CERTIFICATE

It is certified that the work contained in the thesis titled "**Reliability Assessment of Distribution Systems Integrated with Renewable Energy Sources**" by "**Sachin Kumar**" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and State-Of-The-Art for the award of Ph.D. Degree.

> Supervisor Professor (Dr.) R.K. Saket Department of Electrical Engineering, IIT(BHU), Varanasi, Uttar Pradesh, INDIA.

DECLARATION

I, Sachin Kumar, certify that the work embodied in this thesis is my own bona fide work and has been carried out by us under the supervision of **Profes**sor (Dr.) R.K. Saket from July-2018 to July-2021, at the Department of Electrical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, INDIA. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

(Sachin Kumar)

Signature of the student

Place:

C

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of our knowledge.

Professor (Dr.) R.K. Saket (Supervisor)

Head of Department Professor (Dr.) R.K. Pandey

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: **"Reliability Assessment of Distribution Systems Inte**grated with Renewable Energy Sources". Name of Student: Sachin Kumar

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Date: Place:

(Sachin Kumar)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

То

My Grand Parents

(Late Mr. Babu Nandan Ram & Late Mrs. Dasi Devi)

My Parents

(Mr. Ghurbhari Ram & Mrs. Kamla Devi)

and

My Wife

(Mrs. Nidhi)

ii

Acknowledgments

No doubt that the thesis is mine, but I owe my gratitude to all those people who have made this thesis work possible and because of whom my experience as a research scholar has been one that I will cherish forever.

I whole heartily express my regards and gratitude to my esteemed supervisor Professor (Dr.) R.K. Saket, Professor, Department of Electrical Engineering, IIT (BHU), Varanasi, Uttar Pradesh, INDIA, for his moral guidance, mentoring, and constant encouragement during my Ph.D. work. Though he is the thesis supervisor, he has treated me just like his child and provided all kind of support whenever required. In addition, I would like to express profound gratitude towards my head of the department Professor (Dr.) R.K. Pandey and former head of the department Professor (Dr.) Devender Singh for their invaluable time, support, and suggestions, which made my research work easy and proficient. I got the best research facilities and it was always a pleasure to spend precious time in the systems laboratory and discuss research problems with my HoD sir.

I have no words to express gratitude to my IIT (BHU) faculty members. Still, I would like to mention special thanks to my subject teachers Prof. Shyam Krishna Nagar (Retd.), Prof. Shiv Pujan Singh, Prof. Suprakash Gupta, Dr. Soumya Ranjan Mohanty, and Dr. Kalpana Chaudhary for implementing their subject concepts in my research work.

I am lucky to have Prof. R.K. Srivastava (Department of Electrical Engineering) and Prof. Suprakash Gupta (Department of Mining Engineering) as my Research Performance Evaluation Committee (RPEC) members from IIT (BHU), Uttar Pradesh, INDIA. It wasn't easy to achieve continuous progress in my research work without their suggestions and support. I would also like to thank Dr. Rajeev Kumar Singh (Convener, DPGC, Department of Electrical Engineering, IIT (BHU), Uttar Pradesh, INDIA) for his positiveness towards any Post Graduate student.

I am obliged to the staff members of Department of Electrical Engineering, IIT (BHU), Varanasi, Uttar Pradesh, INDIA, with special mention to Mr. Sanjeev Kumar Maurya, Mrs. Ranjana Singh, Mr. Santosh Kumar Vishwakarma, Mr. Sirish Anand, Mr. Sunil Kumar Sonkar, Mr. Satish Singh, who have been patient to deal with my Ph.D. related work throughout.

Besides, I want to express my deepest gratitude to Dr. Abhishek Kumar (Department of Artificial Intelligence, Kyungpook National University, Deagu South Korea), who supported me throughout my experimental work in the System laboratory. I am grateful to Dr. Dharmendra Kumar Dheer (National Institute of Technology, Patna, Bihar, INDIA), Prof. Sanjeevikumar Padmanaban (Aarhus University, Herning, Denmark), Prof. Frede Blaabjerg (Aalborg University, Denmark), Prof. Ramesh C. Bansal (University of Sharjah, United Arab Emirates), Prof. Almoataz Youssef Abdelaziz (Ain Shams University & Future University, Egypt), Prof. Narottam K. Das (Central Queensland University, Melbourne, Australia), Mr. Rajvikram Madurai Elavarasan (Clean and Resilient Energy Systems (CARES) Laboratory, Texas A&M University, Galveston, United States of America), who have provided me with technical, moral, and emotional support during my research program. My gratitude would not be valid till I would not mention special thanks to my Ph.D. Junior Ms. Kumari Sarita for her continuous technical and moral support till date.

Special gratitude goes out to my colleagues and friends with special mention to Dr. Bablesh Jha, Mr. Amit Singh/Mr. Basant Sethi (IIT (BHU), Uttar Pradesh, INDIA), Ms. Aakanksha Singh. S. Vardhan/Ms. Aanchal Singh S. Vardhan (Shri Govindram Seksaria Institute of Technology and Science, Indore, Madhya Pradesh, INDIA) for their physical, emotional, and intellectual support, especially precious suggestions in need; without them, there was no fun and encouragement in these years at IIT (BHU) campus. In addition, I can not forget the priceless support of my research team members, Professor Saket Research Team (PSRT) group, Dr. Sanjay Kumar, Dr. Sunil Kumar Singh, and Dr. Om Prakash Bharti, during my initial phase of Ph.D. research work. Special thanks to my first friends in IIT (BHU), Mr. Pawan Kumar Yadav and Mr. Deepak Kumar from the Department of Mining Engineering, for their selfless help. At last, my landlord, who provided me a comfortable stay during my Ph.D. program.

I got the Ph.D. admission under the Quality Improve Program (QIP), Government of INDIA scheme, which was feasible due to my parental college Govind Ballabh Pant Institute of Engineering & Technology (GBPIET), Pauri-Garhwal, Uttarakhand, INDIA, and its faculty and staff members. Also, I would convey my special thanks to Prof. Mahipal Singh Chauhan, Prof. Vishnu Mohan Mishra, Prof. Manoj Kumar Panda, Mr. Sandeep Kumar, Dr. Shail Dinkar, Dr. Bhola Jha, (Late) Mr. Suresh Kumar, Mr. Tripuresh Joshi, Mr. Sachin Negi, Mr. Dinesh

Kumar, Mr. Dhirendra Mehra for their continuous motivation regarding the completion of my Ph.D. work at the earliest.

Whenever I felt down during the Ph.D. program, I remember my school, graduation, and masters friends. I would like to pay my special gratitude towards Mr. Pradeep Gupta (Indian Overseas Bank, Hyderabad, Andhra Pradesh, INDIA), Dr. Kapil Ghai (Graphic Era Hill University, Dehradun, Uttarakhand, INDIA), Dr. Niraj Kumar (Vellore Institute of Technology, Vellore, Tamil Nadu, INDIA), Mr. Pradeep Kumar (National Thermal Power Corporation Limited, Unchahar, Uttar Pradesh, INDIA), and Mr. Ravi Prakash (Bharat Heavy Electricals Limited, New Delhi, INDIA), for their supportive, boost-up, and mesmerising talks.

Last but not the least, I thank especially to my parents Mr. Ghurbhari Ram and Mrs. Kamla Devi, who have been always with me in any circumstances, my wife Mrs. Nidhi, who has always given the better suggestions and solutions, my son Mr. Abhyuday Singh, and my daughter Ms. Advika Singh, my sisters Mrs. Anju Kumari and Mrs. Sanju Kumari, my brother-in-laws Dr. Ajay Kumar, Mr. Manoj Kumar, and Mr. Sandeep Kumar, my respected in-laws Mr. Sughar Lal Verma and Mrs. Maya Devi, my loving uncles and aunts Mr. Swarath Ram and Mrs. Lakshmina Devi, Mr. Shyam Narayan Singh and Mrs. Sheela Singh, and Advocate (Retired) D.P. Bijalwan for their constant emotional support and encouragement, without which this Ph.D. work would have not been completed at all. I am grateful to my other family members who have supported me along the way.

Date: _____

Sachin Kumar

Abstract

This thesis provides a thorough examination of the electrical power system's reliability assessment. The investigations include the generation of natural lightning waveforms to evaluate the reliability of the power system by analysing the effects of the Lightning Impulse Voltage (LIV) waveform. Further, the integration of Distributed Energy Resources (DER), such as Conventional Generation (CG) and Renewable Energy Source (RES), including wind, solar, and battery storage systems, has also been accomplished, and the electrical system's reliability has been analyzed.

Incorporating the renewable energy sources into the distribution network offers some benefits with drawbacks. However, the advantages outweigh the disadvantages since it provides limitless, accessible, and cost-effective information in comparison to traditional sources. According to recent studies, the uncertainties of electrical power sources lead to probabilistic and reliability assessments of electrical systems. The system includes components that are prone to failure, such as offshore and onshore wind farms, microgrids, energy storage systems, and other high voltage networks. As a result, it's critical to talk about how to deal with uncertainty factors in the generating, transmission, and distribution systems. As a result, this thesis discusses use of such conventional energy, wind energy, solar energy, and battery storage technologies for reliability assessments.

When uncertainties are taken into account, integrating wind energy into the conventional grid poses a number of significant difficulties. To evaluate the dependability and performance of the Doubly Fed Induction Generator (DFIG)-based Wind Integrated Power System (WIPS), the uncertainties, such as the occurrence of a three-phase failure and lightning fault, are taken into account. As a result, the power system precondition research was conducted, which included Wind Farm (WF), Voltage Source Converter (VSC), and lightning voltage and current phenomena. As a result, this thesis considers the realistic equivalent circuit to generate lightning envelops of impulse voltage and current as well as rectangular pulse current. The resulting

lightning fault impulse voltage is then applied to the 3-phase terminals of grid-connected DFIGbased WIPS. To compare the output responses of the DFIG-based WIPS, a 3-phase short circuit fault is implemented. The controller gain values are used to monitor the system's behaviour under both faults. The gains of a sixth-order transfer function for Wind Turbine Generator (WTG) are calculated using an optimization technique, which included proportional (k_p) and integral (k_i) gains. The Monte-Carlo (MC) simulation technique is used to evaluate the power system's reliability, with the LIV being a major source of VSC failure. The DFIG-based WIPS is discovered to produce significant responses under both kinds of failures by finding the optimum controller settings. It has also been discovered that the decrease in the number of failures in VSC during the lightning strike increases the system's reliability.

The thesis work has been extended further on the reliability assessment of renewable energy interfaced EPDN considering the Electrical Power Loss Minimization (EPLM). EPLM aims at minimizing the detrimental effect of real power and reactive power losses in the distribution system. Some techniques, including integration of RES, network reconfiguration, and expansion planning, have been suggested in the literature for achieving EPLM. The optimal RES integration (also referred to as Distributed Generation (DG)) is one technique to minimize electrical losses. Therefore, the locations to accommodate these RESs are obtained by implementing two indexes, namely $index_1$ for single RES and $index_2$ for multiple RESs. Then, the optimization technique is applied to obtain an optimal sizing(s) of the Distributed Generations for achieving the EPLM. The reliability assessment of the distribution system is performed using the optimal location(s) and sizing(s) of the RESs (i.e., Solar Photovoltaic (SPV) and WTG.

Moreover, a Battery Energy Storage Device (BESD) is also incorporated optimally with the RESs to achieve the EPLM further and to improve the system's reliability. The result analysis is performed by considering the power output rating of WTG-GE's V162-5.6MW (IECS), SPV-Sunpower's SPR-P5-545-UPP, and BSS-Freqcon's BESS-3000 (i.e., Battery Energy Storage System (BESS) 3000), which the corresponding manufacturers provide. According to the study outcomes, the results are found to be coherent with those obtained using other techniques that are available in the literature. These results are considered for the reliability assessment of the electrical distribution system. reliability assessment is further analyzed considering the uncertainties in reliability data of WTG and SPV, including the failure rate and the repair time. The reliability assessment of optimally placed Distributed Generations is performed by considering the electrical loss minimization. It is inferred that the reliability of the EPDN improves by contemplating suitable reliability data of optimally integrated RESs.

This thesis thoroughly explores the reliability assessment of DG interfaced Distribution System (DS)s based on power loss minimization. The work has been performed on IEEE 33 bus and IEEE 118 bus Distribution Systems with 1CG, 1CG+1WTGs, and 1CG+2WTGs for several Power Factor (pf), including Unity Power Factor (UPF), 0.9, 0.85, and 0.82. Firstly, the optimal siting(s) and sizing(s) of DG/DGs is/are obtained based on loss of power minimization. An optimization technique is implemented to find the DGs' optimal sizing(s). The locations to accommodate these DGs are obtained by implementing the two indexes, namely, *index*₁, *index*₂, and *index*₃ for single and multiple DGs. The results obtained are coherent with the results obtained by using other techniques available in the literature. Then the reliability assessment of DS is accomplished considering uncertainties in DG reliability data, including failure per year (λ_p) and outage duration or Repair Time (RT). Various types of loads, including commercial, industrial, and residential, have also been considered to analyze the reliability. The reliability assessment of optimally placed DG integrated DS is performed for 1CG, 1CG+1WTGs, and 1CG+2WTGs, and it is observed that the DS's reliability improves with the increasing number of DGs and lower uncertainty in reliability data.

Contents

		Pa	ge
Ab	ostrac	t	vii
Co	ontent	S	xi
Li	st of T	fables	XV
Li	st of F	ligures	xix
Li	st of A	Abbreviations	xii
1	Intro	oduction	1
	1.1	General	1
		1.1.1 Historical Background	1
		1.1.2 Electrical Power System	2
	1.2	Concept of Reliability	3
	1.3	Reliability Functions	5
	1.4	Power System Reliability	8
		1.4.1 Reliability Parameters	10
		1.4.2 System-Based Indices	13
	1.5	Research Motivation	16
	1.6	Objectives of the Thesis	17
	1.7	Contributions of the Thesis	18
	1.8	Outlines of the Thesis	19
2	Lite	rature Survey	21
	2.1	Introduction	21
	2.2	Unreliability in Electrical Power Systems	22

		2.2.1	Possibilistic approach	27
		2.2.2	Probabilistic approach	28
	2.3	Reliab	ility Assessment of Power Systems	30
	2.4	Reliab	ility Analysis Considering Lightning Impulse	33
	2.5	Reliab	ility Improvement with Wind-Solar-Battery	34
	2.6	Integra	ating Wind Energy with Conventional Generation	37
	2.7	Summ	ary	47
3	Reli	ability A	Assessment of Wind Integrated Power System	49
	3.1	Introdu	uction	49
	3.2	Proble	m Statement	51
	3.3	Lightn	ing Impulse Voltage and Current Generation	53
		3.3.1	Impulse Voltage Generation	54
		3.3.2	Lightning Current Generation	56
	3.4	Optim	ization Technique and Monte-Carlo Method	59
		3.4.1	Particle Swarm Optimization	59
		3.4.2	Monte-Carlo Method	60
	3.5	Result	s and Discussion	62
		3.5.1	Impulse voltage and current generation	66
		3.5.2	Fault analysis with and without optimal gains	66
		3.5.3	Reliability Assessment	71
	3.6	Summ	ary	78
4	Reli	ability A	Assessment Considering Wind-Solar-Battery	79
	4.1	Introdu	uction	79
	4.2	Proble	m Formulation	81
		4.2.1	Optimal Location	81
		4.2.2	Power balance	86
		4.2.3	Objective Function	86
		4.2.4	Reliability Indices	88
		4.2.5	Constraints	88
		4.2.6	Constriction Factor-based Particle Swarm Optimization Technique	90
	4.3	Power	Equations of Renewable Energy Sources	91

		4.3.1	Wind Turbine Generator	91
		4.3.2	Solar Photovoltaic	93
		4.3.3	Battery Energy Storage Device	94
	4.4	Result	s and Discussion	95
		4.4.1	Renewable Energy Source: Location and Rating	96
		4.4.2	Active and Reactive Power Loss, and Bus Voltage	97
		4.4.3	Reliability Assessment	100
	4.5	Summ	ary	104
5	Reli	ability A	Assessment Considering Wind Energy with Conventional Generation	107
	5.1	Introdu	uction	107
	5.2	Proble	m Formulation	110
		5.2.1	Parameters adapted	110
		5.2.2	Optimal location	111
		5.2.3	Power balance	113
		5.2.4	Objective function	113
		5.2.5	Constraints	114
	5.3	Result	s and Discussion	117
		5.3.1	Distributed Energy Resources siting and sizing	118
		5.3.2	Active Power Loss, Reactive Power Loss, and Bus Voltage Profile	119
		5.3.3	Reliability Assessment	121
	5.4	Summ	ary	129
6	Con	clusions	s and Scopes for the Future Work	131
	6.1	Conclu	usions	131
	6.2	Benefi	ts of the proposed work	133
	6.3	Scopes	s for the Future Work	134
A	ppend	ix A T	est Systems	137
A	opend	ix B R	Reliability Data	141
Aj	opend	ix C D	C-link Voltage and Indexes obtained	145
Re	eferen	ices		149

List of Publications

List of Tables

Chapter 1

1.1	Reliability data adapted for 33 bus	12
1.2	Reliability data adapted for 118 bus	12

Chapter 2

2.1	Usual unavailability index of customers	22
2.2	Important attributes of research work on RE in an electrical power system	23
2.3	Insight on reliability indices and energy resources utilized in literature for reli-	
	ability assessment of Electrical Power Distribution Network	32
2.4	Literature comparison for DFIG-based WIPS	35
2.5	Literature comparison considering Wind-Solar-Battery	37
2.6	Reliability improvement methods with their pros and cons	38
2.7	Previously published work considering Conventional Generator	42
2.8	Literature related to 33 bus distribution network considering distributed gener-	
	ations	44
2.9	Literature related to 118 bus distribution network considering distributed gen-	
	erations	45
2.10	Reliability indices calculated in the literature for different Distribution Systems	46

Chapter 3

3.1	Parameters of time with tolerances for some standard impulse waves	53
3.2	Optimal gains obtained	63
3.3	Step response parameters obtained	64
3.4	Generation of standard LI waveforms by varying generator parameters	68

3.5	Comparative statement of all five cases	71
3.6	Reliability assessment using Monte-Carlo method	74
3.7	Determination of reliability related functions	75

Chapter 4

4.1	Values of indexes with corresponding bus number	86
4.2	Wind Turbine (V162-5.6 MW) specifications	93
4.3	Bifacial Solar Panel (SPR-P5-545-UPP) specifications	94
4.4	BESD (BESS 3000) specifications	95
4.5	DG location and DG size obtained	97
4.6	Literature results related to IEEE 33 bus with multiple DGs	98
4.7	Active power loss (MW) obtained considering WTG power factor	99
4.8	Minimum voltage, DG location, and reactive power loss (MVar) obtained	100
4.9	EENS (MWh per year) evaluated for different Scenarios	102
4.10	AENS (MWh per customer per year) evaluated for different Scenarios	102
4.11	SAIDI (hour per customer per year) evaluated for different Scenarios	103
4.12	SAIFI (failure per customer per year) evaluated for different Scenarios	104
4.13	ASAI (pu) evaluated for different Scenarios	105

Chapter 5

5.1	Values of indexes with corresponding bus number for the two test systems 113
5.2	Location and size of DER(s) obtained for different pfs
5.3	Active power loss obtained
5.4	Minimum voltage and reactive loss obtained
5.5	Reliability indices calculated in the literature for different distribution systems 123
5.6	EENS (MWh per year) evaluated for different DER reliability data 125
5.7	AENS (MWh per customer per year) evaluated for different DER reliability data 125
5.8	SAIDI (hour per customer per year) evaluated for different DER reliability data 127
5.9	SAIFI (failure per customer per year) evaluated for different DER reliability data127
5.10	ASAI (pu) evaluated for different DER reliability data
5.11	Reliability worth considering case 5

Appendix B

B .1	Reliability data adapted for 33 bus	141
B.2	Load distribution for 33 bus	142
B.3	Reliability data adapted for 118 bus	142
B.4	Load distribution for 118 bus	142
B.5	Cost per kilo-watt for reliability worth	143

Appendix C

C .1	$index_1$ values obtained	•	•	•	•	•	•	 	•	•	•	145
C.2	$index_2$ values obtained	•	•	•	•	•		 •	•	•	•	146
C.3	$index_3$ values obtained	•	•	•	•	•		 •	•	•	•	147
C.4	DC-link voltage obtained for corresponding gain values		•	•	•	•		 		•	•	148

List of Figures

Chapter 1

1.1	Functions related to reliability assessment.	7
1.2	Bathtub curve.	7

Chapter 2

2.1	Flow chart of unreliability dealing methods	27
2.2	Sources of unreliability parameters.	28
2.3	Approximate values of reliability indices	41
2.4	Reliability indices with 26 conventional generators and 43 WFs on IEEE RTS	
	69 bus system.	41

Chapter 3

3.1	Flow chart of research work performed in this chapter	51
3.2	Wind integrated power system with Rotor and Grid Side Converters	52
3.3	Equivalent circuit of impulse voltage generation.	54
3.4	Equivalent circuit of impulse current generation.	56
3.5	Equivalent circuit of rectangular pulse current generation	58
3.6	Algorithm for optimal k_p and k_i values	60
3.7	Monte-Carlo method for the reliability assessment.	61
3.8	Comparison of Step response.	63
3.9	Real power comparative waveform.	64
3.10	Reactive power comparative waveform.	65
3.11	DC-link voltage comparative waveform	65
3.12	Rotor speed comparative waveform	65

3.13	Waveforms generated for (a) Impulse voltage (b) Impulse current (c) Rectan-	
	gular pulse current.	67
3.14	Real power during 3-phase and Impulse faults	69
3.15	Reactive power during 3-phase and Impulse faults	69
3.16	DC-link voltage during 3-phase and Impulse faults	70
3.17	Rotor speed during 3-phase and Impulse faults	70
3.18	Probability of Success and Failure	75
3.19	Generated functions for (a) Cumulative distribution and Reliability (b) Failure	
	density (c) Hazard Rate	77

Chapter 4

4.1	Flow chart of research work performed in this chapter
4.2	General 2-bus system to formulate the line loss and load factor
4.3	Algorithm implemented for the research work
4.4	Voltage profile for 33 bus system considering WTG at 0.9 pf
4.5	Active and Reactive Power Losses WTG at UPF
4.6	EENS (MWh per year) obtained
4.7	AENS (MWh per customer per year) obtained
4.8	SAIDI (hour per customer per year) obtained
4.9	SAIFI (failure per customer per year) obtained
4.10	ASAI (pu) obtained

Chapter 5

5.1	Flow chart of research work performed in this chapter	109
5.2	Algorithm implemented	117
5.3	Voltage profile at UPF, 0.9 pf, 0.85 pf, and 0.82 pf for (a) 33 bus with 1CG, (b)	
	33 bus with 1CG+1WTG, (c) 33 bus with 1CG+2WTG, (d) 118 bus with 1CG,	
	(e) 118 bus with 1CG+1WTG, and (f) 118 bus with 1CG+2WTG	121
5.4	EENS for 33 bus system.	125
5.5	EENS for 118 bus system.	125
5.6	AENS for 33 bus system.	126

5.7	AENS for 118 bus system
5.8	SAIDI for 33 bus system
5.9	SAIDI for 118 bus system
5.10	SAIFI for 33 bus system
5.11	SAIFI for 118 bus system
5.12	ASAI for 33 bus system
5.13	ASAI for 118 bus system
5.14	ECOST for 33 bus system
5.15	ECOST for 118 bus system

Appendix A

A.1	IEEE 33 bus distribution system	138
A.2	IEEE 118 bus distribution system	139

List of Abbreviations

AENS	Average Energy Not Supplied
ASAI	Average Service Availability Index
ASUI	Average Service Unavailability Index
BESD	Battery Energy Storage Device
CAIDI	Customer Average Interruption Duration Index
CAIFI	Customer Average Interruption Frequency Index
CG	Conventional Generation
CF-PSO	Constriction Factor-based Particle Swarm Optimization
DER	Distributed Energy Resources
DFIG	Doubly Fed Induction Generator
DG	Distributed Generation
DS	Distribution System
ECOST	Expected Interruption Cost
EDNS	Energy Demand Not Supplied
EENS	Expected Energy Not Supplied
EIR	Energy Index of Reliability
ENS	Energy Not Supplied

EPDN	Electrical Power Distribution Network
EPLM	Electrical Power Loss Minimization
ESS	Energy Storage System
EV	Electric Vehicle
IEAR	Interrupted Energy Assessment Rate
LIV	Lightning Impulse Voltage
LI	Lightning Impulse
LOEE	Loss of Energy Expectation
LOLE	Loss of Load Expectation
LOLF	Loss of Load Frequency
LOLP	Loss of Load Probability
MC	Monte-Carlo
PDF	Probability Density Function
pf	Power Factor
pf PI	Power Factor Proportional Integral
-	
PI	Proportional Integral
PI PSO	Proportional Integral Particle Swarm Optimization
PI PSO RES	Proportional Integral Particle Swarm Optimization Renewable Energy Source
PI PSO RES RPCG	Proportional Integral Particle Swarm Optimization Renewable Energy Source Rectangular Pulse Current Generation
PI PSO RES RPCG RT	Proportional Integral Particle Swarm Optimization Renewable Energy Source Rectangular Pulse Current Generation Repair Time

SG Spark Gap

- **SAIDI** System Average Interruption Duration Index
- SAIFI System Average Interruption Frequency Index
- **UPF** Unity Power Factor
- VSC Voltage Source Converter
- **WECS** Wind Energy Conversion System
- WF Wind Farm
- WIPS Wind Integrated Power System
- WT Wind Turbine
- **WTG** Wind Turbine Generator