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PREFACE 

Electrical insulation constitutes the backbone for all electrical equipment. At the same 

time, they are considered as the weakest link. Electrical insulation's capacity to endure 

degradation under various operating stresses (e.g., electrical, mechanical, thermal, and 

environmental) is a key factor in determining the reliability of electrical components 

and systems. Polymeric materials are widely used insulating materials in electrical 

generators, transformers, bushings, line insulators, circuit breakers, underground cables, 

GIS, surge arresters, and electrical machines. These materials enjoy widespread 

acceptance among electrical insulation design engineers due to many desirable 

attributes (e.g., good dielectric properties, high strength to weight ratio, and ease of 

molding). However, charge accumulation at the high dc field, poor discharge resistance, 

low thermal conductivity, limited-service temperature range, and inadequate stiffness 

have proven to be severe obstructions to the far-reaching utilization of these materials. 

Often, inorganic oxide fillers are added to the host polymer in order to increase its 

thermo-mechanical properties. Unfortunately, the synthesis of polymer composites 

using conventional micro-sized fillers demands a large filler loading; as a result, better 

thermo-mechanical properties are obtained at the expense of deteriorated electrical 

properties. An idea that originated under the name of polymer nanocomposites (PNCs) 

is supposed to offer a potential solution to the aforementioned problems. The 

combination of nanoscale reinforcement and a polymer matrix has the potential to 

produce exceptional material characteristics. Recent literature is a testimonial of the 

enormous research on synthesis and characterization of PNCs for various engineering 

applications. Polymer nanocomposites offer unprecedented material properties, which 

are widely attributed to a high proportion of interphase generated between the matrix 

and filler material. Thus, interphase characterization is critical for tailoring these novel 
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materials to a broad range of engineering and scientific applications. The literature 

striving to make interphase perceivable is indeed exiguous. In the recent past, few 

theoretical models have been proposed to corroborate interphase and its affiliation 

material properties. However, current research falls far short of providing a mechanistic 

description of the interphase formation and its experimental manifestation. Furthermore, 

a quantitative analysis of interphase, as well as qualitative analysis, is critical for 

obtaining tailored material properties for a variety of applications and making PNCs 

commercially viable. This work unravels and sheds light on the interphase formation 

and its affiliation with electro-thermal properties in epoxy alumina nanocomposites. 

Furthermore, a comprehensive quantitative analysis of interphase provides an 

intellectual foundation for evaluating nanodielectrics for future applications in the 

electrical power industry. Epoxy resin (LY556 Bisphenol-A, density 1.17 g/cm3 at 

25oC) supplied from Huntsman was used as a host material. Utilities have extensive 

experience using traditional micro-sized aluminum oxide (Al2O3) fillers to improve 

mechanical strength in composites. Thus, nanometer-sized aluminum oxide/or alumina 

particles are used as filler material in the present study. 

One of the most difficult aspects of nanocomposites synthesis is achieving 

homogeneous nanofiller dispersion in the polymer matrix. Nanoparticles tend to 

agglomerate due to their high specific surface area and hydrophilic nature. Additionally, 

inorganic oxide fillers are incompatible with organic polymers due to their chemical 

composition. Thus, the first part of the study establishes an experimental protocol for 

the fabrication of nanocomposites with well-dispersed nanofillers. Additionally, 

inorganic fillers have their surfaces functionalized with a suitable surfactant to improve 

their dispersion and bonding to the host polymer. FTIR spectroscopy is used to verify 

the surface functionalization of nanofillers, and FESEM is used to qualitatively examine 
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filler dispersion in the polymer matrix. Furthermore, a numerical method for 

quantifying nanofiller dispersion in the polymer matrix is developed.  

The second part of the thesis explores the formation of interphases in epoxy 

alumina nanocomposites. To investigate interphase and its relationship to dielectric 

properties, three types of samples are examined: neat epoxy, nanocomposites 

(incorporated with surface-treated nanofillers), and nanocomposites (formed with 

untreated nanofillers). Synthesized samples are subjected to dielectric properties 

measurements i.e., measurement of ac dielectric strength, measurements of complex 

permittivity, and measurement of dc conductivity. Further, the thermal characteristics of 

nanocomposites are analyzed by thermogravimetric analysis (TGA). Characteristics 

information received from thermogravimetric analysis and dielectric properties 

measurements insinuates a change in chemistry and molecular mobility at the filler 

matrix interfaces. Using the chemical structure of different constituent phases and FTIR 

spectroscopic analysis, a chemical interactive model is presented to elicit interphase 

formation in composites. The impact of interfacial interaction on the long-term 

performance of the nanodielectrics is examined by conducting endurance tests under 

divergent ac stress. Nanocomposites exhibit a clear superior erosion resistance over the 

neat polymer. Under the application of cyclic non-uniform ac stress, progressive erosion 

is likely to initiate and grow from high-stress region. Nanofillers may act as an obstacle 

and force the eroded channels to move through a zig-zag path. Additionally, surface-

treated nanofillers owing to their strong chemical bonding with polymer matrix 

expected to retard the damage process by alleviating fatigue and distributing 

electromechanical stress between filler and polymer matrix.  

The interphase is anticipated to have material properties distinct from those of 

the matrix and filler materials. To obtain tailored material properties for a variety of 
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applications, quantitative interphase analysis in conjunction with qualitative analysis is 

critical. As a result, the third part of the thesis describes a methodology for quantifying 

interphase's permittivity and thickness. Epoxy-based nanocomposites samples 

(synthesized using surface-treated nanoalumina) are subjected to dielectric 

spectroscopic measurements over a frequency range of 10-2 to 107 Hz. A finite element-

based numerical model is developed to estimate the effective permittivity of composites 

for different values of assumed interphase parameters (i.e. thickness and permittivity). 

A bisection method-based algorithm is devised to assign actual thickness and 

permittivity to interphase based on the best fit of experimental and simulated results. It 

is observed that interphase in epoxy alumina nanocomposites may extend up to 100 nm, 

and the relative permittivity of interphase is slightly lower than the effective 

permittivity of composites. 

Low electrical conductivity combined with high thermal conductivity has 

become an increasingly desirable characteristic for polymeric insulating materials 

operating at elevated voltage levels. Conduction loss is the primary source of heat 

generation within dielectric materials in a high voltage direct current (HVDC) system, 

and conduction-based heat transfer is governed by the dielectric material's thermal 

conductivity. In recent years, polymer nanocomposites (PNCs) have gained prominence 

as promising candidates for addressing these two conflicting requirements. As 

evidenced by a growing body of literature, interphase appears to be critical in enhancing 

the properties of PNCs. On the other hand, the thermoelectric properties of interphase 

are unknown and are assumed to be significantly different from those of the filler and 

base polymer. Because electrical conduction losses generate heat, thermal analysis 

under electrical stress requires knowledge of dc conductivity. Thus, the fourth section of 

the thesis examines the interphase's electrical and thermal conductivity in epoxy 
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alumina nanocomposites. To begin, we determine the dc conductivity of epoxy alumina 

nanocomposite samples using the three-electrode method and a Keithley 6715B 

electrometer. The effective dc conductivity of nanocomposites is estimated using a 

numerical model based on finite elements. Following that algorithm described in the 

previous section is used to determine the electrical conductivity of interphase using 

experimental results and numerical modeling in conjunction. Subsequently, the thermal 

conductivity of epoxy alumina nanocomposite samples synthesized in the laboratory is 

measured using TPS-500.  A finite element method (FEM) based numerical model is 

developed to estimate the effective thermal conductivity of epoxy alumina 

nanocomposites for a range of assumed interphase thermal conductivity values. By 

using simulation and experiment results in conjunction, the thermal conductivity of 

interphase is estimated by using the algorithms described above. A detailed analysis of 

experimental and numerical modeling data suggests that the thermal conductivity of the 

interphase in epoxy alumina nanocomposites is significantly higher than that of the host 

polymer. On the other hand, dc conductivity of the interphase found to be lower than 

that of neat epoxy. The aligned polymer chain at filler matrix interfaces may be 

responsible for the high thermal conductivity of the interphase. The alignment of the 

polymer chain lowers phonon scattering and hence improves heat transmission 

efficiency. Furthermore, filler matrix interaction at the interface may promote 

crystallinity, which reduces electrical conductivity. As a result, nanocomposites made 

with surface-treated nanofillers are successful in increasing thermal conductivity while 

decreasing electrical conductivity. 

Polymers are frequently filled with nanosized inorganic fillers that are 

electrically insulating but conduct heat more efficiently than the base polymer. It is 

critical to determine the filler concentrations that improve thermal conductivity without 
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impairing electrical properties. Additionally, as demonstrated in the preceding chapters, 

the interphase surrounding nanofillers plays a critical role in the change of properties in 

polymer nanocomposites. Thus, the fifth part of the work investigates the effect of 

interphase on optimizing the nanofiller content for improved electro-thermal properties. 

It has been observed that that thermal property is governed by nanofiller concentrations, 

whereas dielectric properties are governed by interphase volume fraction. The thermal 

conductivity increases monotonically as filler concentrations are increased, provided 

that filler dispersion is adequate. At high filler content, thermal conductivity is expected 

to increase dramatically due to the formation of a conducting network. As a result, the 

optimal filler concentrations for enhanced dielectric and thermal properties are those 

with the highest interphase volume fraction. Beyond these optimal filler concentrations, 

increased thermal conductivity is possible at the expense of degraded dielectric 

properties.   

In summary, the work constitutes an extensive study of interphase and associated 

thermo-electrical properties in epoxy-alumina nanocomposites. Furthermore, the thesis 

presents a comprehensive numerical modeling strategy that will be critical for assessing 

the electro-thermal behavior of various polymer-based nanocomposites. 

  


