
Chapter 4

Level-2 Node Clustering

Coefficient-based Link Prediction

This chapter 1 studies the clustering feature of social networks and extends its concept to

the next level. The extended clustering coefficient is then applied to find missing links in

networks.

4.1 Introduction

With the success of network science theory, the complex network has turned into a

standard and powerful tool to model communication of a group or community of persons

in the real-world. For example, recommender systems [48, 237] for friends, products,

movies, etc. on different online platforms, protein-protein interaction (PPI) in biological

networks [271], websites hyperlink prediction in the Internet [19, 20], hidden link

detection among terrorist organizations, and so on. These networks can be represented as

graphical models in which a vertex (or node) maps to a person or social entity, and an

edge (or link) maps to an interaction between two persons or social entities. These
1Published in Applied Intelligence
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networks are quite complex as nodes and edges are continuously being introduced and

removed, which results in complicated relationships in the system.

Informally, Link Prediction can be defined as finding the missing links between two

vertices in an observed network (called static link prediction) or predicting the likelihood

of future link by assuming that there is no link between them at the current state of the

network (dynamic link prediction). Figure 4.1 illustrates the link prediction problem.
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FIGURE 4.1: Initially at time t0, three links are present in the disconnected graph. As the
time progress, more links are formed as shown at the time instant t(k−1). Now, at the time
instant tk, which of the non-existing links (i.e. AC, AE, BC, BE, CD) will be formed ?

Finding the potential links that will appear at tk is called the link prediction problem.

Huang [5] presented a paper on graph topology based link prediction where generalized

clustering coefficient is used as a predictive parameter. The author introduces a cycle

formation model which shows the relationship between link occurrence probability and

its ability to form different length cycles. Further, Liu et al. [171] proposed degree

related clustering coefficient to quantify the clustering ability of nodes. They applied the

same to paths of shorter lengths and introduced a new index called degree related

clustering ability Path (DCP). They performed the degree of robustness (DR) test for

their index and showed that missing links have a small effect on the index. Recently Wu

et al. [35] extracted triangle structure information in the form of node clustering

coefficient of common neighbors. Their experiments on several real datasets show

comparable results to CAR index in [68]. The same concept of clustering coefficient also

introduced in the work presented by Wu et al. [71]. Authors introduce both node and link
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clustering information in their work [71]. Their experiments on small, middle and large

network datasets showed better performance results against existing methods, especially

on middle and large network datasets.

Clearly, node and link clustering information play an essential role in the evolution of

complex networks. The above paragraph shows some research works on link prediction

using this property and still more efforts need to be applied. Our work is also an effort in

this direction.

4.2 Proposed work

Evidences [11, 169] suggest that many real networks demonstrate consistent topological

features across different domains viz., small-world [28, 29], clustering, and scale-free

[9]. Their corresponding basic measures are path length, clustering coefficient, and

degree distribution. most empirically observed networks show their behavior resembles

small-worlds in which any two nodes can find each other in a few steps even if the

network is large enough, i.e., the diameter increases logarithmically with the number of

nodes in such networks. Small-world networks are highly clustered and characterized by

the clustering coefficient. Our work focuses on clustering coefficient measure which is

extended up to next level. This work exploits more local information as level-2 common

neighbors and clustering properties of such nodes in the network.

This work relaxes the notion of CAR index where only common neighbors and link

information among them (i.e. local communities) [68] are considered and extends the

notion of clustering information of the CCLP index. Our work considers level-1, level-2,

and level-3 link information (also higher level links in some cases) to extract level-2

triangles (clustering information). It selects level-2 and level-3 link information to a

greater extent in the triangle formation as compared to level-1 links. The proposed
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FIGURE 4.2: Notion of level-2 clustering coefficient

method explores a large portion (global to some extent) of the underlying network (Figs.

4.2 and 4.3).

Extracting more local information While selecting level-2 common neighbors (CN2),

there exist some possibilities that level-2 common neighbors are also treated as level-1

common neighbors as shown in figure 4.3. In such cases, level-2 common neighbors are

extended to next level in the network and continue until further identification of level-2

common neighbors as level-1 common neighbors.

Definition 4.2.1. (Clustering Coefficient) It is a measure of the degree to which nodes

of a graph tends to be clustered. In graph theory, the clustering coefficient of a node

represents its neighbor’s tendency to become a clique or complete graph. Mathematically

this measure [11] is expressed as

C(i) =
2|{e jk:v j,vk∈Γ(i),e jk∈E}|

ki(ki−1)
(4.1)
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FIGURE 4.3: Exploring local to global structure

where ki is the degree of the node, i and Γ(i) is immediate neighbors of i. We refer this

measure as Level-1 clustering coefficient, based on which Wu et al. [35] presented a paper

on link prediction.

Definition 4.2.2. (Level-2 node clustering coefficient) We extend the definition of node

clustering coefficient [35] to next level named level-2 node clustering coefficient which

exploits level-2 common neighbors and their clustering information for every pair of

nonexistent nodes in the network.

Figure 4.4 represents the best explanation of level-2 node clustering coefficient. For the

seed node pair (x,y), level-1 common neighbors or simply common neighbors (CNs) are

p, q, and r shown in the right upper part of the figure. Further, all those pairs are selected

in which the first node is either x or y (one of the seed node pair) and the second node is

one of the level-1 common neighbors. For all such pair, level-2 common neighbors are

computed based on common nodes of their respective pair. Based on this definition nodes

s and t are level-2 common neighbors shown in right bottom part of the figure. Now the



Chapter 4. CCLP2 92

x y

t

s

r

q

p

x y

r

q

p

x y

t

s

r

q

p

x yv

u

x, y : Seed node pair

p, q, r : Level-1 CNs

s, t : Level-2 CNssuv, tuv : Desired
triangles

FIGURE 4.4: Computing level-2 node clustering coefficient

total number of triangles passing through each level-2 common neighbor is computed and

summed over all such neighbors to find level-2 clustering coefficient of the seed node pair.

Link prediction based on Level-2 node clustering coefficient. Our work focuses

on level-2 clustering coefficient that explores clustering information of level-2 common

neighbors which is more informative than the clustering coefficient used in [35]. We

extend the notion of clustering coefficient of a node the next level (level-2) in the network.

We compute the level-2 node clustering coefficient according to the equation 4.2



Chapter 4. CCLP2 93

SCCLP2
(x,y) = ∑

CN2
x∈Γ(x)∩Γ(CN1)

CC(CN2
x )

+ ∑
CN2

y∈Γ(CN1)∩Γ(y)

CC(CN2
y )

= ∑
CN2∈(Γ(x)∩Γ(CN1))∪(Γ(CN1)∩Γ(y))

CC(CN2)

(4.2)

where CC(CN2) is having the usual definition of node (i.e. CN2) clustering coefficient

value and is computed using the equation 4.1. CN2
x is the level-2 common neighbor

corresponding to node x and the common node of the pair (x,y). CN1 is the level-1

common neighbor defined in the literature and is computed as

CN1 = Γ(x)∩Γ(y).

The pseudo code of the proposed algorithm is presented in the Algorithm 1.

Algorithm 1: CCLP2
Input: Graph G(V,E)
Output: Top-L predicted links

1 foreach Node pair (x,y) /∈ E do
2 find all (level-1) common neighbors, CN1

(x,y)

3 foreach (pi,qi), pi ∈ {x,y} and qi ∈CN1
(x,y) do

4 find all (level-2) common neighbors, CN2
(x,y)

5 Calculate (level-2) clustering coefficient (CC) of all nodes in CN2
(x,y) and add

them to get final similarity score as in step 6.
6 Similarity score; SCCLP2

(x,y) = ∑i∈CN2
(x,y)

ti
ki(ki−1)/2 , where ti is number of triangles

passing through node i and ki is the degree of i.

7 Sort all node pairs in descending order based on computed similarity score.
8 return Top-L node pairs as predicted links.
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Algorithm description. For a given simple undirected graph, the algorithm finds top-L

missing links. The main crux of the algorithm is to find level-2 common neighbors from

which level-2 clustering coefficient can be calculated.

For each pair of nodes (seed node pair (x,y)) having no edge between them, the algorithm

finds all common neighbors (level-1 CNs) [Line: 1−2]. Level-2 common neighbors are

then computed for all those node pairs (pi,qi) in which first node pi belongs to {x,y}

while second node in level-1 common neighbors of (x, y) [Line: 3−4]. Now for all nodes

in level-2 common neighbors, clustering coefficient values are computed and added to

get final similarity score for the seed node pair (x,y) [Line: 5− 6]. Once scores of all

non-existent node pair have been computed, the next step [Line: 7] arranges them in

descending order, and finally, top-L node pairs returned as predicted links [Line: 8].

4.3 Experimental study

4.3.1 Evaluation metrics

The link prediction problem is treated as a binary classification task [63] so most of the

evaluation metrics of any binary classification task can be used in link prediction

evaluation. The evaluation of a binary classification task having two classes can be

represented as a confusion matrix [180].

In the confusion matrix,

. True Positive (TP): positive data item predicted as positive

. True Negative (TN): negative data item predicted as negative

. False Positive (FP): negative data item predicted as positive

. False Negative (FN): positive data item predicted as negative
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Based on the confusion matrix, several metrics can be derived as follows [180].

True Positive Rate (TPR)/Recall/Sensitivity

T PR =
#T P

#T P+#FN
(4.3)

False Positive Rate (FPR)

FPR =
#FP

#FP+#T N
(4.4)

True Negative Rate (TNR)/Specificity

T NR =
#T N

#T N +#FP
(4.5)

Precision =
#T P

#T P+#FP
(4.6)

Our approach is evaluated on four metrics viz., Area under the ROC curve (AUROC)

[52, 182], Area under the precision-recall curve (AUPR) [181], Average precision (AP)

[180] and Recall [180].

Area under the Receiver Operating Characteristics Curve (AUROC) An ROC curve

is a plot between the true positive rate (sensitivity) on the Y-axis and the false positive rate

(1-specificity) on the X-axis. The true positive rate and false positive rate can be evaluated

using equation 4.3 and 4.4 respectively. The area under the ROC curve [182] is a single

point summary statistics between 0 and 1 that can be computed using the trapezoidal rule

which sums all the trapezoids under the curve. The value of the AUROC of a predictor

should be greater than 0.5 which is the value of a random predictor, i.e., higher the value

of AUROC better the performance of the predictor.

Area under the precision-recall curve (AUPR) The precision-recall curve is more useful

and informative when applied to binary classification on imbalanced datasets [272]. So
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we have also considered the area under the precision-recall curve (AUPR). This value is

computed based on the precision-recall curve which is a plot between the precision values

on the Y-axis and the recall values on the X-axis. The precision and recall values can be

computed using equation 4.6 and equation 4.3 respectively.

Average Precision (AP) This metric is also a single point summary value computed

based on varying threshold2 values of recall. The average precision value is equal to the

precision averaged over all values of recall between 0 and 1, i.e.,

AP =
∫ 1

r=0
p(r)dr, (4.7)

where p is the precision at different threshold value of recall r.

Practically, integral is approximated to sum over the precision at each threshold value,

multiplied by the change in the recall, i.e.,

AP =
R

∑
k=1

p(k)4r(k), (4.8)

where R is the set of different threshold values.

Recall This metric3 intuitively finds all positive samples (existence of links in this case)

in the data and equates to the metric given in equation 4.3.

4.3.2 Datasets description

This work used 11 network datasets from various fields to study the performance of our

approach. Macaque4 [176]: is a biological network of cerebral cortex of Rhesus

Macaque. Football5 [177]: American football games network played between Division

2https://sanchom.wordpress.com/tag/average-precision/
3https://ils.unc.edu/courses/2013_spring/inls509_001/lectures/

10-EvaluationMetrics.pdf
4https://neurodata.io/project/connectomes/
5http://www-personal.umich.edu/ mejn/netdata/



Chapter 4. CCLP2 97

IA colleges during regular season Fall 2000. Celegansneural4 [11]: A neural network of

C. Elegans compiled by D. Watts and S. Strogatz in which each node refers a neuron and,

an edge joins two neurons if they are connected by either a synapse or a gap junction.

USAir976 is an airline network of US where a node represents an airport and an edge

shows the connectivity between two airports. Political bolgs4 [273] is a directed network

of hyperlinks in political blogs leaning towards the conservatives and the democrats

preceding US election 2004. Yeast7 [274] is also a biological network of proteins in a

cell where a node represents a protein and edge denotes the interaction between two

proteins. Amazon web graph6 [275] is an informational network of web pages of

Amazon.com and its sister companies. Power grid4 [11] is an undirected and unweighted

network of power grid located in western states of the United States. Ca-GrQc8,

Ca-HepTh7, and Ca-HepPh7 are collaboration networks of arXiv General Relativity,

High Energy Physics Theory, and High Energy Physics respectively.

TABLE 4.1: Topological information of real-world network datasets

Datasets |V | |E| 〈D〉 〈K〉 〈C〉

Macaque 91 1401 1.658 30.791 0.742
Football 115 613 2.486 10.661 0.403
Celegansneural 297 2148 2.447 14.456 0.308
USAir97 332 2126 2.738 12.807 0.749
Political blogs 1490 16718 2.738 22.440 0.361
Yeast 2361 7182 4.376 6.084 0.271
Amazon web graph 2880 3904 3.433 2.711 0.818
Power grid 4941 6594 18.989 2.669 0.107
Ca-GrQc 5242 14496 6.049 5.531 0.687
Ca-HepTh 8361 15751 7.025 3.768 0.636
Ca-HepPh 12008 118521 4.673 19.74 0.699

Table 4.1 shows some basic topological properties of the considered networks datasets.

|V |, |E|, 〈D〉, and 〈K〉 are number of vertices, number of edges, average distance, and

average degree of the network respectively. 〈C〉 is the average clustering coefficient of the

network.

6http://vlado.fmf.uni-lj.si/pub/networks/data/
7https://icon.colorado.edu/#!/networks
8https://snap.stanford.edu/data/
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4.3.3 Results analysis

This section investigates the effectiveness of our proposed work on different network

datasets against the baseline methods. Our method is tested on four well-known accuracy

measures of link prediction namely area under the ROC curve (AUROC), area under the

precision-recall curve (AUPR), average precision (AP), and recall as explained in the

section 4.3.1. Five sets of probe links (i.e., percentage of removed links = 10, 20, 30, 40,

50) (sparsification levels) are used to evaluate each performance metric. Increasing the

percentage of removed links beyond 50% may disconnect the graph, so we consider the

sparsification level up to 50% only. The fraction of removed links and the individual

metric are displayed on X-axis and Y-axis respectively. We demonstrate our results

(Figures 4.5, 4.6, 4.7, and 4.8) based on the clustering values of the networks. First, three

of each figure with low clustering, next two figures having medium clustering values,

and last six figures are shown with high clustering values. The proposed method entitled

“Level-2 node clustering-coefficient” is abbreviated as “CCLP2” and other baseline

methods are also abbreviated in accordance with the abbreviation given in the literature

review section.

AUROC Figure 4.5 shows the AUROC results of different methods

(proposed+baseline) on 11 real-world network datasets. The X-axis represents the five

sets of probe links (or fraction of removed links), and AUROC is shown on the Y-axis.

With low clustered (〈C〉 ≤ 0.3) networks, the proposed method (CCLP2) shows

comparable results with CN, and NLC on Power grid (4.5a), CCLP, CN, and RA on

Yeast (4.5b), and CCLP, and LNBCN on Celegansneural data (4.5c). Our method

performs better than remaining methods accordingly. The CCLP2 performs overall best

on Political blogs (4.5d) and Football (4.5e) networks (networks with medium clustering

values (0.3 < 〈C〉 ≤ 0.5)). The Node2vec and the NLC perform best on the Power grid

and Celegansneural data respectively. The NLC method also shows good results on these

networks but slightly lags CCLP2. For large clustered networks (〈C〉> 0.5), the CCLP2
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performs overall best on collaboration network Ca-GrQc (4.5g), Macaque (4.5i), and

USAir97 (4.5j) datasets. Our method outputs comparable results with CCLP and CN on

Ca-HepTh (4.5f)and Ca-HepPh (4.5h). Moreover, it is significantly better than the

remaining methods. The Node2vec shows best results on Ca-HepTh (4.5f) and Amazon

web graph (4.5k) where our method is the second-best performer on Amazon web graph.

AUPR Most of the real-world networks are sparse, i.e., the number of existing links are

very less as compared to the number of non-existing links. In other words, these networks

are highly imbalanced, and the literature suggested that the precision-recall curve (AUPR)

[272] is more informative than the ROC curve for the evaluation of such networks. Hence

AUPR is also considered as one of the evaluation approaches of the link prediction.

Figure 4.6 shows the result of the area under the precision-recall curve (AUPR). From

the figures, we observe that the Node2vec is the best performing method against all

datasets except the Macaque where CCLP2 and PA are best when the fraction of

removed links are 40% and 50%. After Node2vec, the proposed method (CCLP2)

performs best on Power grid (at sparsification levels 10%, 20%, 30%) and Yeast

networks (except at 20%). The CCLP2 also performs best on medium clustered networks

(Political blogs 4.6d and Football 4.6e) and high clustered networks (Ca-GrQc 4.6g,

Macaque 4.6i, and Amazon web graph 4.6k). Moreover, It beats all methods except CN

on Ca-HepTh and CAR on Ca-HepPh as depicted in 4.6f and 4.6h respectively. On

Celegansneural and USAir97 datasets, our method shows average performance

compared to others. Being high clustering value of the USAir97, our method performs

average because of the lower number of common neighbors between the pairs (local

airports (LAs), local centers (LCs)), (local airports (LAs), hubs), and between two local

airports [69]. The lower performance of common neighborhood-based methods also due

to the same reason. Note that we have used sparsification levels and the fraction of

removed links interchangeably.
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FIGURE 4.5: AUROC Results
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FIGURE 4.6: AUPR Results
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AP Figure 4.7 shows the average precision results on 11 real-world network datasets.

Similar to the AUPR result, Node2vec shows outstanding performance on all datasets.

The considered methods except for Node2vec show very low average precision results

on all datasets. Our methods performs best after Node2vec on Power grid (4.7a) and

Football (4.7e) networks. The CCLP2 and other methods show comparable results on

Yeast 4.7b), Political blogs (4.7d), and Amazon web graph 4.7k). On collaboration

networks (i.e. Ca-HepTh (4.7f) and Ca-Grqc (4.7g)), our method show equivalent results

as that of the NLC with some fluctuation. The same results are obtained on the Macaque

network (4.7i), but, the two equivalent methods are CCLP2 and PA. On Ca-HepPh, The

CCLP2 lags behind the CAR method. Finally, Our method show average performance on

Celegansneural (4.7c) and USAir97 (4.7j) datasets. The average performance of the

CCLP2 and other common neighbor based methods are due to the same reason explained

for AUPR in the previous paragraph.

Recall Figure 4.8 shows recall results for all methods (proposed+baseline). With the

low clustered networks, the CCLP2 shows its best on Yeast (4.8b) network after Node2vec

and on Celegansneural (4.8c) after CAR method and comparable results with CN and

NLC on Power grid data (4.8a). It also best performs on Political blogs (4.8d) but average

performance on Football (4.8e). With high clustered networks, our method overall best

on USAir97 network (4.8j) and Amazon web graph (4.8k), while second-best performing

method on Macaque and Ca-HepPh networks after Node2vec and CN respectively. On

Amazon web graph and Macaque networks, PA shows good results over the CCLP2 when

sparsification level is increased to 40% and 50%. On arXiv networks (i.e., Ca-HepTh

and Ca-GrQc), the CCLP2 result is comparable to CN, CCLP, and NLC. Our results in

Figure 4.8 show that the Node2vec is the best performing method on Power grid, Yeast,

Ca-HepTh, and Macaque networks, and CAR is overall best on the Ca-GrQc dataset.

Concluding remarks. By analyzing the AUROC results, we observe that the

proposed method (CCLP2) shows comparable results on low clustered networks while
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FIGURE 4.7: AP Results
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best prediction results on medium clustered networks. With high clustered networks, it is

best on three datasets (Ca-GrQc, Macaque, and USAir97) and second-best performer on

the remaining three datasets (Ca-HepTh, Ca-HepPh, and Amazon web graph). When

observing the AUPR results, we find that the Node2vec gives best results on all datasets.

The proposed method is second best performing on all networks except the

Celegansneural, Ca-HepPh and USAir97. On Ca-HepTh, the CN beats our method only

on 30% and 40%, lags on 10%, and comparable on 20% and 50% of removed links.

Further, Node2vec also performs overall best on average precision metric against 11

network datasets. Our method is the second-best performer on Power grid and Football,

and comparable on high clustered networks except for USAir97 where CCLP2 show

average performance. The recall result shows that Node2vec is best on 4 datasets (Power

grid, Yeast, Ca-HepTh, and Macaque). The CCLP2 is overall best on Political blogs and

USAir97 networks while second-best performer on Yeast, Celegansneural, Ca-HepPh,

Macaque, and Amazon web graph. It shows comparable results on Power grid, Football,

Ca-HepTh, and Ca-GrQc datasets.

Finally, we observe that Node2vec is the best performing method on all datasets with some

exception. The CCLP2 shows better performance after the Node2vec method on average

and high clustered networks except USAir97. Though USAir97 is having high clustering

coefficient value, our method performs average (after CAR, and NLC) on AUPR and

average precision metrics. The possible reason may be the existence of least number of

common neighbors between two local airports (LAs), between local airports (LAs) and

local centers (LCs), and between local airports (LAs) and hubs [69]. This results the

least probability of such links to present in the top of the list and hence the precision gets

reduced of our method and the common neighborhood-based methods. As a result low

performance in AUPR and average precision.

Complexity analysis. Here, we estimate the efficiency of the proposed method as well

as the baseline predictors (algorithms). Only off-line parts of all algorithms are considered

for the time estimation where off-line refers to the similarity matrix computation for all
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FIGURE 4.8: Recall Results
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pair of nodes. The time needed to compute level-2 common neighbors is the same as

the normal common neighbor of a pair of nodes, i.e., O(n2) when the data structure is

the adjacency matrix and O(n) in case of the adjacency list. The clustering coefficient

of a node takes O(n3) in the worst case and O(n〈K〉2) after applying some optimization,

although an approximate algorithm of O(n) time by Schank and Wagner [276] also exists.

The main crux of our algorithm is the computation of the level-2 clustering coefficient in

step 3− 6 where for loop of step 3 iterates to 2〈K〉 times. Line 4 costs O(n) to compute

CNs for a given pair and O(n〈K〉) for computing clustering coefficients, resulting in total

2〈K〉× (O(n)+O(n〈K〉)) time.. The outer for loop iterates to O(n2) in the worst case, so

the total time complexity of the proposed algorithm is O(n3〈K〉2) which is comparable to

the O(n3〈K〉) of existing CCLP. The computational complexity of the NLC and the

LNBCN are O(n4〈K〉) and O(n.O( f (z)+ n〈K〉3)) where f (z) is the influence function.

The CAR costs O(n〈K〉4) which is more complex as it computes time-consuming local

community links (LCL). Other methods like CN, AA, RA estimates O(n〈K〉3) while PA

costs O(n〈K〉2) where 〈K〉 is the average degree of the network. The Node2vec [125]

method is based on a random walk sampling which is efficient compared to pure

BFS/DFS. The effective time complexity of the Node2vec is O( l
k′(l−k′)) per sample

where l is walk length and k′ is neighborhood size.

Statistical test In this paragraph, we conduct statistical test [277] to show the

significant difference of the proposed method with the baseline methods. We perform the

Friedman test [278, 279] to analyze whether there is a significant difference among

multiple methods. It is a non-parametric counterpart of the repeated measures ANOVA.

If the test result shows a significant difference, we further applied post hoc analysis to

check the degree of rejection of each hypothesis. for the post hoc analysis, several

methods are available in the literature and we applied post hoc counterpart of the

Friedman test known as Posthoc Friedman Conover method. The proposed method

CCLP2 is considered as the control algorithm in the posthoc analysis. We selects the

level of confidence αc = 0.05 and the degree of freedom D f = 8.
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The Friedman test result for the metric area under the ROC curve is tabulated in the Table

4.2. The table shows the computed Friedman test values Ff on different percentage (10,

20, 30, 40, and 50) of removed links (or sparsification levels). The Friedman test rejects

the null hypothesis H0 if the test value Ff is greater than χ2(αc,D f ), i.e. Ff > 15.51.

We have performed the same test for remaining three metrics viz., AUPR, Recall and AP

where we found that the null hypothesis is rejected for each of the metrics. We have not

shown the remaining here.

Since this test rejects the null hypothesis on each percentage of removed links so we go

for the post hoc analysis. The results of the post hoc analysis are shown in table 4.3 for all

four metrics used in this paper. With the confidence level αc = 0.05, we observe that the

proposed method (CCLP2) is significantly different from all the baseline methods except

NLC method on AUROC and AP. our method is insignificant on AUROC against 10%

of removed links and insignificant on AP against 30%, 40%, and 50% of removed links.

Moreover, the CCLP2 shows its significance on recall against CCLP (except 50%), RA,

PA, CAR, NLC (except 10% and 40%), and LNBCN methods. It is insignificant from the

CN and the Node2vec (except 10% and 20%). With AUPR, our method is significantly

different from the baseline method except for NLC, where it is insignificant only for 50%

of the removed links.

4.4 Conclusion and future works

Motivated by the intuition that more local information of topology of a network may

improve the accuracy of link prediction, we extracted common neighbors and clustering

information up to next level. The proposed method computes clustering coefficients of

level-2 common neighbors of the seed node pair. The similarity score sums over all such

common neighbors for the seed node pair. The experiments have been conducted 11

real-world networks and results are organized as low, medium, and high clustered

networks. The comprehensive results show that the proposed method performs better
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TABLE 4.2: The Friedman test on Area under the ROC Curve (AUROC)

Removed links (%) Dataset IS-value Test value State Result

Node2vec CCLP CCLP2 CN RA PA CAR NLC LNBCN Ff Is Ff > χ2 ?

10 Macaque 0.63199 0.79209 0.91921 0.7875 0.79259 0.91732 0.78093 0.84349 0.49197 47.466 Null Hypothesis Rejected
Football 0.84021 0.83049 0.86067 0.8281 0.32826 0.00474 0.61076 0.84617 0.83241
Celegansneural 0.78599 0.80817 0.80028 0.77269 0.26587 0.00527 0.49472 0.84701 0.81955
USAir97 0.83602 0.86762 0.89145 0.85007 0.32958 0.03225 0.80266 0.89348 0.8508
Political blogs 0.87281 0.85881 0.91166 0.88962 0.38327 0.17453 0.7436 0.90752 0.89255
Yeast 0.77971 0.85077 0.85354 0.85065 0.84938 0.78088 0.83494 0.83562 0.71119
Amazon web graph 0.60775 0.5995 0.64935 0.58821 0.45291 0.08295 0.59378 0.63773 0.59335
Power grid 0.89143 0.48755 0.58843 0.5872 0.49946 0.02824 0.48755 0.58948 0.58129
Ca-GrQc 0.95144 0.91962 0.96748 0.92301 0.49802 0.02237 0.59494 0.92142 0.89244
Ca-HepTh 0.94038 0.88902 0.88972 0.88813 0.49917 0.02237 0.42399 0.89102 0.84927
Ca-HepPh 0.97528 0.9801 0.98051 0.98051 0.90737 0.91754 0.84623 0.89102 0.84927

20 Macaque 0.58817 0.77075 0.91119 0.7742 0.78123 0.91188 0.77379 0.82347 0.50015 41.541 Null Hypothesis Rejected
Football 0.81396 0.83259 0.85578 0.82336 0.35586 0.0047 0.46912 0.83809 0.84206
Celegansneural 0.78504 0.79719 0.79833 0.75735 0.28911 0.01219 0.45128 0.83489 0.80416
USAir97 0.82055 0.85718 0.88811 0.85534 0.35042 0.04408 0.77034 0.87852 0.85176
Political blogs 0.86617 0.87417 0.90649 0.88584 0.39449 0.18029 0.68585 0.88432 0.88852
Yeast 0.78944 0.85339 0.84905 0.84859 0.84942 0.78592 0.83401 0.83678 0.68717
Amazon web graph 0.67059 0.59935 0.63993 0.59964 0.46255 0.16024 0.54331 0.63223 0.59926
Power grid 0.9043 0.49376 0.57517 0.57715 0.49957 0.06411 0.49376 0.57362 0.56606
Ca-GrQc 0.94598 0.89122 0.96368 0.89782 0.49833 0.05681 0.59172 0.8945 0.87084
Ca-HepTh 0.93529 0.85119 0.85012 0.85396 0.4993 0.05681 0.43903 0.85024 0.81001
Ca-HepPh 0.97136 0.97089 0.97213 0.9714 0.8955 0.91742 0.83615 0.85024 0.81001

30 Macaque 0.5915 0.76278 0.90004 0.75815 0.75693 0.90442 0.76048 0.80546 0.4882 44.904 Null Hypothesis Rejected
Football 0.80292 0.8125 0.82345 0.78719 0.37782 0.00465 0.45868 0.81644 0.81101
Celegansneural 0.74513 0.77752 0.78369 0.74319 0.32566 0.019 0.43761 0.80986 0.77897
USAir97 0.81677 0.85996 0.88998 0.83981 0.36812 0.07017 0.70941 0.8636 0.85032
Political blogs 0.86271 0.88731 0.89981 0.87817 0.4072 0.19667 0.60622 0.86517 0.88266
Yeast 0.79004 0.84402 0.84603 0.84651 0.84519 0.78042 0.83386 0.83471 0.67703
Amazon web graph 0.73707 0.60955 0.64005 0.59175 0.47066 0.23873 0.5268 0.62252 0.59947
Power grid 0.93327 0.49698 0.56191 0.55913 0.49966 0.10937 0.49698 0.56015 0.5482
Ca-GrQc 0.93761 0.8644 0.95637 0.86322 0.49862 0.09151 0.58845 0.8608 0.84441
Ca-HepTh 0.91689 0.80546 0.80138 0.80254 0.49943 0.09151 0.45759 0.80022 0.77299
Ca-HepPh 0.97038 0.96051 0.96084 0.96084 0.89339 0.9169 0.82919 0.80022 0.77299

40 Macaque 0.61685 0.73003 0.8832 0.75282 0.74258 0.9028 0.74629 0.76991 0.50097 42.62 Null Hypothesis Rejected
Football 0.77291 0.77777 0.79831 0.76483 0.40681 0.0046 0.43195 0.76349 0.78828
Celegansneural 0.74764 0.75169 0.75133 0.72846 0.35868 0.0189 0.44974 0.77997 0.74867
USAir97 0.81444 0.85122 0.87774 0.84676 0.38865 0.09531 0.62982 0.84167 0.83187
Political blogs 0.86056 0.89142 0.89165 0.87088 0.42104 0.21101 0.5276 0.84148 0.87017
Yeast 0.80769 0.84003 0.84286 0.84217 0.84236 0.78319 0.83267 0.83036 0.64939
Amazon web graph 0.81067 0.60829 0.63898 0.60711 0.47841 0.30388 0.48793 0.62335 0.59182
Power grid 0.97994 0.49685 0.54597 0.54742 0.49974 0.15502 0.49685 0.54368 0.53582
Ca-GrQc 0.94134 0.82526 0.94552 0.8224 0.4989 0.13022 0.57193 0.82966 0.80411
Ca-HepTh 0.90694 0.75157 0.75261 0.75634 0.49957 0.13022 0.47881 0.75659 0.72636
Ca-HepPh 0.96875 0.93794 0.94639 0.94741 0.89036 0.91561 0.80858 0.75659 0.72636

50 Macaque 0.56126 0.71594 0.85942 0.72602 0.72339 0.88796 0.7159 0.75059 0.52559 44.876 Null Hypothesis Rejected
Football 0.74172 0.69971 0.75182 0.71695 0.42341 0.00456 0.44407 0.75167 0.74535
Celegansneural 0.7037 0.7108 0.71897 0.66977 0.39684 0.02219 0.47157 0.73282 0.7257
USAir97 0.81418 0.84813 0.86302 0.82049 0.41003 0.13808 0.49573 0.77795 0.8365
Political blogs 0.85452 0.8967 0.87475 0.8587 0.43442 0.22092 0.47083 0.8047 0.85456
Yeast 0.82299 0.83725 0.84017 0.83749 0.83697 0.77849 0.83032 0.83232 0.61378
Amazon web graph 0.86576 0.58945 0.60367 0.58361 0.4849 0.35637 0.48466 0.59915 0.59714
Power grid 0.98211 0.5 0.53698 0.53492 0.49982 0.21136 0.5 0.53272 0.52725
Ca-GrQc 0.93511 0.7897 0.93304 0.78912 0.49914 0.17413 0.53079 0.78822 0.76549
Ca-HepTh 0.894 0.69597 0.6987 0.69777 0.49968 0.17413 0.4804 0.7012 0.67221
Ca-HepPh 0.96589 0.92157 0.93042 0.92844 0.88683 0.9142 0.77064 0.7012 0.67221

than the baseline methods except for the Node2vec with medium and large average

clustering coefficients. Recently, some sophisticated methods like Node2vec [125] and

SPM [183] have been proposed which show outstanding performance. Although the

prediction performance of these methods are significantly better, however, in the case of

large networks the proposed method (CCLP2) should be considered with these methods

at least.

In this work, we have considered simple undirected and unweighted networks (datasets)

i.e., only one type of relationship between two nodes have been selected. If we consider
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TABLE 4.3: The Posthoc Friedman Conover Test (Control method = CCLP2)

Metric Removed links (%) p-value

Node2vec CCLP CN RA PA CAR NLC LNBCN

AUROC 10 0.00219 0.00126 0.00039 3.60E-09 1.00E-11 9.70E-10 0.17335 2.40E-06
20 0.01193 0.00551 0.06079 3.00E-07 5.70E-10 3.60E-08 0.06079 5.70E-05
30 0.01079 0.02287 0.00242 5.00E-09 4.90E-11 1.10E-08 0.01468 4.40E-06
40 0.0346 0.01283 0.0346 5.50E-08 2.40E-10 7.00E-08 0.00811 5.60E-06
50 0.04009 0.00571 0.00927 6.60E-09 6.50E-11 5.10E-09 0.00673 2.10E-05

Recall 10 0.04495 0.02078 1.37E-01 4.30E-08 1.70E-08 7.40E-05 0.05717 8.93E-03
20 0.0344 0.03045 0.18656 7.20E-07 5.60E-08 1.07E-02 0.00526 1.54E-03
30 0.05862 0.02915 0.07288 6.60E-07 1.90E-07 2.58E-02 0.00284 3.30E-03
40 0.25412 0.04778 0.44606 1.10E-04 9.20E-06 3.06E-02 0.05914 3.84E-02
50 0.1836 0.0724 0.1292 1.90E-05 9.00E-06 1.89E-02 0.0304 3.82E-02

AUPR 10 0.00923 0.00092 2.30E-05 1.60E-12 7.20E-11 3.25E-02 0.00276 1.50E-06
20 0.01215 0.00024 7.20E-05 2.30E-11 2.60E-10 2.05E-02 0.00578 9.60E-06
30 0.01221 0.00019 0.00024 2.40E-10 3.70E-08 7.23E-03 0.02358 9.70E-05
40 0.0245 0.00812 0.00034 4.60E-09 7.50E-07 2.84E-02 0.01323 9.80E-05
50 0.01669 0.01435 0.00332 3.40E-08 1.00E-05 1.05E-02 0.05125 7.80E-04

AP 10 0.01492 0.00088 1.40E-04 6.60E-11 1.60E-12 8.20E-06 0.01244 8.30E-05
20 0.01115 0.00131 6.90E-05 1.70E-09 1.50E-11 8.80E-05 0.02223 1.31E-03
30 0.01046 0.00126 2.70E-05 6.70E-09 2.10E-10 5.50E-05 0.11963 6.70E-04
40 0.00881 0.00515 0.00089 4.00E-08 2.50E-09 2.00E-05 0.16345 1.00E-04
50 0.01434 0.00051 0.00041 1.00E-08 1.80E-09 1.30E-07 0.13366 4.00E-05

multiple relationships into account, the prediction performance can be enhanced [280]. In

the future, we will try to explore such an idea in a supervised setting. Moreover, we will

also validate our method with the networks having negative links (Signed network) like

Epinions7 and Slashdot7 networks.
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