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Chapter 6  
ESTIMATING ELECTRICAL AND THERMAL CONDUCTIVITY OF 

INTERPHASE 

 

6.1 INTRODUCTION 

Under the influence of applied electrical stress, heat is generated in dielectric materials 

due to different kinds of losses. In a high voltage direct current (HVDC) system, 

conduction loss is the primary source of heat generation within the dielectric materials 

and conduction-based heat transfer is governed by the thermal conductivity of the 

dielectric material. Due to the fact that electrical conduction losses serve as a source of 

heat, thermal analysis under electrical (dc) stress requires prior knowledge of dc 

conductivity. Nanofiller inclusions are believed to affect both electrical and thermal 

conductivity. It has been demonstrated in previous investigations that the filler matrix 

interaction results in a third phase referred to as interphase. Prior information of the dc 

conductivity and thermal conductivity of the interphase is required to determine 

(numerically) the effectiveness of nanocomposites in increasing heat transfer capacity. 

In the preceding chapter, the size and permittivity of the interphase were estimated. This 

chapter applies the insight gained from the previous chapter to estimate the interphase's 

dc conductivity. Following that, quantified data on dc conductivity and interphase size 

are utilized to estimate the thermal conductivity of interphase in epoxy alumina 

nanocomposites. 
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6.2 ESTIMATION OF DC CONDUCTIVITY OF INTERPHASE 

6.2.1 Methodology 

The dc conductivity of interphase is estimated using a numerical model and 

experimental data in tandem. The first dc conductivity of base resin and 

nanocomposites is measured using an experimental procedure described in section 

3.2.2, and the results are shown in Table 4.3. Following that, a numerical model is 

developed to estimate the effective dc conductivity of nanocomposites for known dc 

conductivity values of filler and base material. Because the DC conductivity of 

interphase is unknown, the numerical computation is started with some guess values. 

Subsequently, an iterative procedure elaborated in section 5.4 is used to assign a unique 

dc conductivity value to interphase. The effective dc conductivity of nanocomposites is 

estimated using finite element analysis (FEA). Various stages of FEA are depicted in 

Figure 6.1 and are described in detail in the following subsection. 

 

Figure 6.1   Flow diagram for performing finite element analysis 

6.2.1.1 Building of model geometry 

Finite element analysis is carried out on a cubic unit cell with a size of 1µm that 

contains randomly scattered nanoparticles. To simulate a 1 vol. percent filler 

concentration, the cubic unit cell illustrated in Figure 6.2 was incorporated with 153 

nanoparticles each measuring 50 nm in diameter. Each nanoparticle is encapsulated in a 
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known-thickness interphase layer.  In order to achieve random filler dispersion, java 

coding is used in the application builder tool of COMSOL Multiphysics. Furthermore, 

constraints are imposed on the center coordinates of nanofillers so that all nanoparticles 

are contained within the cubical block without overlap. A flow chart depicting the 

geometry building procedure is shown in Figure 6.3. 

 

Figure 6.2   Randomly distributed multi-particle model 
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Start

Use application builder tool in COMSOL 
multiphysics software

Use Java language for model creation

Define all the variables; 
ind=0;

ind < number of particles

Randomize the particles inside the cube 
using random function of Java language

YES

Check whether all the 
particles are inside the cube

YES

NO

END

Create a cube with defined dimensions

Check whether the particles are 
overlap each other 

(distance between two particle's center < 
2*particle radius)

NO

YES

NO

Create this model

 

Figure 6.3   Flowchart to illustrate building of model geometry 
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6.2.1.2 Assignment of physics and boundary conditions 

To perform numerical analysis, Electric Currents (ec) with AC/DC module of the 

COMSOL multi-physics software is used. Dirichlet boundary conditions were applied 

to the cube's front and back faces (i.e., 2V and 0V is specified respectively on the front 

and back faces). The remaining cube faces are subjected to the Neumann boundary 

condition (i.e., 𝛻𝛻.𝐷𝐷 = 0).  Electric currents (ec) physics solves the Poisson equation and 

the continuity equation given below to compute nodal variables: 

𝛻𝛻. 𝐽𝐽 = 0                                                                                                                      (6.1) 

𝐽𝐽 = 𝜎𝜎𝜎𝜎                                                                                                                       (6.2) 

𝐸𝐸 = −𝛻𝛻𝛻𝛻                                                                                                                   (6.3) 

Where   

𝐽𝐽 – Current density (A/m2) 

𝜎𝜎 – Electrical conductivity (S/m)      

𝐸𝐸 – Electric field (V/m)       

𝑉𝑉 – Electric potential (V) 

6.2.1.3 Assignment of material properties 

The cubical block is assigned the material properties of epoxy resin (dc conductivity = 

1.98E-14 S/m and relative permittivity = 4).  Filler is assigned material properties of 

alumina (dc conductivity = 1E-12 S/m and relative permittivity = 10).  
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6.2.1.4 Calculation of effective electrical conductivity (dc) of the 

model 

The effective dc conductivity of the composites is computed using the following 

equation:  

σ= 〈𝐽𝐽〉
〈𝐸𝐸〉

                                                                                                                        (6.4) 

where 〈 𝐽𝐽〉 and 〈𝐸𝐸〉 represent average current density and average electric field intensity 

respectively within the nanodielectric. A typical plot for potential, electrical field, and 

current distribution within the dielectric material is shown in Figure 6.4. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.4   Potential, electric field and current density distribution with the 
nanodielectrics 

 

6.2.1.5 Estimation of dc conductivity of interphase 

Bisection method-based algorithm described in section 5.4 is used to estimate dc 

conductivity of interphase. Steps to implement the proposed algorithm are listed below:  

Step 1-Record experimental dc conductivity values for pure epoxy and nanocomposites. 

Step 2-Import the model created in COMSOL Multiphysics. Assign material properties, 

describe the model’s physics, and apply appropriate boundary conditions.  
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Step 3-Set the electrical conductivity of nanocomposite to zero as an initial guess value. 

Specify a convergence tolerance value of 0.001. Assign a value of 0 as the initial mean, 

a value of 1E-12 as the upbound, and a value of 0 as the low bound.  

Step 4-Compare measured electrical conductivity of nanocomposites to that computed 

using a numerical model. If this difference is more than the convergence tolerance limit, 

go to the next step. If the difference is less than the convergence tolerance, store the 

interphase's electrical conductivity value and exit the program. 

Step 5-Calculate the mean value of upbound and low bound. Assign this mean value to 

interphase electrical conductivity. 

Step 6-Calculate the current density and electric field using the numerical model. 

Determine the electrical conductivity of nanocomposite using current density value and 

electric field value. This nanocomposite electrical conductivity value should be stored. 

Step 7-The computed value of the effective electrical conductivity of the 

nanocomposites is compared to the measured value. If the computed value exceeds the 

measured value, then assign upbound as the mean value. If the computed value is lower 

than the measured value, then a low bound is used as the mean. 

Step 8-Return to step 4 and repeat until convergence is achieved.  

To add in comprehension, this proposed algorithm is also represented using the flow 

chart shown in Figure 6.5.   
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Start

Use COMSOL with MATLAB livelink

Read experimental values of electrical 
conductivity of pure epoxy & nanocomposite and 

store

Define all the variables

Import the COMSOL model from application 
builder. Assign the material properties and define 

the physics for the model.

(EC_NC_Simulated - EC_NC_ Measured) 
> Tolerence

YES

NO

EC_Interphase_Final = EC_Interphase; 
iteration = 0;

END

iteration = iteration+1

mean =(upbound+lowbound)/2; 
EC_Interphase = mean;

Change electrical conductivity value of interphase 
to EC_Interphase

Simulate the COMSOL Model and calculate 
Current density value and Electric field intensity 

inside the model. calculate the electrical 
conductivity of nanocomposite using equation. 

Store this electrical conductivity value of 
nanocomposite to EC_NC_Simulated

EC_NC_Simulated > 
EC_NC_ Measured

upbound = mean lowbound = mean

YES NO

EC_NC_Simulated = 0;
Bisection Method variables:

mean =0;
upbound = 1E-12;

lowbound = 0;

Store the value of electrical conductivity of 
interphase

 

Figure 6.5   Flowchart to estimate the dc conductivity of the interphase 

 

According to the proposed algorithm, the interphase dc conductivity is 0.964E-14 S/m. 

This value is lower than the dc conductivity of the epoxy matrix. It implies that 
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interphase is crucial in lowering the electrical conductivity of nanocomposites. The 

structural changes around nanofillers have a significant impact on charge transport and 

conduction mechanisms, affecting the total conductivity of the nanocomposites.  

6.3 ESTIMATION OF THERMAL CONDUCTIVITY OF 

INTERPHASE 

6.3.1 Methodology 

Interphase thermal conductivity is determined using a combination of experimental data 

and a computational model. To begin, the thermal conductivity of both the base 

polymer and the nanocomposite sample is measured. Following that, a numerical model 

is developed to predict the effective thermal conductivity of nanocomposites using 

known thermal conductivity values for the base polymer and filler material, as well as 

various assumed thermal conductivity values for the interphase. The algorithm 

described in Section 5.4 is used to assign a unique thermal conductivity value to 

interphase based on the best match between observed and numerically predicted 

effective thermal conductivity values for nanocomposites. The following subsection 

details the technique for measuring thermal conductivity and numerical modeling using 

finite element analysis. 

 

6.3.1.1 Thermal conductivity measurement 

The following specimens were synthesized for this study: 

1. Pure epoxy samples 

2. Nanocomposites samples (with nano alumina concentrations of 1 and 2 vol.%). 
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These samples were prepared using the procedure as described in chapter 3. Cubic 

samples of 15×15×15 mm in size were prepared to satisfy the instrument’s (TPS 500) 

dimensional specification. Typical images of synthesized epoxy and nanocomposite 

samples (with filler content of 1 vol.%) are shown in Figure 6.6. 

 

Figure 6.6   Neat epoxy and nanocomposite samples for thermal conductivity 
measurement 

 

Thermal conductivity measurements were performed using a TPS 500 instrument 

shown in Figure 6.7. All measurements were performed following the standard test 

procedure recommended by ISO 22007-2:2008.  
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Figure 6.7   TPS 500 instrument in mechanical engineering department IIT (BHU) 

 

Thermal conductivity measurements are performed by fitting the TPS sensor in between 

two pieces of a sample, as shown in Figure 6.8. To meet the requirement of thermal 

conductivity measuring setup, cubic samples with dimensions of 15×15×15mm are 

chosen. Thermal conductivity was measured on five randomly selected samples from 

each specimen. A representative value (i.e., an average of five measurements) is shown 

in Table 6.1. 
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Figure 6.8   TPS sensor sandwiched between samples. 

 

Table 6.1   Experimental values of thermal conductivity of specimens 

Specimen Thermal conductivity (W/K.m) 

Neat epoxy sample 0.160 ± 1% 

Nanocomposites sample (with filler content of 1 
vol.%) 

0.174 ± 1% 

Nanocomposites sample (with filler content of 2 
vol.%) 

0.192 ± 1% 

 

6.3.1.2 Numerical Modeling  

6.3.1.2.1 Building of model geometry 

The model geometry is constructed in line with the technique described in section 

6.2.1.1 and illustrated in Figure 6.3 with a flowchart.  
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6.3.1.2.2 Assignment of physics and boundary conditions 

Joule heating module of COMSOL multi-physics software is used for this simulation 

study. Joule heating module involves electric currents (ec) and heat transfer in solids 

(ht) physics. Electric currents physics solves equations 6.1, 6.2, 6.3 described in section 

6.2.1.2. Heat transfer in solids physics solves the following set of equations: 

∇. q = Q                                                                                                                      (6.5) 

q = −k∇T                                                                                                                  (6.6) 

Where,  

q – Heat flux (W/m2)                          

Q – Heat source (W/m3) 

k – Thermal conductivity (W/m.K) 

T – Temperature (K)       

Boundary conditions specified in section 6.2.1.2 are used to estimate conduction losses. 

These conduction losses act as a heat source in thermal model. Dirichlet boundary 

conditions is applied on all outer boundaries of the cubic unit cell (i.e., a temperature of 

293 o K is specified on all outer boundaries of the model). 

6.3.1.2.3 Assignment of material properties 

Table 6.2 lists the material attributes that have been ascribed to each constituent phase. 

The density and heat capacity of the interphase material are considered to be the same 

as the matrix material in this study. Because the interphase thermal conductivity is 

unknown, the effective thermal conductivity of nanocomposites is calculated for various 

interphase thermal conductivity values obtained from an iterative technique described in 

later sections. 
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Table 6.2   Material properties of different constituents in the numerical model 

Material 
properties 

Epoxy Alumina nanoparticles Interphase 

Thermal 
conductivity 

0.16 W/K.m 
 

30 W/K.m 
 

- 

Density 
1.17 g/cm3 

 
3.97 g/cm3 

 
1.17 g/cm3 

 

Heat 
capacity 

1050 J/kg.K 
 

880 J/kg.K 
 

1050 J/kg.K 
 

Electrical 
conductivity 

(dc) 

1.98×10-14   S/m 
 

1×10-12   S/m 
 

0.964×10-14   S/m 

 

6.3.1.2.4 Calculation of effective thermal conductivity of the model 

The effective thermal conductivity of composites is estimated using equation shown 

below: 

〈𝑞𝑞〉 = 𝑘𝑘. 〈𝑇𝑇𝑇𝑇〉                                                                                                             (6.7) 

Where 〈𝑞𝑞〉 represents the average heat flux magnitude over the volume of the cube, k 

denotes the effective thermal conductivity, and 〈𝑇𝑇𝑇𝑇〉 represents temperature gradient.  

6.3.1.2.5 Validation of the Modeling Method 

It is critical to ensure that the modelling technique described above in terms of physics 

and boundary conditions results in a solution with an acceptable accuracy limit. A 

simple geometry for which an analytical solution is possible is considered to verify the 

FEA described above. A spherical particle with a diameter of 50 nm is surrounded by a 

cube with a side length of 200 nm in the geometrical model depicted in Figure 6.9. The 

identical physics and boundary conditions stated in Section 6.3.1.2 are used in the finite 

element analysis. The thermal conductivities of the cube (host material) and the 
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spherical particle (filler) are 5 W/Km and 10 W/Km, respectively. Finite element 

analysis estimates an effective thermal conductivity of 5.031 W/K.m for this numerical 

model. 

The next step is to establish an analytical solution [103] to validate the numerically 

predicted thermal conductivity.   

 
(a) 

 

(b) 

Figure 6.9   Model geometry considered for FEA and analytical study (a) 3-D view (b) 
2-D view 

  

Heat flow and thermal conductivity are related as per Fourier law [104] given below: 

𝑄𝑄 = 𝑘𝑘𝑘𝑘 ∆𝑇𝑇
𝑑𝑑𝑑𝑑

                                                                                                               (6.8) 

Where, 

Q - Quantity of heat flow through the model (W) 

k - Thermal conductivity (W/K.m) 

A - Cross section area (perpendicular to the path of heat flow) 

T - Temperature (K) 
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Equation 6.8 can be written as:  

𝑘𝑘 = 𝑄𝑄

𝐴𝐴�∆𝑇𝑇𝑑𝑑𝑑𝑑�
                                                                                                               (6.9) 

Heat flows through three series-connected regions, A, B, and C, as shown in Figure 

6.10. Thermal conductivities A, B, and C are denoted by the symbols kA, kB, and kC. 

Because A and B are the same material, their thermal conductivities are the same (i.e., 

kA= kC). Part B is made up of two materials (host and filler). The effective thermal 

conductivity value of part B (kB) is calculated using the procedure detailed below.  

 
Figure 6.10   Heat transfer through different parts of the model 

 

In part B total heat (Q) divides into two parts. Heat Q1 flows through material 1 (host) 

and Q2 through material 2 (filler). Taking a thin elemental piece of length dx and 
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applying Fourier’s law of heat conduction, thermal conductivity kB is written as 

equation 6.10. 

𝑘𝑘𝐵𝐵 = 𝑄𝑄1 + 𝑄𝑄2
𝐴𝐴�∆𝑇𝑇𝑑𝑑𝑑𝑑�

                                                                                                       (6.10) 

𝑘𝑘𝐵𝐵 = 𝑄𝑄1
𝐴𝐴�∆𝑇𝑇𝑑𝑑𝑑𝑑�

+ 𝑄𝑄2
𝐴𝐴�∆𝑇𝑇𝑑𝑑𝑑𝑑�

                                                                                         (6.11) 

Using equation 6.9, kB can be written as: 

𝑘𝑘𝐵𝐵 = 𝑘𝑘1𝐴𝐴1
𝐴𝐴

+ 𝑘𝑘2𝐴𝐴2 
𝐴𝐴

                                                                                            (6.12) 

Where, A1, A2 are cross section area of cube in part B and sphere in part B respectively. 

Effective thermal conductivity of entire region B is given by: 

𝑘𝑘𝐵𝐵 =  ∫
�𝑘𝑘1𝐴𝐴1𝐴𝐴 +𝑘𝑘2𝐴𝐴2 

𝐴𝐴 �𝑑𝑑𝑑𝑑

𝐿𝐿𝐵𝐵

𝑜𝑜
𝐿𝐿𝐵𝐵

                                                                            (6.13) 

𝑘𝑘𝐵𝐵 = 𝑘𝑘1𝑉𝑉1+𝑘𝑘2𝑉𝑉2
𝐿𝐿𝐵𝐵𝐴𝐴

                                                                        (6.14) 

Where, V1, V2 in part B represents the volume of material 1 and material 2 respectively.  

 

For illustration purposes, the lengths of parts A, B, and C are set to LA=75 nm, LB=50 

nm, and LC =75 nm, respectively, while the thermal conductivity values of the host and 

spherical filler material are set to 5 W/K.m and 10 W/K.m, respectively. For these 

numerical values, equation 6.14 calculates an effective thermal conductivity of 

5.163624 W/K.m for portion B. 
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Thermal resistance of part A, part B and part C are given by: 

𝑅𝑅𝐴𝐴 = 𝐿𝐿𝐴𝐴
𝐴𝐴∗𝐾𝐾𝐴𝐴

                                                                                              (6.15) 

𝑅𝑅𝐵𝐵 = 𝐿𝐿𝐵𝐵
𝐴𝐴∗𝐾𝐾𝐵𝐵

                                                                                              (6.16) 

𝑅𝑅𝐶𝐶 = 𝐿𝐿𝐶𝐶
𝐴𝐴∗𝐾𝐾𝐶𝐶

                                                                                              (6.17) 

RA, RB and RC are calculated as 3.75×10-4 K/W, 2.42×10-4 K/W and 3.75×10-4 K/W 

respectively. Equivalent thermal resistance of series region i.e. A, B, and C is given by: 

Requivalent = RA + RB + RC                                                                                             (6.18) 

Computed equivalent thermal resistance of the composites is given by 9.92207×10-4 

K/W. 

Hence, effective thermal conductivity of the composites structure is given by: 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐿𝐿
𝐴𝐴∗𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                                                                                          (6.19) 

By substituting specified numerical values in equation 6.19, the effective thermal 

conductivity of composites is determined to be 5.039 W/K.m. As can be seen, the 

analytical solution deviates from the numerical solution by only 0.16 %. Thus, the 

modeling technique is justified in terms of physics, domain properties, and boundary 

conditions, as the numerical solution obtained matches the analytical solution quite 

well. 
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6.3.1.2.6 Estimating thermal conductivity of interphase in 

nanocomposites 

Numerical modeling approach to estimate effective thermal conductivity in composites 

is validated in the preceding section. This part intends to estimate the effective thermal 

conductivity of nanocomposites model depicted in Figure 6.2. The thermal conductivity 

of interphase is estimated using the methodology described in section 5.4. The 

following steps are followed to estimate the thermal conductivity of interphase:  

Step 1-Record experimental thermal conductivity values for pure epoxy and 

nanocomposites. 

Step 2-Import the model created in COMSOL Multiphysics. Assign material properties, 

describe the model’s physics, and apply appropriate boundary conditions.  

Step 3-Set the simulated thermal conductivity of nanocomposite to zero as an initial 

trial value. Specify a convergence tolerance value of 0.001. Assign a value of 0 as the 

initial mean, a value of 30 as the upbound, and a value of 0.001 as the lowbound.  

Step 4-Compare measured thermal conductivity of nanocomposites to that computed 

using a numerical model. If this difference is more than the convergence tolerance limit, 

go to the next step. If the difference is less than the convergence tolerance, store the 

interphase's thermal conductivity value and exit the program. 

Step 5-Calculate the mean value of upbound and low bound. Assign this mean value to 

interphase thermal conductivity. 

Step 6-Calculate the total heat flux and temperature gradient using the numerical model. 

Determine the thermal conductivity of nanocomposite using total heat flux magnitude 

and temperature gradient. This nanocomposite thermal conductivity value should be 

stored. 
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Step 7-The computed value of the effective thermal conductivity of the nanocomposites 

is compared to the measured value. If the computed value exceeds the measured value, 

then assign upbound as the mean value. If the computed value is lower than the 

measured value, then a low bound is used as the mean. 

Step 8-Return to step 4 and repeat until convergence is achieved.  

For sake of clarity, this proposed algorithm is also depicted using a flow chart in Figure 

6.11.   
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Start

Use COMSOL with MATLAB livelink

Read experimental values of thermal conductivity 
of pure epoxy & nanocomposite and store

Define all the variables

Import the COMSOL model from application 
builder. Assign the material properties and define 

the physics for the model.

(TC_NC_Simulated - TC_NC_ Measured) 
> Tolerence

YES

NO

TC_Interphase_Final = TC_Interphase; 
iteration = 0;

END

iteration = iteration+1

mean =(upbound+lowbound)/2; 
TC_Interphase = mean;

Change thermal conductivity value of interphase 
to TC_Interphase

Simulate the COMSOL Model and calculate total 
heat flux magnitude and temperature gradient 

magnitude inside the model. calculate the thermal 
conductivity of nanocomposite using equation 1. 

Store this thermal conductivity value of 
nanocomposite to TC_NC_Simulated

TC_NC_Simulated > 
TC_NC_ Measured

upbound = mean lowbound = mean

YES NO

TC_NC_Simulated = 0;
Bisection Method variables:

mean =0;
upbound = 30;

lowbound = 0.001;

Store the value of thermal conductivity of 
interphase

 

Figure 6.11   Flowchart to estimate the thermal conductivity of the interphase 
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6.4 RESULT AND DISCUSSION 

The thermal conductivity of alumina particles as specified by the manufacturer is 30 

W/K.m, and the measured thermal conductivity of neat epoxy samples is 0.16 W/K.m. 

This shows that the epoxy resin (a thermoset polymer) possesses significantly lower 

thermal conductivity than alumina. XRD spectra of epoxy and alumina nanoparticles 

are shown in Figure 4.3a and 4.3b, respectively. The XRD pattern clearly indicates the 

amorphous and crystalline nature of epoxy and alumina, respectively. One of the main 

reasons for the lower thermal conductivity of epoxy resin is its high degree of 

amorphousness. Besides being amorphous, epoxy resin exhibits low thermal 

conductivity due to its low atomic density and higher mismatch in its molecular thermal 

vibrations.[105] The XRD pattern of epoxy alumina nanocomposites is shown in Figure 

4.3c explicitly indicates the presence of alumina particles in composite samples. 

The effect of nanofiller inclusion on the thermal conductivity of epoxy is estimated 

using the numerical model described earlier. To begin, the numerical model treats 

nanocomposites as a two-phase system. The computed thermal conductivity is then 

compared with the measured thermal conductivity. The bar chart in Figure 6.12 shows 

the measured and numerically estimated effective thermal conductivity of 

nanocomposite samples. The calculated thermal conductivity of nanocomposites is 

significantly lower than the measured value. Thus, considering a nanocomposite sample 

as a two-phase system is unacceptable, particularly when nanocomposites are 

synthesized using surface-treated nanoparticles. Chapter 4 presented a detailed analysis 

to demonstrate how the interaction of a surface-treated filler and polymer matrix would 

eventually result in the formation of interphase. The algorithm discussed in the previous 

section predicts interphase thermal conductivity of 0.351 W/K.m. 
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Figure 6.12   Thermal conductivity of nanocomposite sample (measured value) and 
simulated value for a two-phase model 

 

In order to validate the estimated thermal conductivity of interphase, a numerical 

model is built with a nano alumina content of 2 vol.%. The effective thermal 

conductivity of nanocomposites (with filler content of 2 vol.%) is determined by 

ascribing known material properties to each of the three phases (i.e., base polymer, 

filler, and interphase). Epoxy resin, alumina, and interphase have thermal conductivity 

of 0.16, 30, and 0.351 W/K.m, respectively. The numerical model predicts that the 

effective thermal conductivity of nanocomposites is 0.191 W/K.m, which is consistent 

with experimentally determined thermal conductivity. 

Furthermore, for a three-phase system, the effective thermal conductivity of composites 

should lie within the upper and lower Wiener bounds[106]. The upper and lower wiener 

bounds are given by (6.20) and (6.21). 

𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = ɸ𝑝𝑝.𝑘𝑘𝑝𝑝 + ɸ𝑖𝑖. 𝑘𝑘𝑖𝑖 + (1 − ɸ𝑝𝑝 − ɸ𝑖𝑖).𝑘𝑘𝑚𝑚                                                     (6.20) 

𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �ɸ𝑝𝑝
𝑘𝑘𝑝𝑝

+ ɸ𝑖𝑖
𝑘𝑘𝑖𝑖

+ (1−ɸ𝑝𝑝−ɸ𝑖𝑖)
𝑘𝑘𝑚𝑚

�
−1

                                                                            (6.21) 
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where, 

kupper - Upper wiener bound  

klower - Lower wiener bound 

ɸp - Volume fraction of filler particles 

ɸi - Volume fraction of interphase 

kp - Thermal conductivity of filler particles 

ki  - Thermal conductivity of interphase 

km - Thermal conductivity of the matrix 

For a nanocomposite sample with a filler content of 1 vol.%, kupper and klower are 0.471 

W/K.m and 0.168 W/K.m, respectively. The effective thermal conductivity of epoxy 

alumina nanocomposites predicted using the numerical model is 0.174 W/K.m, and this 

value lies within the upper and lower Wiener bounds. Similarly, effective thermal 

conductivity estimated by the proposed numerical model for nanocomposites 

(containing 2 vol.% of nano alumina) is within Wiener bounds. Thus, each of the 

studies described above verifies the accuracy of the numerical model. Interphase 

thermal conductivity is calculated to be substantially greater than the thermal 

conductivity of the neat polymer. High thermal conductivity of interphase may be 

attributed to the polymer chain's alignment at filler matrix interfaces. Andritsch[107] 

proposed a polymer chain alignment model and explained how aligned chains might 

contribute to a nanocomposites sample's effective permittivity. Similarly, few other 

researchers[70], [72], [108]–[113] have published on the impact of chain alignment on 

the thermal conductivity of polymers. Heat transfer in insulating polymers is thought to 

be primarily facilitated by phonon transport. As shown in Figure 6.13, polymers’ 

irregular crystal structure results in the scattering of thermal energy carriers (phonons). 

Polymeric materials with increased phonon scattering have low thermal conductivity. 
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Aligned polymer chains minimize interfacial resistance, thus facilitating the phonon 

transport between filler and base epoxy, and vice versa. The schematic in Figure 6.14 

illustrates how aligned polymer chains at the interfaces can boost phonon transport, 

resulting in an increase in interphase thermal conductivity. This means that the 

structural modification at the interface ultimately manifests as an increase in the thermal 

conductivity of nanocomposites. 

 
Figure 6.13   Phonon scattering phenomena in a polymer. 

 
Figure 6.14   Phonon transport phenomena through aligned polymers chains in 

interphase. 
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6.5 SUMMARY  

A computational approach for estimating the electrical and thermal conductivity of 

interphase in epoxy alumina nanocomposites is developed. Based on experimental data 

and numerical modeling, a complete analysis reveals that the thermal conductivity of 

interphase in epoxy alumina nanocomposites is much higher than that of neat epoxy. 

The interphase's electrical conductivity (dc) was observed to be lower than that of neat 

epoxy. The aligned polymer chain at filler matrix interfaces may be responsible for the 

high thermal conductivity of the interphase. The alignment of the polymer chain lowers 

phonon scattering and hence improves heat transmission efficiency. Furthermore, filler 

matrix interaction at the interface may promote crystallinity, which reduces electrical 

conductivity. As a result, nanocomposites made with surface-treated nanofillers are 

successful in increasing thermal conductivity while decreasing electrical conductivity. 

This quantitative examination of interphase thermal and electrical conductivity will aid 

in evaluating the performance of nanocomposites with varying filler concentrations, 

filler morphologies, and orientation. This will provide useful information and new 

insights for the thermal design of a complicated system using nanocomposites. Using 

quantitative data on interphase from the current work, the following chapter analyses 

the optimal filler concentrations for improved electro-thermal properties. 

 

 


