmaGri and Cora datasets), and

biological networks (See rows corresponding to the PPI and Celegansneural datasets).

This value even decreases in most collaboration networks when longer paths are

considered. The effects of considering longer paths diminish the AP values on most

networks except Jazz, Ca-HepTh, Facebook, SmaGri, and Celegansneural datasets with

an insignificant increase in AP. We conclude that there is no significant increment in the

accuracy when compared to path lengths l = 3 and l = 6.

Complexity analysis. The time complexity here will be discussed based on the

assumption that most complex networks are sparse, and hence, the average number of
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edges (links) for each node is 〈K〉 (average degree of the network). lmax is the maximum

length of the path between any pair of node and path longer than lmax is considered to

have zero influence to the edge likelihood probability. Some optimization has been

applied whenever possible.

The main crux of our algorithm is the computation of the 2 and higher path length score.

In step 3− 5, for loop of step 3 iterates to O(n2) times. Line 4 costs O(〈K〉+ 〈K〉) to

compute CNs for a given node pair when the lists of neighbors are hashable and O(nlgn)

when adjacency list are used, resulting in total O(n2〈K〉)) time for 2 length path score

computation. For higher order paths, step 9− 13 consisting of two loops and take

O(n2〈K〉) time and line 14 − 16 take O(n2). This results in total

((lmax−2)[O(n2〈K〉)+O(n2)]) time for higher paths, where lmax = 6 is a constant. Thus,

the total computational complexity of the proposed algorithm is

((lmax − 2)[O(n2〈K〉) + O(n2)]) + O(n2〈K〉) which is equal to

(lmax−1)O(n2〈K〉)+ (lmax−2)O(n2). Finally, it is approximated to (lmax−1)O(n2〈K〉)

time.

The computational complexities of baseline methods are presented in [45]. The CAR

costs O(nK4), which is more complex as it computes time-consuming local community

links (LCL). Other methods like CN, AA, JC estimates O(n〈K〉3) while PA costs

O(n〈K〉2). The computational complexity of the Katz index is O(n〈K〉+ n3 + n) where

matrix subtraction takes O(n〈K〉) time, matrix inversion takes O(n3) time and O(n)

required by the subtraction of the diagonal elements in the identity matrix as shown in

the equation 3.17. The local path index avoids matrix inversion by exploiting the

adjacency matrix power of the previous summation term and costs O(ln2〈K〉) time. The

Node2vec [125] method is based on a random walk sampling, which is efficient

compared to pure BFS/DFS. The effective time complexity of the Node2vec is

O( l
k′(l−k′)) per sample where l is walk length and k′ is neighborhood size.
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Statistical test We perform a statistical test [277] to show the significant difference

of the proposed method with the baseline methods. We employ the Friedman test [278,

279] to analyze whether there is a significant difference among multiple methods. It is a

non-parametric counterpart of the repeated measures ANOVA. The Friedman test results

for both area under the ROC curve (AUROC) and average precision (AP) are shown in

Table 5.5. The observed test values of the Friedman test for both AUROC and AP are

51.178 and 59.336, which are greater than the corresponding χ2 value (i.e., χ2(αc,D f )).

With the confidence interval α = 0.05 and degree of freedom D f = 8, χ2 value is 15.51,

obtained from the χ2 table available in the literature. This results in the rejection of the

null hypothesis, as shown in the last column of the table. This test confirms that there is a

significant difference among the methods for both AUROC and AP.

Once the null hypothesis is rejected, We perform a post hoc test to find the methods by

means of which the significant difference occurs. Lots of post hoc tests are available in the

literature, we have opted for the Friedman-Convover post hoc test with the SHOPI as the

control method and ”Holm” as the adjusting method to control the family-wise error rate

(FWER). The posthoc test results are shown in Table 5.6. The table shows the adjusted

p-values using the Holm method for both AUROC and AP. From the table, we observe

that the SHOPI is significantly different from all the baseline methods except AA and LP

for AUROC, and significantly different except CN, AA, and LP for AP.

5.4 Conclusion

The topology and evolution of complex real-world networks are constrained by various

organizing principles of topology and dynamics and happens to be a major research area.

Researchers have been addressing structural and topological issues of complex networks

as well as their dynamics. Some of the important concepts that have evolved in the field

of complex networks are small-world and scale-free networks. Features corresponding to

these concepts are the average path length and degree distribution, respectively. Lots of
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TABLE 5.5: The Friedman test on area under the ROC Curve (AUROC) and average
precision (AP)

Dataset IS-value Test value State Result

CN AA JC PA CAR Katz LP Node2vec SHOPI Ff Is Ff > χ2 ?

AUROC Jazz 0.9481 0.9520 0.9504 0.7895 0.9314 0.9357 0.9433 0.8732 0.9565 51.178 Null Hypothesis Rejected
Netscience 0.9412 0.9287 0.9506 0.6390 0.5328 0.9262 0.9403 0.8924 0.9511
Ca-GrQc 0.9215 0.9162 0.9294 0.7417 0.6055 0.9160 0.9281 0.9089 0.9225
Ca-HepTh 0.8957 0.8949 0.8874 0.7281 0.4388 0.8893 0.9024 0.8750 0.9086
Dolphins 0.7454 0.7765 0.7697 0.7264 0.3571 0.7562 0.7693 0.7507 0.7454
Political blogs 0.9410 0.9333 0.9079 0.9342 0.7399 0.9466 0.9498 0.8666 0.9508
Facebook 0.9918 0.9932 0.9895 0.8328 0.9447 0.6076 0.9912 0.9915 0.9938
Twitter 0.9321 0.9338 0.8997 0.9221 0.7385 0.4452 0.9389 0.8522 0.9426
SmaGri 0.8588 0.8498 0.7905 0.8368 0.4443 0.8692 0.8916 0.7452 0.8685
Cora 0.7057 0.7389 0.7345 0.6712 0.4594 0.8304 0.8209 0.8779 0.7863
PPI 0.8883 0.9001 0.8900 0.8154 0.7461 0.8384 0.9409 0.9101 0.9129
Celegansneural 0.8154 0.8382 0.7927 0.7351 0.8465 0.8796 0.8709 0.7956 0.8851

AP Jazz 0.3302 0.3354 0.2674 0.1064 0.3216 0.3118 0.3157 0.0860 0.3409 59.336 Null Hypothesis Rejected
Netscience 0.1622 0.1714 0.0976 0.0033 0.1087 0.1845 0.1473 0.0817 0.1350
Ca-GrQc 0.2236 0.2300 0.0632 0.0191 0.2172 0.2142 0.2209 0.0489 0.1471
Ca-HepTh 0.0505 0.0748 0.0304 0.0005 0.0287 0.0001 0.0550 0.0304 0.0679
Dolphins 0.0313 0.0517 0.0403 0.0290 0.0070 0.0284 0.0333 0.0244 0.0410
Political blogs 0.0766 0.0748 0.0173 0.0338 0.0633 0.0897 0.0849 0.0084 0.0693
Facebook 0.2446 0.2619 0.1724 0.0190 0.2353 0.0521 0.2293 0.1252 0.2940
Twitter 0.0419 0.0458 0.0057 0.0192 0.0347 0.0031 0.0382 0.0057 0.0349
SmaGri 0.0266 0.0281 0.0026 0.0150 0.0132 0.0183 0.0284 0.0036 0.0312
Cora 0.0052 0.0128 0.0038 0.0008 0.0002 0.0100 0.0092 0.0069 0.0132
PPI 0.0916 0.0909 0.0328 0.0654 0.0912 0.0295 0.2068 0.0415 0.0929
Celegansneural 0.0299 0.0383 0.0167 0.0206 0.0117 0.0424 0.0346 0.0189 0.0447

TABLE 5.6: The Posthoc Friedman Conover Test (Control method = SHOPI, Correction
method = Holm)

Metric p-value

CN AA JC PA CAR Katz LP Node2vec
AUROC 0.0226 0.2209 0.0036 1.40E-09 3.10E-13 4.50E-05 0.8772 0.000029
AP 0.71303 0.78796 1.40E-08 9.10E-10 2.00E-06 0.00257 1 6.90E-10

works are available based on these two topological properties. In work entitled SHOPI,

we exploit the path as a discriminating feature to predict missing links in the networks.

This work targets the resource allocation process and tries to constrain the information

(resource) leak through the common neighbors by penalizing them based on their

connections. And, hence, it tries to maximize the information flow between the pair of

nodes that characterize the similarity score between them. Higher-order paths (based on

the six degrees of separation) are also used as discriminating features with one more

penalization function applied to them. The comprehensive experimental results on

several networks show that the proposed approach viz., SHOPI outperforms the baseline

methods. Consideration of higher-order path index affects little bit to the prediction

accuracy, though, significantly affects computational complexity. The statistical test

performed here shows the significant difference between the proposed approach with the



Chapter 5. SHOPI 133

baseline methods.
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