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REAL-TIME ESTIMATION OF ATC USING PMU DATA AND 

ANN 

 

4.1 INTRODUCTION 

An ANN architecture for real-time estimation of ATC has been reported in this 

chapter. The real-time data obtained from PMU is utilized to generate target output (ATC) 

using Pattern Search Optimization-based method. The set of information provided as 

input to the Pattern Search based ATC optimizer along with its output forms the input 

and target output for ANN training. The input information consists of active and reactive 

power injected along with voltage and current vectors measured at PMU buses. The ATC 

optimizer is functional as long as ANN is under training. Once the ANN is trained, it 

receives input set directly from PMU and produces ATC values. PMU emulation is 

employed for archiving the PMU data. The proposed method is tested on modified IEEE 

24-Bus, IEEE 30-Bus, and IEEE 118-Bus test system. The proposed method has also 

been implemented on Real-Time Digital Simulator (RTDS). The major contributions of 

the present research work are enumerated as under: - 

 Real-time ATC estimator development that employs measurement data that 

are coming from PMU. 

 Feature extraction for ATC estimation using Sparse Filter Algorithm has been 

proposed for reducing the size of input features. 

 The feasibility of real-time applicability of the proposed method has been 

authenticated by implementation on RTDS. 
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The method developed in this chapter utilizes the offline ATC Assessment and PMU 

emulation techniques discussed in Chapters 1 and 2 for generating the training data of the 

proposed real-time estimator. 

4.2 OFFLINE ATC EVALUATION AND TRAINING DATA 

GENERATION 

The technique used for generating training and testing data using the offline ATC 

evaluation process is schematically shown in the flowchart of Figure 4.2. Initially, the 

loading in the sink area of the network under consideration has been considered as a lower 

limit (𝑙𝑙𝑙𝑙), while the upper limit (𝑢𝑢𝑏𝑏) has been taken as the maximum loading limit of 

load buses. Pattern Search (PS) has been employed for generating different loading 

conditions, solutions for which have been obtained with the help of Newton Raphson 

(NR) method.  The process for evaluation ATC from source to sink has been illustrated 

in Figure 4.1. 

 

 
(a)  

(b) 

Figure 4.1 Schematic Representation of ATC evaluation. 
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For evaluation of ATC from Area 1 (Source) to Area 2 (Sink), the loading in the sink area 

is increased, and the corresponding generation is increased in the source area. The 

increment in sink and source area is done so as to maintain the generation load balance 

mechanism. The detailed discussion of offline ATC estimation used for generating offline 

data for training the ANN-based ATC estimator has been discussed in section 2.4 of 

Chapter 2. 

 

Figure 4.2 Flowchart of offline ATC evaluation and training data generation. 
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4.3 LINEAR STATE ESTIMATOR 

Linear State Estimation is a substitute for Conventional State Estimation for real-time 

operation of the power system. Linear State Estimation can be deployed to measure the 

Voltage and Current states of nodes where the PMUs are not placed, provided the PMU 

placement has been done for full observability of the network under consideration [150]. 

The problem formulation for Linear State Estimation can be mathematically expressed 

as: - 

 𝑀𝑀𝑀𝑀𝑀𝑀 ℛ𝑇𝑇𝜇𝜇ℛ (4.1) 

 

 𝑠𝑠𝑠𝑠: 𝑧𝑧 = ℋ𝑋𝑋 + ℛ 

= �
ℋ1,1 ⋯ ℋ1,𝑛𝑛
⋮ ⋱ ⋮

ℋ𝑚𝑚,1 ⋯ ℋ𝑚𝑚,𝑛𝑛

�𝑋𝑋 + �
ℛ1
⋮
ℛ𝑚𝑚

� 
(4.2) 

Here 𝑅𝑅 is the error residue, 𝑧𝑧 is the measured vector, 𝑋𝑋 is the unknown vector, 𝜇𝜇 is the 

weight matrix with all entries as real numbers, and 𝜇𝜇𝑖𝑖 represents the weight for each 

measurement. 

 𝜇𝜇𝑖𝑖 = �
𝜎𝜎𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2 0
0 𝜎𝜎𝑧𝑧,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2 � (4.3) 

The solution to the above state estimation is obtained without iteration: 

 𝑋𝑋 = (ℋ𝜇𝜇ℋ)−1ℋ𝑇𝑇𝜇𝜇𝜇𝜇 (4.4) 

4.3.1 Formation of ℋ matrix 

The ℋ matrix used in linear state estimation is obtained from the admittance 

matrix formed after the network information is archived and processed by the network 
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topology processor. The dimension of the ℋ matrix is (𝑚𝑚𝑢𝑢  ×  𝑚𝑚𝑘𝑘) where 𝑚𝑚𝑢𝑢 is the 

number of unknown measurements and 𝑚𝑚𝑘𝑘 represents the number of known 

measurements. Let 𝑛𝑛𝑏𝑏  be the number of buses at which PMUs are not placed and 𝑛𝑛𝑝𝑝 be 

the buses at which the PMUs have been placed, with 𝑛𝑛𝑝𝑝𝑝𝑝 being the number of branches 

connected at each bus. Now, 𝑚𝑚𝑢𝑢  =  𝑛𝑛𝑏𝑏  −  𝑛𝑛𝑝𝑝 and 𝑚𝑚𝑘𝑘  =  𝑛𝑛𝑝𝑝  +  𝑖𝑖 = ∑ 𝑛𝑛𝑝𝑝𝑝𝑝(𝑖𝑖)𝑛𝑛𝑝𝑝
𝑖𝑖=1  . 

Figure 4.3 illustrates an example of four buses interconnected network where bus 1 is the 

𝑃𝑃𝑃𝑃𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, line 𝑙𝑙𝑙𝑙𝑙𝑙(1) with tap changing transformer, and other lines connected to 

far end buses 2, 3 𝑎𝑎𝑎𝑎𝑎𝑎 4. Now, the network admittance matrices are formed using: - 

 𝑌𝑌𝑠𝑠 =  
1

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑗𝑗𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙
;    𝑌𝑌𝑡𝑡𝑡𝑡 = 𝑌𝑌𝑠𝑠 +

𝑗𝑗𝐵𝐵𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙

2
 (4.5) 

 𝑌𝑌𝑓𝑓𝑓𝑓 =
𝑌𝑌𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡𝑡𝑡) ;𝑌𝑌𝑓𝑓𝑓𝑓 =
−𝑌𝑌𝑠𝑠

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡𝑡𝑡) ;𝑌𝑌𝑡𝑡𝑡𝑡 =
−𝑌𝑌𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡

  (4.6) 

 𝑌𝑌𝐹𝐹 = �
𝑌𝑌𝑓𝑓𝑓𝑓 𝑌𝑌𝑓𝑓𝑓𝑓
𝑌𝑌𝑡𝑡𝑡𝑡 𝑌𝑌𝑡𝑡𝑡𝑡

� ;𝑌𝑌𝑇𝑇 = �
𝑌𝑌𝑡𝑡𝑡𝑡 𝑌𝑌𝑡𝑡𝑡𝑡
𝑌𝑌𝑓𝑓𝑓𝑓 𝑌𝑌𝑓𝑓𝑓𝑓

� (4.7) 

 

Figure 4.3 Illustrative example showing three buses connected to a PMU bus. 
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The voltage 𝑉𝑉𝑓𝑓 and branch current 𝐼𝐼𝑓𝑓 are known at the PMU location bus. This 

information can be used to obtain the information of far end bus using (32). 

 𝐼𝐼𝑓𝑓𝑓𝑓 = 𝑌𝑌𝑓𝑓𝑓𝑓𝑉𝑉𝑡𝑡 + 𝑌𝑌𝑓𝑓𝑓𝑓𝑉𝑉𝑓𝑓;⇒ 𝑉𝑉𝑡𝑡 =

𝐼𝐼𝑓𝑓𝑓𝑓
𝑌𝑌𝑓𝑓𝑓𝑓�
𝐻𝐻𝑓𝑓𝑓𝑓

−

𝑌𝑌𝑓𝑓𝑓𝑓𝑉𝑉𝑓𝑓
𝑉𝑉𝑓𝑓𝑓𝑓�
𝐻𝐻𝑓𝑓𝑓𝑓

 (4.8) 

The measurement vector 𝑍𝑍 with size (1 ×  𝑚𝑚𝑘𝑘) is obtained from the PPMU 

measurements as: - 

 𝑍𝑍 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(1).𝑉𝑉
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝐼𝐼𝑓𝑓𝑡𝑡1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝐼𝐼𝑓𝑓𝑡𝑡𝑛𝑛1

⋮
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛).𝑉𝑉
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛). 𝐼𝐼𝑓𝑓𝑡𝑡1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑛𝑛). 𝐼𝐼𝑡𝑡𝑓𝑓𝑛𝑛1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪⎪
⎨

⎪⎪
⎧

1
2
3
⋮
⋮

𝑚𝑚𝑘𝑘_1
𝑚𝑚𝑘𝑘���
𝑐𝑐𝑐𝑐

 (4.9) 

The elements of ℋ matrix are obtained corresponding to the Voltage measurements of 

the X vector are obtained as: - 

 

ℋ�𝑖𝑖,𝑛𝑛𝑝𝑝(𝑖𝑖)� = ℋ�𝑖𝑖,𝑛𝑛𝑝𝑝(𝑖𝑖)�

−  
𝑌𝑌𝐹𝐹(𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑝𝑝(𝑖𝑖). 𝑥𝑥(𝑙𝑙𝑙𝑙𝑙𝑙, 1),𝑛𝑛𝑝𝑝(𝑖𝑖))

𝑌𝑌𝐹𝐹(𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑝𝑝(𝑖𝑖)). 𝑥𝑥(𝑙𝑙𝑙𝑙𝑙𝑙, 1),𝑃𝑃𝑃𝑃𝑃𝑃 �𝑛𝑛𝑝𝑝(𝑖𝑖)� . 𝑧𝑧1(𝑙𝑙𝑙𝑙𝑙𝑙, 1))
 

(4.10) 

 ℋ�𝑖𝑖, 𝑐𝑐𝑐𝑐(𝑖𝑖)� =
1

𝑌𝑌𝐹𝐹(𝑃𝑃𝑃𝑃𝑃𝑃 �𝑛𝑛𝑝𝑝(𝑖𝑖)� . 𝑥𝑥(𝑙𝑙𝑙𝑙𝑙𝑙, 1),𝑃𝑃𝑃𝑃𝑃𝑃 �𝑛𝑛𝑝𝑝(𝑖𝑖)� . 𝑧𝑧1(𝑙𝑙𝑙𝑙𝑙𝑙, 1))
 (4.11) 

The various structure field of PMU and their accessing methods used in (34) and (35) are 

given in Table 4.1 to Table 2.3. 

 

. 
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Table 4.1 Structure Field and accessing method of PMU. 

PMU Param
eter 

Accessing 
Method Variable Identifier 

used 

Structure 
Field 

𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝑖𝑖𝑖𝑖 PMU location 𝑛𝑛𝑛𝑛 

𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝑥𝑥 Lines/branches connected at 
PMU bus 𝑙𝑙𝑙𝑙𝑙𝑙 

𝑧𝑧1 𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝑧𝑧1 Far end bus of branches 
connected at PMU bus 𝑁𝑁𝑁𝑁 

𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝐼𝐼 Line currents 𝑁𝑁𝑁𝑁 
𝑉𝑉 𝑃𝑃𝑃𝑃𝑃𝑃(1).𝑉𝑉 PMU bus voltage 𝑁𝑁𝑁𝑁 

 

Table 4.2 Structure Field and accessing method of 𝑷𝑷𝑷𝑷𝑷𝑷(𝒊𝒊𝒊𝒊).𝒙𝒙  

PMU(id).x   
  Accessing Method Accessed Variable/Parameter 

 𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝑥𝑥(1,1) out-bound/outgoing branch connected to PMU bus 

 𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝑥𝑥(2,1) inbound/incoming branch connected to PMU bus 
  𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝑥𝑥(𝑙𝑙𝑙𝑙𝑙𝑙, 1) 𝑙𝑙𝑙𝑙𝑑𝑑𝑡𝑡ℎ the branch connected to the PMU bus 

 

Table 4.3 Structure Field and accessing method of PMU(id).z1. 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖). 𝑧𝑧1   
  Accessing Method Accessed Variable /Parameter 

 𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝑧𝑧1(1,1) 
far end bus of out-bound/outgoing branch 
connected to PMU bus 

 𝑃𝑃𝑃𝑃𝑃𝑃(1). . 𝑧𝑧1(2,1) 
far end bus of inbound/incoming branch 
connected to PMU bus 

  𝑃𝑃𝑃𝑃𝑃𝑃(1). 𝑧𝑧1(𝑙𝑙𝑙𝑙𝑙𝑙, 1) 
far end bus of the branch (𝑙𝑙𝑙𝑙𝑑𝑑𝑡𝑡ℎ) connected to 
the PMU bus 

 

4.4 REAL-TIME ESTIMATION OF ATC USING ANN 

4.4.1 Radial basis function neural network 

The radial basis function network is a conglomeration of two types of neurons 

(RBF and linear) arranged in three (input, hidden, and output) layers. The received input 

information is transmitted through an input layer to the next layer, called the hidden layer. 

The hidden layer and output layer consist of RBF and linear neurons, respectively. The 
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linear neurons are realized using a purlin transfer function. Each layer consists of several 

nodes that are fully connected to the relevant (preceding and/or succeeding) layer. Moore 

Penrose Generalized pseudo-inverse method has been used to obtain the weights between 

hidden and the output layers. The Moore Penrose method has been preferred over the 

other methods such as LMS (Least Mean Square), LLSR (linear least square regression, 

etc.) due to its shorter training time and generalization ability. This property of the method 

makes it suitable for real-time applications, i.e., the present problem. The Gaussian kernel 

has been used as a radial basis function (for pattern recognition). The 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 clustering 

has been employed for determining the center and width of the kernel. 

4.4.2 ANN architecture 

The architecture of ANN presented in this section has been given in Figure 4.4. 

The RBF network architecture with the input set for the present problem has also been 

illustrated in the figure. The input to the network mainly consists of four different types 

of data; these data are Voltage magnitude and angle of the buses at which the PMUs are 

located, branch currents, and branch current angels of the branches terminating or 

originating at the PMU location buses. If there are m PMU’s optimally located in the 

system, then there will be m voltage magnitude |𝑉𝑉| inputs (𝑉𝑉1,𝑉𝑉2, . . . .𝑉𝑉𝑚𝑚) and m voltage 

angle inputs 𝑉𝑉𝛼𝛼 (𝛼𝛼𝑉𝑉1 ,𝛼𝛼𝑉𝑉2 , . . . .𝛼𝛼𝑉𝑉𝑚𝑚  ). Similarly if there are 𝑟𝑟 branches terminating or 

originating at 𝑘𝑘𝑡𝑡ℎ PMU-bus then the 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 input of this unit would be 

(𝐼𝐼𝑘𝑘1, 𝐼𝐼𝑘𝑘2, … 𝐼𝐼𝑘𝑘𝑘𝑘) and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 angles would be (𝛽𝛽𝐼𝐼𝑘𝑘1 ,𝛽𝛽𝐼𝐼𝑘𝑘2 , . . . .𝛽𝛽𝐼𝐼𝑘𝑘𝑘𝑘) and in this 

fashion the entire branch current and branch current angle information is fed as input as 

(𝐼𝐼11, 𝐼𝐼12 … 𝐼𝐼𝑚𝑚𝑚𝑚) and (𝛽𝛽𝐼𝐼11 ,𝛽𝛽𝐼𝐼12 , . . . .𝛽𝛽𝐼𝐼𝑚𝑚𝑚𝑚). The size of the input vector would be 2 ×  𝑚𝑚 +

 ∑ 2𝑟𝑟𝑖𝑖𝑚𝑚
𝑖𝑖=1 . This vector is passed through the LSE for obtaining all the states of the system 

(an amalgam of measured variables from PMU buses and estimated variables by LSE).  
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Figure 4.4 RBF architecture Proposed. 

 

The output of the LSE, i.e., |𝑉𝑉 |,𝛼𝛼𝑣𝑣, 𝐼𝐼,𝛽𝛽𝐼𝐼 is feature set 𝒟𝒟 which comprises a large 

number of features. For efficient performance of ANN-based estimators, these large 

features set have to be reduced to a feature set 𝒟𝒟𝑟𝑟  capable of adequately representing the 

complete set of Features.  The 𝐷𝐷𝑟𝑟 set of reduced features discussed in section 5.3 is used 

as input, and the corresponding ATC value obtained using the pattern search optimization 

is used as the target output. The training process involves the optimal determination of 

the center and width of the RBF neurons so as to meet the required criterion of error 

tolerance. 
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4.4.3 Feature Extraction 

Feature extraction (FE) is an unavoidable process that is to be performed when a large 

number of data features are present. Feature extraction involves mapping of input features 

(large number) to new output features (fewer number). In this chapter, a Sparse Filtering 

Algorithm (SFA) extraction method is used for extracting the dominant features that 

could be used as input to the ANN. The sparse filtering algorithm begins with a data 

matrix 𝒟𝒟 having 𝑛𝑛 rows and 𝑝𝑝 columns where they (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) represent 

observations and measurements, respectively. The algorithm then takes either an initial 

random p-by-q (required number of features) weight matrix 𝒲𝒲 and minimizes (36). The 

method shortens the initial feature set 𝒟𝒟 to a smaller set 𝒟𝒟𝑟𝑟 using the matrix 𝒲𝒲 obtained 

by the SFA algorithm. (36). 

 𝑀𝑀𝑀𝑀𝑀𝑀 ��𝒟𝒟�𝑟𝑟,𝑖𝑖�
1

= ��
𝒟𝒟�𝑟𝑟,𝑖𝑖

�𝒟𝒟�𝑟𝑟,𝑖𝑖�
2

�
1

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 4.12 

 

In order to compute objective function (36), which depends on the n-by-p data matrix D 

and a weight matrix 𝑾𝑾 the procedure given in Table 4.4 has been employed. The 

schematic representation SFA method has been illustrated in Figure 4.5. 

4.4.4 Testing 

A part of the data archived for training is extracted and kept aside for training and 

validation of the trained neural network. If the desired goal of tolerance is met in the 

testing phase, then the neural network is assumed to be trained, and final weights and 

biases are exported as a trained network that could be used for real-time online estimation. 
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Table 4.4 SFA Algorithm for Feature Extraction 

Stage Description 

Step 1 

Compute the n-by-q matrix 𝒟𝒟 × 𝒲𝒲 and using the approximate absolute 

value function 𝜓𝜓(𝑢𝑢) = √𝑢𝑢2 + 𝜖𝜖 , obtain the matrix 𝐷𝐷𝑟𝑟. 𝜓𝜓 is the symmetric 

non-negative, and smooth function which approximates the absolute value 

function and ε has been taken as 10−8 [151]. 

Step 2 

Define Normalized 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖, 𝑗𝑗) as 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖, 𝑗𝑗)= 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖,𝑗𝑗)
�𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑗𝑗)�2

 where 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑗𝑗) =

�∑ 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖, 𝑗𝑗)2 + 𝜖𝜖𝑛𝑛
𝑖𝑖=1 . 

Step 3 

Define Normalized 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖, 𝑗𝑗) as 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖, 𝑗𝑗)= 𝒟𝒟
�𝑟𝑟,𝑖𝑖(𝑖𝑖,𝑗𝑗)
�𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖)�2

 where 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖) =

�∑ 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖, 𝑗𝑗)2 + 𝜖𝜖𝑛𝑛
𝑖𝑖=1 . 

Step 4 
Compute the objective function ℎ(𝒲𝒲) as the 𝑙𝑙 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 of the matrix 

𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖, 𝑗𝑗) using ℎ(𝒲𝒲) = ∑ ∑ 𝒟𝒟�𝑟𝑟,𝑖𝑖(𝑖𝑖, 𝑗𝑗)𝑛𝑛
𝑖𝑖=1

𝑞𝑞
𝑗𝑗=1 . 

Step 5 

Obtain the optimal value W using suitable techniques. Here, Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton optimizer has been 

employed [152] with termination criterion as the maximum number of 

iterations and step tolerance (if the norm of the algorithm step at any time is 

less than the specified tolerance). 
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4.5 IMPLEMENTATION OF THE METHOD 

The software-based implementation of the proposed scheme has been depicted in Figure 

4.6, and practical hardware-based implementation has been shown in Figure 4.7. During 

software-based implementation, there are apparently two different stages of the scheme: 

- offline training and online implementation. The system scenario is inputted to the PSN 

solver, which is common to both online and offline stages. The PSN solver produces a 

solution corresponding to the input scenario and shares it with the Pseudo-PMU emulator 

(PPMU) and Optimization engine simultaneously. The optimization engine yields the 

optimal ATC values using the pattern search optimization method discussed in this 

chapter and stores it in ATC storage. In ATC storage, the ATC values are stored 

sequentially to be used as target output to the Neural Network Training block. 

 
Figure 4.5 Schematic Representation for Feature Extraction. 
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Figure 4.6 Software-based development of the proposed method. 

 

Figure 4.7 Practical Implementation layout of the proposed method. 
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Concurrently, the PPMU emulator interacts with the PSN solver to archive the voltages 

and currents of the PMU location buses and sends them to the LSE block. In the linear 

state estimator block, all the states of the network are obtained. The LSE block sends the 

linearly estimated states to the ANN input block. It is to be clarified that the values sent 

by the ATC storage as target and the input sent by the 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 block to the ANN are 

quasi-statically synchronized. The ANN input block feeds the ANN training block till it 

is trained. This is depicted by placing the switch at position ′𝑎𝑎′ of the switch block shown 

in Figure 4.7. The switch being in position ′𝑏𝑏′ the trained ANN would produce ATC value 

for any novice input received from the ANN block. Once the network is trained, the final 

weights and biases are exported to the Trained ANN block. This can be accomplished by 

diverting the switch from position ′𝑏𝑏′. The ATC value so produced can be sent to the ATC 

storage for further applications such as power transaction management, forecasting, 

system analysis, display on the publicly accessible web, etc. The above-described 

methodology can be practically implemented using trained ANN by a utility, as shown in 

Figure 4.7. The PSN solver and the input scenario have been replaced by the actual power 

grid, whereas the PPMU emulator has been replaced by the actual PMU in this figure. 

The PMU measurements have been directly sent to the pre-processing data stage (i.e., 

LSE and Feature Extraction) for ATC estimation by the trained ANN. 

4.6 AUTHENTICATION IN REAL-TIME SIMULATION USING 

RTDS 

The functioning of the ANN estimator has been verified in real-time using RTDS (Real-

Time Digital Simulator) platform. The test system has been modeled on RSCAD software 

and compiled on RTDS hardware. The different loading scenarios have been sent to the 

RTDS simulator from the monitoring and control center that has been built in MATLAB.  
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Figure 4.8 Pictorial illustration of the process used in authentication in RTDS 
simulation. 

The control center issues the appropriate command signals corresponding to any change 

in the operating scenario of the system. This communication is established through the 

‘GTNET SKT’ protocol. The ‘GTNET SKT’ protocol is capable of handling data streams 

with an update frequency of 2 kHz (maximum). A schematic representation of the process 

has been shown in Figure 4.8. The GTNET PMU has been placed at the optimal PMU 

locations in the power system model using RSCAD software. The RTDS uses the 

GTSYNC card to time stamp the measurement taken by the GTNET PMU’s. These 

PMU’s could publish data in the IEEE C37.118 protocol and send the data to other 

devices and applications such as PDC. An open-source PMU connection tester provided 

by GPA (Grid Protection Alliance) [153] has been used to testing and generating PMU 

configuration files. These configuration files are used by the openECA to establish a 

connection with GTNET PMU and acquire measurement data using server API. The 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 sends the data to the monitoring and control center using the client API. The 
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ATC estimator running in the monitoring and control center has been used to estimate the 

ATC in real-time. 

4.7 CASE STUDY 

The methods proposed in this chapter have been simulated on intel core i7 @ 2.24 GHz 

computer using MATLAB 2017b and MAT- POWER 6.01 software. The description of 

the test systems on which the proposed methods have been illustrated is delineated in the 

following subsystem. 

4.7.1 Description of Test System 

The performance of the method has been manifested on IEEE 24 Bus, 30 Bus, and IEEE 

118 Bus systems. The data used for modified IEEE 24, 30, and IEEE 118 Bus test systems 

have been taken from [23], [154], and [155], respectively. Table 4.5 contains the 

information pertinent to the area wise classification of buses (both generator and load 

buses), optimal location of PMU’s, the number of branches linked with the corresponding 

PMU buses (given in small bracket alongside the PMU bus location), along with the area 

wise generation capacity, load and the available generation margin. The generation 

margin is an indicator that reflects the amount of power which an area can additionally 

supply to its own area without importing from other areas (while fulfilling the system 

criterion). The tie lines interconnecting the different areas are given in Table 2.6. 
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Table 4.5 Description of the test system. 

Case Area 
Generator 

Bus 
Load Bus 

PMU 

location bus 

(Branch) 

Gen Cap 

MW 

Load 

(MW) 

Margin 

(MW) 

IEEE 24 

BUS 

Test 

System 

1 
[14,15,16,17,

18,19,21] 
[5,17,19] 

[16 (4), 21 

(5)] 
1170 1125 45 

2 [13,22,23] 
[6,8,9,10,11,

12,20] 

[8 (3), 10 (5), 

23 (4)] 
1551 1141 410 

3 [1,2,7] [3,4,24] [2 (3), 3 (3)] 684 584 100 

IEEE 30 

BUS 

Test 

System 

1 [1,2] 
[3,4,5,6,7,8,9

,11,28] 

[1 (2), 2 (4), 

6 (7), 9 (3)] 
121.94 84.5 37.44 

2 [13,23] 
[12,14,15,16,

17,18,19,20] 

[12 (5), 15 

(4), 19 (2)] 
40 76.2 -36.2 

3 [22,27] 
[10,21,24,25,

26,29,30] 

[10 (6), 25 

(3), 27 (4)] 
105 48.5 56.5 

IEEE 

118 Bus 

Test 

System 

1 

[61,62,65,66,

69,70,72,73,7

4,76] 

[60,67,75,78,

7947] 

Taken from 

[156]  
2468.2 599 2049.2 

2 

[99,100,103,1

04,105,107,11

0,112,113,116

] 

[98,101,102,

106,108,109,

114,115,117,

118] 

Taken from 

[156] 
1229.2 715 577 

 

Table 4.6 Details of Test Cases Under Consideration (Base Case). 

Area 
Tie Line 

24 BUS System 30 BUS System 

1 to 2 21-22,17-22,19-20(2),14-11 4-12, 

1 to 3 15-24 9-10,6-10,28-27 

2 to 3 3-9,4-9,1-5,2-6,7-8 17-10,20-10,23-24 
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4.7.2 Result and Discussion 

For every input scenario (loads, generation, network topology, and PMU location), 

different values of TTC (total transfer capability) corresponding to various contingencies 

have been obtained. These TTC values correspond to the minimum of the voltage, 

stability, and thermal limits. The TTC value corresponding to the severe-most 

contingency would be the lowest. For the defined credible set of contingencies, a TTC 

ranking has been obtained, and the top-ranking TTC value has been used to obtain ATC. 

Such a selection of (TTC rank 1) for ATC calculation would guarantee the safer operation 

of the power system as any other single outage contingency would result in a TTC/ATC 

higher than the rank one selection. 

 Feature Extraction: 

The result of feature extraction using the method discussed in section 4.4.3 has been 

obtained for all the three test cases under study as tabulated in Table 4.7. The SFA has 

been used to reduce the size of the input features. The size of the reduced feature set is 

equal to the number of optimal PMU’s that would be required for ensuring complete 

observability of the system. 

Table 4.7 Reduced Features for different test cases using SFA. 

S. N Test System 
After PPMU After LSE 

Reduced Feature 
[𝑽𝑽,𝜶𝜶, 𝑰𝑰,𝜷𝜷 ] [𝑽𝑽 & 𝑰𝑰] [𝑽𝑽,𝜶𝜶, 𝑰𝑰,𝜷𝜷 ] 𝑽𝑽 & 𝑰𝑰 

1 24 68 34 124 62 7 

2 30 120 60 140 70 10 

3 118 342 171 608 304 33 
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 Modified IEEE 24-bus RTS system: 

The entire network has been divided into three areas. The ATC for the transfer of power 

from area 1 to area 2 has been evaluated using the proposed method. The CBM and TRM 

have been taken as 5 percent of the existing transmission commitments. The results 

obtained by the proposed method have been tabulated in Table 4.8, along with results 

reported in [23] for comparison. The TTC value corresponding to the contingency that 

yields the lowest TTC has been considered for ATC evaluation. Such TTC value 

corresponds to an outage of the largest outage generator in area 2. It can be noticed from 

this table that the TTC corresponding to the above contingency produced by the proposed 

method is higher compared to the method reported in [23]. In other cases, also the TTC 

is higher in the proposed method. The ATC has been calculated by taking CBM to be 60 

MW and tabulated in Table 4.8.  

Table 4.8 Comparison of results obtained from TSCOPF and Proposed Method. 

Case 
Description Proposed Method TSCOPF 

Outage TTC (MW) 
CBM 
(MW) 

ATC (MW) 
TTC 

(MW) 
CBM 
(MW) 

ATC 
(MW) 

Largest gen 
in area 1 465 - - 350 - - 

Largest gen 
in area 2 358.636 60 298.636 262.8 60 200.8 

Line 21-22 465 - - 350 - - 

Line 17-22 465 - - 350 - - 

Line 19-20 465 - - 350 - - 

Line 14-1 400 - - 306.6 - - 
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(a) Voltage and voltage angle plot obtained by PMU 1 at bus 2 

 
(b) Voltage and voltage angle plot obtained by PMU 1 at bus 2 

Figure 4.9 Data Archived by PMU at bus 2. 

 

The TRM is neglected for comparison of the proposed method with TSCOPF. It can be 

observed that the proposed method results in a higher value of ATC than that of the 

TSCOPF method. The PMU emulation for modified IEEE 24-bus system has also been 

done and the results obtained by PMU 2 (for example) are given in the Figure 4.9(a) and 

Figure 4.9(b). The figures show the voltage and current magnitudes and angles recorded 

by the PMU’s as the system is subjected to the predefined loading pattern. 
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(c) ATC from area 1 to 2 for modified IEEE 24 bus test 

 
(d) Loading Pattern of modified IEEE 24 bus system 

 
(c) Error in ATC prediction using ANN 

 
(d) Error Histogram of ATC estimator using reduced features for IEEE 24 Bus 

System 

Figure 4.10 IEEE 24 bus test system Emulation Results. 
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PMU’s are assumed to be placed at optimal locations with maximum observability as the 

objective of their placement. The optimal locations of the PMU in this work are taken 

from reference [157] and are given in Table 4.5. It can be observed from Figure 4.9(a) 

and Figure 4.9(b) that the hourly load pattern has been quasi-statically simulated, and the 

data archived by the PPMU emulator for 120 hours are shown. The variations in the 

voltage and currents obtained are in phase with the variations observed in the loading for 

the same duration. During the offline simulation stage, the ATC optimization engine 

evaluated the ATC value corresponding to each loading scenario, and the corresponding 

value has been stored in the system. ATC storage. 

Figure 4.10(a) depicts the plot of ATC in the system from area 1 to 2 without 

considering any outage in the system, and Figure 4.10(b) depicts the corresponding 

loading pattern. The data archived from the ATC storage system and PMU emulator has 

been used for training of RBF and LMNN based neural networks. There are 68 inputs 

and a single output (ATC values) being used for training purposes; the inputs are obtained 

from the PMU emulator and comprise of (𝑉𝑉 [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴], Branch Currents 

[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴]). The emulation has been done for hourly load model given 

in reference [157]. The performance of the RBF neural network based estimator for the 

considered test system has been given in Figure 4.10(c). It can be observed that the error 

in ATC prediction is less in the case of the RBF neural network, and therefore RBF based 

neural network ATC estimator has been proposed. The trained estimator has been used 

in the real-time estimation of ATC. The input to the estimator is the voltages and current 

measured by the PPMU’s across the system. 
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4.7.3 Modified IEEE 30-bus test system: 

The IEEE 30-bus system has been divided into three areas, and ATC for the transaction 

of power between the areas has been evaluated. The input data has been randomly 

generated using uniform distribution between 80 to 120 percentages of base case loading 

by employing the equations given hereunder. 

 𝑃𝑃𝐿𝐿𝑖𝑖 = 𝑃𝑃𝐿𝐿0(1 + 𝜁𝜁) 4.13 

 𝑄𝑄𝐿𝐿𝑖𝑖 = 𝑄𝑄𝐿𝐿0(1 + 𝜁𝜁) 4.14 

Here, 𝜁𝜁 = 𝑎𝑎 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑏𝑏 − 𝑎𝑎), 𝑏𝑏 = 0.2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 = −0.2. 

The data generation is done by ensuring a fixed loading characteristic that is achieved by 

maintaining a constant power factor. The condition and convergence of the ATC 

optimization engine for transfer from area 1 to area 2 have been given hereunder in Table 

4.9 and in Figure 4.11, respectively. It could be observed that PS converged in five 

iterations with -0.70677 as the best function value and 816 function evaluations. In the 

case of the IEEE 30 bus test system, the input scenarios have been generated by 

employing (4.13) and (2.58).  

Table 4.9 Condition of source and sink areas of the 30-bus test system. 

S. No Parameter Area 

Area 1 Area 2 

1 Initial Generation 84.51  56.2 

2 Max Generation 160 70 

3 Available Generation Capacity 75.49 13.8 

4 Contingency Considered Outage of Generator at bus 23 
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Figure 4.11 Plot of convergence for ATC evaluation of IEEE 30 bus test system 
from area 1 to area 2.  

 
(a) Voltage and voltage angle plot obtained by PMU 8 at bus 19 

 
(b) Branch current and angle plot obtained by PMU 8 at bus 19 

Figure 4.12 PMU emulation for IEEE 30 bus Test System. 

 

The data archived by the PPMU emulator when the generated scenarios are quasi-

statically simulated are given in Figure 4.12. The sub-figure Figure 4.12(a) depicts the 
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voltage plot, and sub-figure Figure 4.12(b) depicts the branch current plot. The ATC 

estimator for IEEE 30 bus test system has been trained for quasi-static yearly data 

generated using loading factors given in [143]. The results of ATC estimation and 

corresponding error are given in Figure 4.13. 

 

 
(a) Estimated ATC 

 
(b) Error Histogram 

Figure 4.13 a. ATC estimated using ANN estimator for Transaction from Area 1 to 
Area 2 of IEEE 30-Bus system; b. Error Histogram of ATC estimator using 

reduced features for IEEE 30 Bus System 
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4.7.4 Modified IEEE 118 bus test system:  

The IEEE 118 bus test has been modified by taking the long-term line limit as (2×base 

case power flow) and emergency rating as (5× base case power flow). Further, for the 

purpose of analysis, two different areas (Area1) and (Area2) comprising of the buses 

given in Table 4.5 are formed. The ATC estimation for transactions from Area1 as source 

and Area2 as sink have been performed using the proposed method.  

 
(a) Estimated ATC 

 
(b) Error Histogram 

Figure 4.14 a. ATC estimated using ANN estimator for Transaction from Area 1 to 
Area 2 of IEEE 118-Bus system; b. Error Histogram of ATC estimator using 

reduced features for IEEE 118 Bus System. 
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The yearly loading factors given in [143] have been used to generate quasi-static data for 

the IEEE 118 BUS TEST system. The 118 Bus system being a large test case with a larger 

number of PMU’s (𝑛𝑛𝑝𝑝 is 33). The size of the input to the ANN increased significantly. 

Therefore, a feature extraction and selection method has been adopted so as to adequately 

train the ANN estimator. The input provided by the PPMU through LSE is (608 ×  1), 

which is reduced to (33 ×  1). The estimated ATC by the ANN estimator and its 

performance in terms of error has been given in Figure 4.14(a) and Figure 4.14(b). 

 

4.7.5 Performance of ANN based estimator: 

Comparative analysis of the developed estimator for different test system have been 

illustrated in Table 4.10. Here the error has been expressed in terms of Mean Absolute 

Error(MAE), Mean Squared Error (MSE), Sum of Absolute Errors (SAE) and Sum of 

Squared Errors (SSE). The sample size for obtaining the performance has been taken as 

1000.  

Table 4.10 Performance of ANN estimator. 

S. N Indices 
Test Case 

IEEE 24 Bus IEEE 30 Bus IEEE 118 Bus 

 
Before 

FE 
After 

FE 
Before 

FE 
After 

FE 
Before 

FE 
After 

FE 

1 MPAE 2.10𝑒𝑒−8 2.54𝑒𝑒−4 7.42𝑒𝑒−4 4.20𝑒𝑒−3 1.76𝑒𝑒−6 2.4𝑒𝑒−3 

2 MSE 1.51𝑒𝑒−15 9.98𝑒𝑒−7 3.87𝑒𝑒−6 5.47𝑒𝑒−5 1.21𝑒𝑒−7 3.7𝑒𝑒−5 

3 SAE 1.55𝑒𝑒−3 0.11 0.59 3.33 0.14 1.9 

4 SSE 6.81𝑒𝑒13 4.94𝑒𝑒−4 3.10𝑒𝑒−3 4.38𝑒𝑒−2 9.65𝑒𝑒−5 2.90𝑒𝑒−2 
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Table 4.11 Training Time and Data Generation Time 

Test System 
Data Generation Time (sec) ANN Training Time (sec) 

Duration Time Without FE With FE 

24 Bus 8760 43800.51 13.21 9.54 

30 Bus 8760 70080.43 68.03 47.5 

118 Bus 8760 91980.29 94.47 72.7 

Table 4.12 Offline Training and Testing Time. 

Without Feature Extraction 

Test System Training 
Time 

Estimator 
Time 

LSE Time Total Time  

24 Bus 13.21 0.00685 0.000198 0.00705  

30 Bus 68.03 0.0078 0.000299 0.0081  

118 Bus 94.47 0.00886 0.000301 0.00916  

With Feature Extraction 

Test System 
Training 

Time FE time 
Estimator 

Time LSE Time Total Time 

24 Bus 9.54 0.000471 0.0058 0.000198 0.006 

30 Bus 47.5 0.000438 0.0077 0.000299 0.008 

118 Bus 72.7 0.00046 0.00718 0.000301 0.00748 

 

It can be observed that after using the reduced feature set as input to the estimator, 

the error metrics deteriorated significantly but they are still under the acceptable limits. 

It can be observed that after using the reduced feature set as input to the estimator, the 

error metrics deteriorated significantly, but they are still under the acceptable limits. It 

has been noted that for IEEE 118 bus test system, the error is more than the other two 

cases; thus, it can be said that the overall performance of the ATC estimator degrades 

with an increase in the complexity of the system. Nevertheless, the error falls well within 

the range of 𝟏𝟏𝟏𝟏−𝟑𝟑 𝒕𝒕𝒕𝒕 𝟏𝟏𝟏𝟏−𝟓𝟓 which can be very well accepted for ATC estimation 

application. The overall time elapsed in data generation for ANN training, in ANN 
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training, and ATC estimation has been given in Table 4.11 and Table 4.12. The time 

elapsed has been acquired for the solution obtained using the proposed method on 

MATLAB 2017b using the intel core i7 processor. 

4.7.6 Real Time Authentication of IEEE 30 bus test system using 

RTDS: 

The IEEE 30 bus test system has been modeled in RTDS software. The system 

has been subjected to different loading scenarios using the command signals issued from 

the control center through the GTNET SKT. The ‘GTNET PMU’s have been used to 

measure the relevant parameters. These PMU measurements have been acquired using 

IEEE C.37.118 protocol by ‘𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂’ software. These measurements have been sent 

to the control center, where the proposed method has been utilized to estimate the ATC. 

The overall time elapsed in various processes during the ATC estimation has been 

given in Table 4.13. The result of estimated ATC values and corresponding loading 

scenario has been shown in figures Figure 4.15(a) and Figure 4.15(b). The loading pattern 

has been changed at an interval of 40 seconds. The corresponding ATC values have been 

shown in Figure 4.15(b). It can be observed from these results that the ATC values 

increase with the decrease in load. 

Table 4.13 Real Time Implementation on RTDS. 

Test 

System 

Communication 

time (sec) 

LSE 

Time 

(sec) 

FE Time 

(sec) 

Estimation 

Time (sec) 

Total 

Time 

(sec) 

IEEE 30 

Bus 
0.05 0.0078 0.000299 0.0077 0.0658 
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(a) Loading of buses in area A2 

 
(b) ATC estimated using proposed ATC estimator 

Figure 4.15 Estimated ATC and loading of buses in area A2 during RTDS 
simulation. 

Table 4.14 Comparison of Proposed Method with the Referred Methods 

System Source Sink 
Referred Method Proposed 

Method 

SATC(MW) SATC(MW) ATC 
(MW) 

30 Bus 

[158] 

2 18 3.7 0.95 3.86 

2 23 3.6 1.15 3.95 

2 30 2.09 0.63 2.0974 

39 [159] 36 21 - 7.3 20 

145 Bus 
[158] 141-143 34,35 6.5 1.82 6.5478 
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4.7.7 ATC and Dynamic ATC: 

The dynamic ATC for system for any transaction can be considered as an approximation 

of the static ATC [158]. A comparative analysis of static and dynamic ATC has been 

done for different cases and reported in Table 4.14. It can be observed that the ATC 

obtained using the proposed method is three to four times the dynamic ATC. 

4.8 CONCLUSION 

In this chapter, a framework for real-time ATC estimation using ANN has been presented 

with its application on IEEE 24-bus, IEEE 30-bus, and IEEE 118-bus test systems. An 

ATC optimization engine employing the method proposed for estimation of ATC has 

been used for obtaining the ATC training data in the offline stage of real-time estimator 

development. PMU emulation algorithm for quasi-static analysis of power system (using 

PPMU) has been used to obtain the voltage and current states of the system quasi-

statically. The information obtained from the PPMU’s has been used as an input of the 

real-time ATC estimator. The results have been authenticated using a real-time digital 

simulator on IEEE 30 bus test system.  


