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PREFACE

Link prediction in complex networks (e.g., social networks, biological networks, citation
networks, etc.) has attracted increasing attention from both physical and computer
science communities. The algorithms can be used to extract missing information,
identify spurious interactions, evaluate network evolving mechanisms, and so on. Its
study is crucial to the analysis of the evolution of networks. Lots of works employing
different types of methodologies of link prediction are available. Most of them are based
on structural or topological properties as extracting these features are easy in
computation. Though not all of them are efficient to extract. Most social networks
exhibit some basic features like Small-world phenomenon, clustering and scale-free.
Their corresponding measures are average path length, clustering coefficient and degree
distribution respectively. In this thesis, these features are explored for calculating

similarity measures of node-pairs in link prediction.

Many real-world networks show tendency of being organized in clusters that are
quantified by clustering coefficient. This measure extracts local structural or topological
information which are efficient to compute. The notion of mutual relationships, captured
by common neighbors, are building blocks of many existing seminal works like
Adamic-Adar index, resource allocation index, etc. The notion of common neighbors is
further expanded to higher level. Based on clustering coefficients of level-2 common
neighbors, a new algorithm CCLP2 is proposed to predict missing links in networks.
CCLP2 extracts higher level clustering information of nodes which proved to be more
informative and discriminating feature for link prediction as shown by the empirical

results.

Exploring level-2 clustering information are useful discriminating feature but confined to
neighbors of neighbors information. This might limit the prediction capability and
hence, more local information are extracted using path feature. By employing higher
order paths as discriminating features missing link are predicted in networks. The
proposed method, called SHOPI, is based on resource allocation process in networks
where the source node sends some resources as information to a destination node. The

amount of information received by the destination derives the similarity score between

xi



them. Higher the information received by destination from the source represents higher
similarity. SHOPI ensures to reach maximum information by restricting the information
leaks through their common neighbor nodes. Empirical results on several networks

validates the performance of SHOPI.
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