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 PSEUDO PMU FOR QUASI-STATIC ANALYSIS OF POWER 

SYSTEM AND NEAR REAL-TIME LOAD FORECASTING 

 

3.1 INTRODUCTION 

The Phasor Measurement Units (PMU) are being integrated into the power grids for 

enhanced monitoring and control of the power system. PMU's data are useful for post-

mortem analysis and development of real-time control of the Power system.  In this 

chapter, a Pseudo-PMU (PPMU) is proposed for the quasi-static analysis of the Power 

System. A methodology is presented for the emulation of PMU and the storage layout of 

data obtained from the emulation. Technique enabling the emulation of the PMU's 

specifically for Static Security Analysis will be of great use for analysis of the system by 

the researchers and scientists working in the power sector. For the optimal location of 

PMU's, pseudo-PMU is used, and quasi-static analysis of IEEE 24-bus RTS and IEEE 14 

bus systems is carried out in MATLAB environment. The results illustrate the efficacy 

of the proposed method for quasi-static analysis of the power system.  

 This chapter also presents a methodology for near-real-time load forecasting of 

the power system. Near real-time load, forecasting is the prediction of power system load 

for the duration of the next few hours. It is becoming an important topic because of the 

process of deregulation and the introduction of competition in the wholesale electricity 

markets. Further spinning reserves, unit commitment, contingency analysis, and 

economic load dispatch functions of the energy management system rely heavily on near 

real-time load forecasts. Using Support Vector Regression (SVR) as a base, we present 

our other method for near-real-time forecasting. Different models are created for holidays 
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and weekends, which are compared with the SVR method. A self-learning weekly 

window is applied, which automatically trains the models for three weeks and predicts 

the load for the next week. Performance evaluation of the models has been accomplished 

by training and testing them for data provided by the Rajasthan state load dispatch center 

using evaluation metrics such as Mean Absolute Percentage Error (MAPE) and Root 

Mean Squared Error (RMSE). It has been found that the proposed models significantly 

outperform the traditional SVR model by a lesser MAPE. 

3.2 PSEUDO PMU AND PHASOR MEASUREMENT 

UNITS  

Synchrophasors are phasors taken at defined instants across the spectrum of existing 

phasor quantities in the universe of interest. From the view of power systems, the universe 

of interest would be the embodiment of voltage and current phasors of the power system 

network under consideration. Phasors are measured at a particular instant of time; 

therefore, they could be referred to as a scan of the system, providing an account of events 

in the first hand as a first information report. The availability of such a scan of the power 

system enhances the observability and adds to the controllability of the system. A precise 

clock using the Global Positioning System is used for defining the time instants for the 

phasor measurement. 

Deployment of PMU units employed for synchrophasor measurements is being done 

at a large scale in power grids across the world. Synchrophasor technology is realized by 

using different components such as Phasor Measurement Units, Phasor Data 

Concentrator, Historian, Communication network, real-time visualization, and offline 

toolboxes [139]. The infrastructure can broadly classify into three different layers: 1) 

Measurement Layer 2) Data Collection Layer 3) Application Layer. The measurement 
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layer comprises PMU's deployed across the grid. Data Collection Layer is responsible for 

collecting synchrophasor data from PMU's deployed across the grid in Phasor Data 

Concentrator through the communication network. The application layer inculcates the 

tools and software required for analyzing the data obtained from the PMU units.  

The Pseudo PMU presented here is concerned with the implementation of the 

measurement unit for the development and testing of different applications for the 

Application layer. For analyzing the system behavior, the Pseudo PMU takes the 

measurements for every instant as and when the scenarios are quasi-statically emulated. 

Therefore, the requirement for time synchronization vanishes as the measurements taken 

by the Pseudo PMU will be in synchronism with the quasi-static nature of the analysis. 

3.3 METHODOLOGY FOR IMPLEMENTING PSEUDO PMU 

A Pseudo-PMU (PPMU) emulation algorithm that captures the 𝑣𝑣𝑁𝑁𝑙𝑙𝐴𝐴𝐴𝐴𝒜𝒜𝑁𝑁 𝑛𝑛𝐴𝐴𝒜𝒜𝑛𝑛𝑖𝑖𝐴𝐴𝑛𝑛𝑁𝑁𝑁𝑁, 

𝑣𝑣𝑁𝑁𝑙𝑙𝐴𝐴𝐴𝐴𝒜𝒜𝑁𝑁 𝐴𝐴𝑛𝑛𝒜𝒜𝑙𝑙𝑁𝑁, 𝑏𝑏𝐴𝐴𝐴𝐴𝑛𝑛𝑝𝑝ℎ 𝑝𝑝𝑛𝑛𝐴𝐴𝐴𝐴𝑁𝑁𝑛𝑛𝐴𝐴 𝑛𝑛𝐴𝐴𝒜𝒜𝑛𝑛𝑖𝑖𝐴𝐴𝑛𝑛𝑁𝑁𝑁𝑁, and 𝑏𝑏𝐴𝐴𝐴𝐴𝑛𝑛𝑝𝑝ℎ 𝑝𝑝𝑛𝑛𝐴𝐴𝐴𝐴𝑁𝑁𝑛𝑛𝐴𝐴 𝐴𝐴𝑛𝑛𝒜𝒜𝑙𝑙𝑁𝑁𝑠𝑠 at the 

PMU location is developed. For system analysis, the operating scenario under emulation 

would be a set of loading patterns, fault cases, and contingency cases. This set of 

operating scenarios will be used as input data for emulation.  In this work, a set of loading 

patterns is considered as an example of an operating scenario. The loading pattern can be 

a forecasted loading pattern or predefined loading pattern for which the analysis has to 

be done. The overview of the procedure is illustrated in Figure 3.1. Different stages in the 

block diagram are explained in the following section. 

3.3.1 Input Data 

The set of operating scenarios are used as the input data. The data (loading and 

generating pattern) can be generated as per the requirements of the study for the power 
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system network under consideration. For instance, in ATC assessment, the loading 

pattern will be such that in the sink area, the loading will be increased from the base case, 

and in the source area, an equivalent increment of generation has to be done. The next 

stage input would be the data that has been defined, whereas the solution is carried out 

for the nonlinear load flow equation. The following subsection illustrates the different 

stages. 

3.3.2 Solution of Power Flow Equations 

The solution to the nonlinear power flow equations is obtained by using any suitable 

technique such as Fast Decoupled Load Flow (FDLF), DC load flow, Optimal Power 

Flow, etc.  

 

Figure 3.1 Block Diagram representation of proposed methodology. 

 

Here in this work, the Newton-Raphson load flow algorithm has been used for solving 

the power flow equations. Nonlinear equations to be solved are as given: 

 𝑃𝑃𝑠𝑠 = �𝐴𝐴𝑠𝑠𝐴𝐴𝑖𝑖𝑌𝑌𝑠𝑠,𝑖𝑖

𝐷𝐷

𝑖𝑖=1

cos (𝜃𝜃𝑠𝑠𝑖𝑖 − 𝛿𝛿𝑠𝑠 + 𝛿𝛿𝑖𝑖) 3.1 
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 𝑄𝑄𝑠𝑠 = −�𝐴𝐴𝑠𝑠𝐴𝐴𝑖𝑖𝑌𝑌𝑠𝑠,𝑖𝑖

𝐷𝐷

𝑖𝑖=1

sin (𝜃𝜃𝑠𝑠𝑖𝑖 − 𝛿𝛿𝑠𝑠 + 𝛿𝛿𝑖𝑖) 3.2 

Subjected to the following constraints, 

 �𝑃𝑃𝒜𝒜𝑠𝑠

𝐷𝐷

𝑠𝑠=1

+ �𝑃𝑃𝑁𝑁𝑠𝑠

𝐷𝐷

𝑠𝑠=1

+ 𝑃𝑃𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 = 0 3.3 

 𝐴𝐴𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 ≤ 𝐴𝐴𝑠𝑠 ≤ 𝐴𝐴𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 3.4 

 𝑃𝑃𝑔𝑔𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 ≤ 𝑃𝑃𝑔𝑔𝑠𝑠 ≤ 𝑃𝑃𝑔𝑔𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 3.5 

 𝑄𝑄𝑔𝑔𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 ≤ 𝑄𝑄𝑔𝑔𝑠𝑠 ≤ 𝑄𝑄𝑔𝑔𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 3.6 

 𝑃𝑃𝑠𝑠𝑖𝑖 ≤ 𝑃𝑃𝑠𝑠𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 3.7 

Here, 

𝑃𝑃𝑠𝑠 ,𝑄𝑄𝑠𝑠 are the active and reactive power injections at bus 𝑖𝑖. 

𝑃𝑃𝑔𝑔𝑠𝑠,𝑄𝑄𝑔𝑔𝑠𝑠 are power generated and load demand at bus 𝑖𝑖. 

𝐴𝐴𝑠𝑠,𝐴𝐴𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠,𝐴𝐴𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 are voltage at 𝑖𝑖𝑡𝑡ℎ bus and it's minimum and maximum limits. 

𝑄𝑄𝑔𝑔𝑠𝑠,𝑄𝑄𝑔𝑔𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠,𝑄𝑄𝑔𝑔𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 are reactive power generation of 𝑖𝑖𝑡𝑡ℎ  generator and it's maximum and 

minimum limits. 

𝑃𝑃𝑠𝑠𝑖𝑖 ,𝑃𝑃𝑠𝑠𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚   are the line flow through line 𝑖𝑖, 𝑗𝑗, and its maximum limit.  

𝛿𝛿,𝜃𝜃𝑠𝑠𝑖𝑖  is the voltage angle at bus 𝑖𝑖, and impedance angle of line 𝑖𝑖, 𝑗𝑗. 

Nonlinear equations (3.1) and (3.2) are solved by ensuring that certain equality 

and inequality conditions are met. These conditions are 1) Total power generated should 

be equal to the total power demand and total power loss (𝑃𝑃𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠) in the system (3.3). 2) The 

voltage of all the buses should be maintained within their maximum and minimum limits 
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eq. (3.4).  3) The maximum and minimum reactive power and active power limits of the 

generators should be met (3.5) and (3.6). 4) The line flows should be within their limits 

(2.58). Newton-Raphson based load flow technique is widely used for solving these 

power flow equations. In the proposed method, any other suitable technique with some 

additional objective (such as optimal power flow) can also be used.  

3.3.3 Pseudo-PMU Emulation  

The Pseudo PMU emulation has been achieved by extracting the 𝑣𝑣𝑁𝑁𝑙𝑙𝐴𝐴𝐴𝐴𝒜𝒜𝑁𝑁 𝑛𝑛𝐴𝐴𝒜𝒜𝑛𝑛𝑖𝑖𝐴𝐴𝑛𝑛𝑁𝑁𝑁𝑁, 

𝑣𝑣𝑁𝑁𝑙𝑙𝐴𝐴𝐴𝐴𝒜𝒜𝑁𝑁 𝐴𝐴𝑛𝑛𝒜𝒜𝑙𝑙𝑁𝑁, 𝑝𝑝𝑛𝑛𝐴𝐴𝐴𝐴𝑁𝑁𝑛𝑛𝐴𝐴 𝑛𝑛𝐴𝐴𝒜𝒜𝑛𝑛𝑖𝑖𝐴𝐴𝑛𝑛𝑁𝑁𝑁𝑁, and 𝑝𝑝𝑛𝑛𝐴𝐴𝐴𝐴𝑁𝑁𝑛𝑛𝐴𝐴 𝐴𝐴𝑛𝑛𝒜𝒜𝑙𝑙𝑁𝑁 as different input loading 

patterns are iteratively subjected to the load flow stage of the proposed method. The PMU 

emulation stage takes the data regarding the number of PMU installed and the optimal 

location of PMU's that is provided in the input data set. The stack of cells is formed from 

the PMU emulation stage, which is equal to the number of PMU installed in the system. 

Each cell is divided into four sub-cells. The '𝐹𝐹𝐴𝐴𝑁𝑁𝑛𝑛 𝐵𝐵𝑛𝑛𝑠𝑠 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴' is the lines that are 

considered to be originating from the bus at which the PMU is placed is stored in the first 

sub-cell. The ′𝐴𝐴𝑁𝑁 𝐵𝐵𝑛𝑛𝑠𝑠 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴′ is the lines that are considered to be terminating at the bus 

at which the PMU is placed and are stored in the second sub-cell. The bus/node voltage 

magnitude and voltage angle are stored in the third sub-cell. The fourth subcell contains 

the data of 𝑏𝑏𝐴𝐴𝐴𝐴𝑛𝑛𝑝𝑝ℎ 𝑝𝑝𝑛𝑛𝐴𝐴𝐴𝐴𝑁𝑁𝑛𝑛𝐴𝐴 𝑛𝑛𝐴𝐴𝒜𝒜𝑛𝑛𝑖𝑖𝐴𝐴𝑛𝑛𝑁𝑁𝑁𝑁 and 𝑏𝑏𝐴𝐴𝐴𝐴𝑛𝑛𝑝𝑝ℎ 𝑝𝑝𝑛𝑛𝐴𝐴𝐴𝐴𝑁𝑁𝑛𝑛𝐴𝐴 𝐴𝐴𝑛𝑛𝒜𝒜𝑙𝑙𝑁𝑁𝑠𝑠. 

3.3.4 Voltage and current Extraction 

Extraction of voltage and current at any desired bus is quasi-statically achieved as the 

varying load is subjected to the system. The Newton-Raphson Jacobian matrix is given 

by the (3.8) [140]:  
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 �∆𝑃𝑃∆𝑄𝑄 � = 𝐽𝐽 �
∆𝛿𝛿
∆𝐴𝐴
𝐴𝐴
� 3.8 

 

Where 

 𝑗𝑗 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑃𝑃
𝜕𝜕𝛿𝛿

…
𝜕𝜕𝑃𝑃
𝜕𝜕𝐴𝐴

⋮ ⋱ ⋮
𝜕𝜕𝑄𝑄
𝜕𝜕𝛿𝛿

…
𝜕𝜕𝑄𝑄
𝜕𝜕𝐴𝐴⎦

⎥
⎥
⎥
⎤
 3.9 

 

Consider that a system is entirely observable after employing ′𝑛𝑛′ number of PMU's 

optimally placed at ′𝑛𝑛′ locations in the system. Now the voltage of those ′𝑛𝑛′ buses is 

taken and stored in a matrix of size m n′× . Here n′  is changing as the system is quasi-

statically subjected to the given loading pattern. The voltages at the desired buses will be 

given by 

 �
𝛿𝛿𝑠𝑠𝑠𝑠

𝐴𝐴𝑠𝑠𝑠𝑠
� = �

𝛿𝛿𝑠𝑠𝑠𝑠−1

𝐴𝐴𝑠𝑠𝑠𝑠−1
� + �

∆𝛿𝛿𝑠𝑠𝑠𝑠

∆𝐴𝐴𝑠𝑠𝑠𝑠
� 3.10 

 

Here 𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ loading to which the system under study is subjected, and 𝑖𝑖 is the bus 

number. Now the system's connectivity can be represented in terms of the admittance 

matrix Y  or impedance matrix Z . We will be using the admittance matrix for obtaining 

the connectivity as it is readily available since it has to be pre-computed for carrying out 

the load flow. 
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 [𝑌𝑌] = �
𝑌𝑌𝑠𝑠1 ⋯ 𝑌𝑌𝑠𝑠
⋮ ⋱ ⋮
𝑌𝑌𝑚𝑚1 ⋯ 𝑌𝑌𝑚𝑚𝑠𝑠

� 3.11 

 

Where 𝑌𝑌𝑠𝑠𝑠𝑠 is the diagonal element of the admittance matrix and is equal to the sum of 

admittance connected at bus 𝑖𝑖 and the sum of admittance of all the branches connected to 

bus 𝑖𝑖. 

 𝑌𝑌𝑠𝑠𝑠𝑠 = 𝑦𝑦𝑠𝑠𝑠𝑠 + 𝑦𝑦𝑠𝑠1 + ⋯+ 𝑦𝑦𝑠𝑠𝑠𝑠 3.12 

 

𝑌𝑌𝑠𝑠𝑖𝑖is the off-diagonal element and is equal to the negative of the branch admittance 

connected between bus 𝑖𝑖 and 𝑗𝑗. 

 𝑌𝑌𝑠𝑠𝑖𝑖 = −𝑦𝑦𝑠𝑠𝑖𝑖 3.13 

𝑦𝑦𝑠𝑠𝑖𝑖 being the admittance of branch between 𝑖𝑖 and 𝑗𝑗. And is given by the sum of the 

admittances at the bus 𝑖𝑖 and half-line chargings of the lines connected to the bus 𝑖𝑖. The 

injected current at node 𝑖𝑖 is given by  

 �
𝐼𝐼1
⋮
𝐼𝐼𝑠𝑠
� = �

𝑌𝑌𝑠𝑠1 ⋯ 𝑌𝑌𝑠𝑠
⋮ ⋱ ⋮
𝑌𝑌𝑠𝑠1 ⋯ 𝑌𝑌𝑠𝑠𝑠𝑠

� �
𝐴𝐴1
⋮
𝐴𝐴𝑠𝑠
� 3.14 

 [𝐼𝐼] = [𝑌𝑌][𝐴𝐴] 3.15 

The current injected by  

 𝐼𝐼𝑠𝑠 = 𝐼𝐼1 + 𝐼𝐼2 + ⋯𝐼𝐼𝑚𝑚 3.16 

Here 𝑛𝑛 is the number of branches connected at bus 𝑖𝑖. Also  
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 𝐼𝐼𝑠𝑠𝑖𝑖 = 𝑦𝑦𝑠𝑠𝑖𝑖𝑙𝑙 𝐴𝐴𝑠𝑠 + 𝑦𝑦𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖 3.17 

Here 𝑦𝑦𝑠𝑠𝑖𝑖𝑙𝑙  component of 𝑦𝑦𝑠𝑠𝑖𝑖 on account of line 𝑖𝑖 → 𝑗𝑗. 

 PMU gives the current in the branches which directly connected to the nodes and 

node voltages at which the PMU's are placed. Diagrammatic representation of the data 

storage method for emulated PMU is given in Figure 3.2. The voltage data cell is 

illustrated to be divided into two cells: one containing voltage magnitude and the other 

containing the voltage angle in Fig.3. Similarly, 𝑝𝑝𝑛𝑛𝐴𝐴𝐴𝐴𝑁𝑁𝑛𝑛𝐴𝐴 data cell is further divided into 

cells depending upon the no of branches that are connected to the PMU bus. These sub-

cells are further divided into two cells, one containing the 𝑏𝑏𝐴𝐴𝐴𝐴𝑛𝑛𝑝𝑝ℎ 𝑝𝑝𝑛𝑛𝐴𝐴𝐴𝐴𝑁𝑁𝑛𝑛𝐴𝐴 𝐴𝐴𝑛𝑛𝒜𝒜𝑙𝑙𝑁𝑁 and 

the other containing 𝑏𝑏𝐴𝐴𝐴𝐴𝑛𝑛𝑝𝑝ℎ 𝑝𝑝𝑛𝑛𝐴𝐴𝐴𝐴𝑁𝑁𝑛𝑛𝐴𝐴 𝑛𝑛𝐴𝐴𝒜𝒜𝑛𝑛𝑖𝑖𝐴𝐴𝑛𝑛𝑁𝑁𝑁𝑁. 

 

 

(a) 

 

(b) 

Figure 3.2 PMU DATA STORAGE LAYOUT 
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(a) Iterative Algorithm 

 

 

(b) PPMU Algorithm 

Figure 3.3 Schematic comparison of iterative and PPMU algorithm. 

Further, if PPMU is not employed, then an iterative algorithm that sweeps across 

the operating situations (probable/feasible solutions) and fetches the data if the 𝑏𝑏𝑛𝑛𝑠𝑠 𝑖𝑖𝑁𝑁 is 
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the same as the PMU location bus would have to be utilized. This happens to be a time-

consuming process, and the time taken would increase with the increase in complexity 

(number of buses) of the system. The schematic comparison of the Iterative method and 

PPMU algorithm is shown in Figure 3.3. 

3.3.5 PMU PLACEMENT 

The optimal location of the PMU's can be obtained by using any well-established PMU 

placement method. Here an ILP based PMU placement technique has been utilized for 

determining the optimal location of the PMU's in the system. The optimal PMU 

placement formulation based topological observability method finds an optimal set of 

PMUs such that a bus in the power system must be reached at least once by the PMUs. 

The optimal placement of PMUs for an N bus system is formulated as follows [141]: 

 𝑀𝑀𝑖𝑖𝑛𝑛 �𝑤𝑤𝑠𝑠𝑥𝑥𝑠𝑠

𝐷𝐷

𝑠𝑠=1

 3.18 

 𝐴𝐴𝑋𝑋 ≥ 𝑏𝑏 3.19 

 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐷𝐷]𝑇𝑇 3.20 

 

Where 𝑤𝑤𝑠𝑠 is weight factor accounting for the cost of installed PMU at the bus 𝑖𝑖; 𝑁𝑁 is the 

total number of system buses, 𝐴𝐴 is the connectivity matrix of the power system, X is a 

binary variable vector having elements 𝑥𝑥𝑠𝑠   define the possibility of PMUs on a bus 𝑖𝑖 

whose entries are defined by Equation (3.20), and 𝐴𝐴𝑋𝑋 is a vector such that its entries are 

non-zero if the corresponding bus voltage is observable using the given measurement set 

and according to observability rules mentioned above. It provides full network 
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observability while minimizing the total installation cost of the PMUs; otherwise, its 

entries are zero. 

 𝑥𝑥𝑠𝑠 = �1 𝑖𝑖𝐴𝐴 𝐴𝐴 𝑃𝑃𝑀𝑀𝑃𝑃 𝑖𝑖𝑠𝑠 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐴𝐴𝐴𝐴 𝑏𝑏𝑛𝑛𝑠𝑠 𝑖𝑖
0 𝑁𝑁𝐴𝐴ℎ𝑁𝑁𝐴𝐴𝑤𝑤𝑖𝑖𝑠𝑠𝑁𝑁

 3.21 

 

The elements of 𝐴𝐴 are defined as follows: 

 𝐴𝐴𝑠𝑠𝑖𝑖 = �
1 𝑖𝑖𝐴𝐴 𝑖𝑖 = 𝑗𝑗
1 𝑖𝑖𝐴𝐴 𝑖𝑖 𝐴𝐴𝑛𝑛𝑁𝑁 𝑗𝑗 𝐴𝐴𝐴𝐴𝑁𝑁 𝑝𝑝𝑁𝑁𝑛𝑛𝑛𝑛𝑁𝑁𝑝𝑝𝐴𝐴𝑁𝑁𝑁𝑁
0 𝑁𝑁𝐴𝐴ℎ𝑁𝑁𝐴𝐴𝑤𝑤𝑖𝑖𝑠𝑠𝑁𝑁

 3.22 

𝑏𝑏 is a vector whose entries are all ones, as shown in Equation (2.58). 

 𝑏𝑏 = [1 1 1 … 1]𝑇𝑇 3.23 

 

Eq. (3.24) represents the expression of maximum observability from which we can check 

the observability (𝑀𝑀𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑙𝑙) of each bus of the system [141]: 

 𝑀𝑀𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑙𝑙 = �𝐴𝐴𝑙𝑙𝑜𝑜𝑐𝑐(𝑘𝑘)
𝑝𝑝

𝑠𝑠=1

 3.24 

Where 𝑝𝑝 is the total optimal number of PMUs, 𝐴𝐴 is the connectivity matrix, and the 

location of PMUs at the power system buses indicated by 𝑙𝑙𝑜𝑜𝑝𝑝. The concept of zero 

injection buses (ZIB) has been used to reduce the optimal number of PMUs further. 𝑍𝑍𝐼𝐼𝐵𝐵 

is that bus at which neither load nor generation is connected. Detail expressions of the 

𝑍𝑍𝐼𝐼𝐵𝐵 have been discussed in [142]. The selections of the buses in normal case and the 

selections of the neighbouring buses of the ZIB have been updated to get the multiple 

results via ILP. 
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3.3.6 CASE STUDY 

The method is tested on IEEE 24 bus RTS system, IEEE 30 bus test system, and IEEE 

118 bus test system. The hourly loading pattern is taken and given as input for illustration 

of the proposed Pseudo PMU emulation. The ILP method discussed in section 3.3.5 is 

used to obtain the candid solution for the placement of the Pseudo PMU's. The proposed 

method attempts to optimally place the PMU by maximizing the observability of the 

system. The results obtained of PMU placement in IEEE 24 bus RTS system are given in 

Table 3.1, and the results are compared with those obtained in [141].  

 

Table 3.1 OPTIMAL PLACEMENT OF PMU IN IEEE 24-BUS RTS SYSTEM. 

Method 

Without ZIB With ZIB 

No. of 
PMUs 

Location of 
PMUs Obs. No. of 

PMUs 
Location of 

PMUs Obs. 

Proposed 7 

2, 3, 7, 10, 16, 
21, 23 

29 

 

6 

1, 2, 8, 14, 20, 
21 22 

2, 3, 8, 10, 16, 
21, 23 31 

1, 2, 8, 14, 20, 
21 25 

2, 8, 10, 15, 
20, 21 25 

Ref. 
[141] 7 2, 3, 7, 10, 16, 

21, 23 29 6 1, 2, 8, 16, 18, 
23 24 
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Figure 3.4 Plot of current obtained by PMU 1 at bus 2. 

 
Figure 3.5 Plot of Voltage obtained by PMU 1 at bus 2. 

 
Figure 3.6 Plot of current obtained by PMU 2 at bus 3. 
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Figure 3.7 Plot of Voltage obtained by PMU 2 at bus 3 

 
Figure 3.8 Plot of current obtained by PMU 3 at bus 8 

 
Figure 3.9 Plot of Voltage obtained by PMU 3 at bus 8. 
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The location for which the observability is maximum has been considered as the 

appropriate location for PMU placement, and the Pseudo PMU's are placed at this 

location. The data for the RTS test system has been taken from [143].  

The plots obtained by using this method are given in Figure 3.4-Figure 3.9. The figures 

have 𝑃𝑃𝑀𝑀𝑃𝑃 𝑛𝑛𝑛𝑛𝑛𝑛𝑏𝑏𝑁𝑁𝐴𝐴 as their title; this title corresponds to the PMU whose plot is being 

shown in the figure. Figure 3.4, Figure 3.6, Figure 3.8 gives the plot of the branch 

currents, whereas Figure 3.5, Figure 3.7, Figure 3.9 gives the node voltage plot. The plots 

are obtained for 24 hours of load variation.   

Also, the comparative results for the iterative algorithm method and PPMU based 

emulation method for different test cases using MATLAB 17b; running on an intel core 

i7 processor, has been shown in Table 3.2. 

Table 3.2 Comparison of Iterative and PPMU algorithm using MATLAB 17b on 
intel i7 processor. 

S. N Case 
Time Taken 

Iterative Algorithm PPMU Algorithm 

1 IEEE 24 BUS RTS 0.0011 0.0007 

2 IEEE 30 BUS System 0.0012 0.0006 

3 IEEE 118 BUS System 0.0043 0.0015 
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3.4 NEAR REAL-TIME LOAD FORECASTING 

Near real-time load forecasting can be considered as a more precise form of short-term 

load forecasting that too for a smaller duration. In this world of commercialization, it is a 

major tool used by power utilities to maximize profit. It is becoming an increasingly 

important topic not only from the point of view of power generation but also from the 

financial perspective. It is an important process that can increase the efficiency and 

revenues for the electrical generating and distribution companies [144].  Since Electrical 

energy is an energy that cannot be stored at a large scale economically and efficiently, an 

equilibrium has to be always maintained between load demand and supply. Disturbance 

in this equilibrium can adversely affect equipment at the generation side as well as 

household equipment and grid stability. Near real-time load forecasting is used to supply 

the necessary information for system management of day to day operation, unit 

commitment, and estimation of load flow, grid operation, and power plant scheduling. 

With proper load forecasting, we can have optimum use of spinning reserve and online 

generators. The main contribution of this section is: 

 To develop an algorithm that reduces the differences between actual and 

forecasted values with MAPE not more than 1.5%. 

 To implement a moving window on all the developed models that 

automatically trains itself as soon as the data is available.  

 An attempt has been made to find the most unstable time of the day using. 

 

Here three different techniques are proposed and compared with a standard SVR 

(Support Vector Regression-based) based method.  Among all the three developed 

models, the one with optimized parameters gives remarkable accuracy and outperforms 
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the SVR model. All the models are trained with varying sets of historical data and tested 

for different conditions. The performance of the SVR model is directly proportional to 

the amount of data available for training [145]. The accuracy of the prediction model is 

measured by RMSE and MAPE. But to measure the error for each instant evaluation 

parameter MAE (Mean absolute error) is used to get the better inside of the picture. 

3.4.1 Data conditioning and pre-processing 

The data required for near-real-time load forecasting would comprise historical 

load data, weather data (typically temperature), holidays, and festivals. The raw data 

comprises invalid entries, missing entries, and non-synchronized data.  

 

Figure 3.10 Schematic representation of data pre-processing stage. 

 

3.4.2 SVR based method for load forecasting. 

The raw data thus needs to be conditioned and pre-processed to make it apt for 

the near real-time load forecasting. The schematic representation of the overall process 

has been inked in Figure 3.10. Support Vector Machine was formulated by Vapnik in 

1995. It works on the principle of Structural Risk Minimization (SRM) instead of 

Empirical Risk Minimization (ERM), which is far better than the later one. Initially, SVM 

Processed 
Data 
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was developed for classification problems, but very soon, it was extended for the 

regression domain [146]. SVR uses the soft margin technique to obtain the best 

generalization ability. The aim of SVR is to find the hyperplane in space [147]. It shows 

good performance despite insufficient training samples. Regression problems are solved 

with the help of an alternative loss function called (𝜖𝜖 − 𝑙𝑙𝑁𝑁𝑠𝑠𝑠𝑠) function and two slack 

variables. 

Consider the problem of approximating the set of data,  

 𝐴𝐴 =  { (𝑥𝑥1 ,𝑦𝑦1 ), . . . , (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 )}, 𝑥𝑥𝑠𝑠  ∈  𝐴𝐴𝑛𝑛 ,𝑦𝑦𝑠𝑠  ∈  𝐴𝐴 3.25 

With a linear function, 

 𝐴𝐴(𝑥𝑥) = < 𝑤𝑤, 𝑥𝑥 >  + 𝑏𝑏. 3.26 

Where 𝑤𝑤 is a weight vector, and 𝑏𝑏 is called the bias term. 

The optimal regression function is given by the minimum of the functional, 

 

𝑀𝑀𝑖𝑖𝑛𝑛�𝛷𝛷(𝑤𝑤, 𝜉𝜉)� 

𝜙𝜙(𝑤𝑤, 𝜉𝜉) =  0.5�|𝑤𝑤|�
2

 + 𝜎𝜎�(𝜉𝜉𝑠𝑠+  +  𝜉𝜉𝑠𝑠− )
𝒍𝒍

𝒊𝒊=𝟏𝟏

 
3.27 

 𝑠𝑠𝑛𝑛𝑏𝑏𝑗𝑗𝑁𝑁𝑝𝑝𝐴𝐴𝑁𝑁𝑁𝑁 𝐴𝐴𝑁𝑁 ∶ �
𝑦𝑦𝑠𝑠 − 𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥𝑠𝑠) − 𝑏𝑏 ≤ 𝜖𝜖 + 𝜉𝜉+

𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥𝑠𝑠) + 𝑏𝑏 − 𝑦𝑦𝑠𝑠 ≤ 𝜖𝜖 + 𝜉𝜉−

𝜉𝜉𝑠𝑠+, 𝜉𝜉𝑠𝑠− ≥ 0; 𝑖𝑖 = 1,2,⋯𝑙𝑙, 𝜖𝜖 > 0
  3.28 

where 𝜎𝜎 is a pre-specified value, and the slack variables representing upper and lower 

bounds on the outputs of the system are 𝜉𝜉+, and 𝜉𝜉−. Slack variables are the potential 

violations of the margin constraints [148]. 𝜙𝜙(𝑥𝑥) is the high-dimensional feature mapping 

to the feature space. The constrained minimization problem of (3.27) can be solved using 

any apt optimization tool.  
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3.4.3 Proposed Models  

In the proposed method, the load data is arranged in a time-series format. As we 

can observe from Figure 3.11 that through time-series data format, we can get various 

feature vectors such as load at the previous hour of the day, previous day's current hour, 

previous week's current hour, etc., just by giving proper shifting in data set.   Binary 

variable one is used for denoting workdays and weekends by zero. Holidays are also 

denoted by binary variable 1. Load at the weekend is generally lesser than load at working 

days.  

 

 

 

 

 

 

 

The observer reads the data at an instant of time and feeds the same to the 

forecasting algorithm where the forecasted value is estimated. The estimation formulation 

(3.31) has been developed through the development of two developmental models (2.58) 

and (3.30); these are given as under 

 𝑀𝑀3(𝐴𝐴) = 𝐴𝐴𝐶𝐶𝐴𝐴 +  𝐴𝐴𝐶𝐶𝐴𝐴 ∗
 𝑃𝑃𝐶𝐶𝐴𝐴 − 𝐴𝐴𝐶𝐶𝐴𝐴 
 𝑃𝑃𝐶𝐶𝐴𝐴 +  𝐴𝐴𝐶𝐶𝐴𝐴 

2
  3.29 

 

Figure 3.11 Schematic representation of input features. 
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𝑀𝑀2(𝐴𝐴) = CHD + �0.75 ∗ �CHD ∗
PHD− CHD
PHD + CHD

2
� + 0.125 ∗ �PDCHD ∗

PDFHD − PDCHD
PDFHD + PDCHD

2
�

+ 0.125 ∗ �PWCHD ∗
PWFHD − PWCHD
PWFHD + PWCHD

2
�� + E ∗ CHD 

3.30 

 

𝑀𝑀1(𝐴𝐴) = CHD + �α ∗ �CHD ∗
PHD − CHD
PHD + CHD

2
� + β ∗ �PDCHD ∗

PDFHD − PDCHD
PDFHD + PDCHD

2
� + γ 

∗ �PWCHD ∗
PWFHD − PWCHD
PWFHD + PWCHD

2
�� + E ∗ CHD 

3.31 

In the above equations, 

Where, 

𝐴𝐴𝐶𝐶𝐴𝐴 is current hour data  

𝑃𝑃𝐶𝐶𝐴𝐴 is previous fifteen-minute data 

𝑃𝑃𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴 is previous day current hour data 

𝑃𝑃𝐴𝐴𝐹𝐹𝐶𝐶𝐴𝐴 is previous day forecasted hour data 

𝑃𝑃𝑀𝑀𝐴𝐴𝐶𝐶𝐴𝐴 is previous week current hour data 

𝑃𝑃𝑀𝑀𝐹𝐹𝐶𝐶𝐴𝐴 is previous week forecasted hour data 

E is error 

𝛼𝛼,𝛽𝛽and 𝛾𝛾 are parameters to be optimized through training. 

Load forecasting is a nonlinear process. Hence Model 1 (𝑀𝑀1) uses 𝐴𝐴𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑁𝑁𝑛𝑛 as the 

optimization technique. It is an optimization function used for nonlinear programming.  
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Figure 3.12 Flow chart showing the implementation of the proposed method. 

 

𝐹𝐹𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑁𝑁𝑛𝑛 finds a constrained minimum of a scalar function of several variables starting 

at an initial estimate. This is generally referred to as constrained nonlinear optimization 

or nonlinear programming. 𝐹𝐹𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑁𝑁𝑛𝑛 uses (Sequential Quadratic Programming) SQP 

algorithm for the optimization. SQP is an iterative method for constrained nonlinear 

optimization. The flowchart representing the various steps involved in the forecasting 

process has been illustrated in Figure 3.12. 
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3.4.4 Evaluation and Test Results. 

The proposed models and the SVR model are trained using two months of data from Jan 

21 to Mar 21 and tested for the next upcoming weekday, weekend, and holiday. The plot 

of results obtained using various models has been inked in figures Figure 3.13 to Figure 

3.19. It has been observed that the error for the weekends is higher than the weekdays. 

Further, the developed models give better prediction accuracy than the SVR model in the 

case of holidays. Overview of the model accuracy for four different days is presented in 

Table 3.3, and corresponding plots are drawn. 

 

 

 
Figure 3.13 Plot for Mar 22, 2017 (weekday) 
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Figure 3.14 Plot for Apr 4 (Holiday). 

 

 
Figure 3.15 Plot for Mar 25, 2017 (Saturday). 

 

The load trends of different festivals are different, and in most cases, festivals' 

load is lower than workdays' load [149]. To find the most disturbing time of a day, the 

SVR model is tested for four different time slots of a day, as shown in Table 3.4. By 

finding the most disturbing slot, we can improve integrity and security by paying special 

attention to that particular time of the day. The model is tested for different time slots of 

six days. 
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Figure 3.16 Plot for Mar 22, 2017 (weekday). 

 

 
Figure 3.17 Plot for Mar 25, 2017 (Sunday). 

 

It is observed from Table 3.4 that the most unstable time of the day is from 6 pm 

to 9 pm. The evening time is most unstable, maybe because for many people it is the 

recreational time of the day, closing off some organizations as well as a decrease in 

sunlight. 
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Figure 3.18 Plot for Apr 4 (Holiday) 

 
Figure 3.19 Plot for Mar 25, 2017 (Saturday). 

Table 3.3 COMPARISION OF ERRORS FOR DIFFERENT TYPES OF DAYS. 

Day Date SVR Model Model 1 Model 2 Model 3 

RMSE 

(%) 

MAPE RMSE 

(%) 

MAPE RMSE 

(%) 

MAPE RMSE 

(%) 

MAPE 

Week 
day 

22nd 
March 

1.22 1.159 1.87 1.3646 2.84 2.2724 3.47 2.7999 

Weekend 25th 
March 

1.98 1.495 1.76 1.178 2.72 1.9484 3.34 2.3945 

Weekend 26th 
March 

1.62 1.502 1.76 1.1741 2.76 1.976 3.4 2.4554 

Holiday 4th April 3.16 3.327 1.85 1.3509 2.62 1.9828 3.19 2.4888 
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As this time of the day experiences, maximum fluctuations so special attention 

should be given. For increasing the reliability and efficiency of the SVR model for 

weekends and holidays, separate models have been designed to predict load for these 

special or non-working days. The holiday model is trained for 21 different holidays of 

Rajasthan and is tested randomly for three holidays. 

 

Table 3.4 Finding the most unstable time of the day. 

Date Time RMSE (%) MAPE 

22 March 

12 am to 3 am 0.61 0.6517 
8 am to 11 am 0.47 0.4033 
1 pm to 4 pm 1.30 1.4876 
6 pm to 9 pm 1.79 1.7514 

Mar 23 

12 am to 3 am 3.27 2.2927 
8 am to 11 am 0.96 0.7770 
1 pm to 4 pm 2.17 2.4761 
6 pm to 9 pm 2.93 2.4993 

24 March 

12 am to 3 am 0.71 0.6770 
8 am to 11 am 0.99 0.7847 
1 pm to 4 pm 1.44 1.5513 
6 pm to 9 pm 2.55 2.1507 

Mar 25 

12 am to 3 am 2.15 1.4366 
8 am to 11 am 0.89 0.7636 
1 pm to 4 pm 0.48 0.4016 
6 pm to 9 pm 2.69 2.6629 

26 March 

12 am to 3 am 0.70 0.6263 
8 am to 11 am 1.71 1.6744 
1 pm to 4 pm 1.29 1.4292 
6 pm to 9 pm 1.93 1.6690 

Mar 27 

12 am to 3 am 1.18 1.2065 
8 am to 11 am 1.31 1.2617 
1 pm to 4 pm 0.39 0.3543 
6 pm to 9 pm 2.97 2.8080 
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 The results are compared with a simple SVR model, which is also trained for 21 

days. Table 3.5 presents the error given by the special holiday model and the simple SVR 

model. On the above-mentioned days, the Holiday model has less MAPE when compared 

to the simple SVR model. Similarly, here we present a separate model for the weekend 

to increase the prediction accuracy. The Weekend model is also trained for 21 Saturdays 

and Sundays of the year and is tested for three random weekends in the upcoming months. 

Table 3.6 clearly explains the need and the importance of a separate weekend model. A 

weekly moving window is applied to the training data, which automatically trains the 

models for three weeks and predicts the result for the next week. Thus, the simple SVR 

model and the developed models can be used for automatically predicting the load for the 

next week as soon as it gets the load data of the current week.  Table 3.7  shows the 

MAPE for 42 weeks of the year by the SVR model. Higher error in some weeks indicates 

changed load in this week due to factors that were not in the previous three weeks and 

were not incorporated in the forecast. With the help of Table 3.8, we can easily evaluate 

the accuracy of the moving window model. 

Table 3.5 Comparison of Holiday model with simple SVR model. 

Date Holiday 
Simple Model Holiday Model 

RMSE (%) MAPE RMSE (%) MAPE 

15-Aug 
Independence 

Day 
3.08 2.2612 1.01 0.7743 

2-Oct Gandhi Jayanti 5.89 4.6422 1.99 1.5418 

25-Dec Christmas 10 6.4803 5.01 3.4055 
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Table 3.6 Comparison of weekend model with simple SVR model. 

Weekend 

(Sat & Sun) 

Simple Model Weekend Model 

RMSE (%) MAPE RMSE (%) MAPE 

25-26 Feb 6.39 5.8197 1.38 0.8981 

20-21 May 4.99 4.6374 2.04 1.6458 

17-18 June 4.43 3.4756 2.17 1.7364 

     

Table 3.7 Error Range for SVR Model. 

Error 

range 

Number of times RMSE fall in 

this range 

Number of times MAPE fall in 

this range 

0 - 1 0 0 

1 – 1.5 4 10 

1.5 – 2 7 10 

2 – 2.5 8 8 

2.5 – 3 8 6 

3 – 4 8 4 

4 – 6 7 4 

 

Table 3.8 SVR MODEL ABSOLUTE ERROR PERCENTAGE FOR 10 WEEKS. 
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88 | P a g e  
 

The model is not able to reduce the MAPE below 1%, but for ten predicted weeks, the 

error is less than 1.5%. For four weeks, the error is very high, which is not desirable. This 

puts forward the need for a better model because near real-time load forecasts play an 

important role in the successful operation of the Power System. All three proposed 

models are tested for 18 weeks. Table 3.9 compares the performance of all the three 

models on the basis of RMSE and MAPE. Among all the models, Model 1 shows 

remarkable performance with the least error.   

 Model 1 accurately predicts the load for week 18, which is the most disturbing 

week of the year, as seen in Table 5. Model 2 accuracy is far better than Model 3.  

Table 3.9 SVR weekly window errors for 42 weeks consecutively. 

Week RMSE MAPE Week RMSE MAPE 
s 1.80 1.3680 20 2.17 1.7094 
2 3.55 2.4629 21 1.35 1.1109 
3 1.73 1.3572 22 2.91 2.6238 
4 6.36 5.6361 23 2.92 2.5604 
5 2.41 2.0260 24 1.45 1.1200 
6 3.23 2.5818 25 4.75 3.1932 
7 2.63 2.4466 26 3.79 2.9880 
8 3.31 2.8840 27 4.49 3.6231 
9 1.76 1.2939 28 1.59 1.1890 

10 2.63 2.1493 29 3.08 1.8788 
11 5.31 4.6396 30 2.26 1.7386 
12 2.01 1.5663 31 2.39 1.8077 
13 1.89 1.4741 32 2.72 2.0950 
14 3.98 2.7042 33 3.80 3.1037 
15 3.09 2.3825 35 2.83 2.0122 
16 1.42 1.0434 36 1.83 1.3281 
17 1.39 1.0197 37 2.11 1.6232 
18 6.67 5.9912 38 2.99 2.0758 
19 4.27 4.2463 39 5.20 3.7167 
20 2.17 1.7094 40 1.97 1.6383 
21 1.35 1.1109 41 2.27 1.8916 
22 2.91 2.6238 42 2.92 1.7630 
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Table 3.10 Comparison of prediction performance of all the three proposed 
models. 

WEEK 
RMSE MAPE 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

1 1.8134 2.9433 3.6416 1.0719 1.8408 2.3017 

2 1.8026 2.9066 3.5396 1.0489 1.8651 2.2823 

3 1.7967 3.0004 3.7025 1.1299 1.9747 2.4523 

4 1.7553 2.7852 3.3883 1.2366 2.0801 2.5346 

5 1.7052 2.7545 3.3858 1.2226 2.0811 2.5678 

6 1.7209 2.7076 3.3407 1.1084 1.8715 2.3326 

7 1.5048 2.3714 2.9237 1.082 1.7945 2.226 

8 1.4453 2.2836 2.8353 1.1002 1.831 2.2783 

9 1.4485 2.2576 2.7785 1.0048 1.6382 2.0308 

10 1.5075 2.2997 2.8403 0.9865 1.6348 2.0179 

11 1.44 2.2166 2.731 0.9366 1.5687 1.9481 

12 1.6129 2.5335 3.0988 1.0319 1.6978 2.1017 

13 1.6931 2.527 3.0911 0.9849 1.6059 1.987 

14 1.6576 3.0911 3.1101 1.0314 1.6894 2.1065 

15 1.6315 2.4871 3.0595 1.0551 1.7406 2.1505 

16 1.4291 2.1277 2.6414 0.9342 1.5093 1.8825 

17 1.5235 2.2928 2.8194 1.0088 1.6378 2.0455 

18 1.5345 2.8194 2.7139 1.034 1.6518 2.0505 

If all the models discussed here are evaluated on the basis of MAPE and RMSE, 

then the proposed Model 1 is the most reliable with the highest accuracy. The proposed 

models are more precise than the SVR model Table 3.10, Table 3.11, and 

Table 3.12 compares all the developed models for ten weeks on the basis of 

absolute percentage error. For this table, an absolute error has been calculated at a 

sampling rate of 15 minutes and grouped together for a week. 
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Table 3.11 MODEL 1 ABSOLUTE ERROR PERCENTAGE FOR 10 WEEKS. 

Error 
% 

Feb 13– Feb 
22 

Feb 23-
Mar 1 

Mar. 2 – Mar 
9 

Mar 10- Mar 
17 

Mar 18- 

Mar 25 

Mar 26- 

Apr 1 

Apr 2 – 

Apr 8 

Apr 9- 

Apr 15 
Apr 16– Apr 

22 
Apr 23- 

Apr 29 

<1 67.45914 70.13373 63.44725 61.81278 58.54383 66.27043 64.93314 61.36071 64.63596 64.33878 

1≤e<2 17.38484 16.04755 20.05944 19.01932 23.62556 17.68202 18.57355 24.96285 22.13967 22.13967 

2≤e<3 6.092125 5.640461 8.172363 8.023774 8.172363 6.686478 8.320951 5.794948 6.686478 6.686478 

3 ≤e<5 5.794948 4.60143 4.606241 7.875176 6.092125 5.200594 5.497771 5.794948 4.606241 4.457652 

5≤e 3.268945 3.566122 3.71471 3.268945 3.566122 4.160475 2.674591 2.080238 1.931649 2.377415 

 

Table 3.12 MODEL 2 ABSOLUTE ERROR PERCENTAGE FOR 10 WEEKS. 

Error 
% 

Feb 13– 
Feb 22 

Feb 23-
Mar 1 

Mar. 2 – 
Mar 9 

Mar 10- 
Mar 17 

Mar 18-
Mar 25 

Mar 26-
Apr 1 

Apr 2 –
Apr 8 

Apr 9- 

Apr 15 
Apr 16– 
Apr 22 

Apr 23-
Apr 29 

<1 50.66865 45.17088 42.64487 42.05052 37.74146 44.13076 44.57652 40.56464 44.8737 49.92571 

1≤e<2 19.46508 23.47697 24.66568 23.47697 25.11144 26.59733 26.00297 28.82615 29.27192 21.39673 

2≤e<3 9.212481 11.29272 10.99554 11.14413 15.75037 10.54978 12.03566 14.26449 11.29272 13.37296 

3 ≤e<5 10.10401 1054978 11.14413 11.88707 11.14413 8.618128 8.320951 9.509658 9.063893 8.172363 

5≤e 10.54978 9.5096 10.54978 11.44131 10.2526 10.10401 9.063893 6.835067 5.497771 7.132244 
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3.5 CONCLUSION 

In this chapter, at first, a PMU emulation technique has been presented for Static Security 

Analysis of the power system. Emulation of PMU for IEEE 14 bus system by using this 

method has been demonstrated, and the results are analyzed. The method presented can 

be used to prepare offline data for training and testing of neural network-based 

estimators/controllers for the power system. Any varying state can be quasi-statically 

represented and used in the method to generate relevant data for the above purpose. The 

presented methodology can also be used to develop and validate different control 

algorithms requiring PMU data in an offline environment. In general, the presented 

technique can be used to develop the static security assessment algorithms for real-time 

application in an offline environment.  

Secondly, a near-real-time load forecaster has been developed. Experimental 

results confirm the efficacy of the proposed models over the SVR model. Our 

experimental results show's that Model 1, in terms of accuracy, is better than Model 2, 

which is better than Model 3. Further, the most unstable time of the day has been 

identified from 6 pm to 9 pm. In the upcoming chapter, we discuss the particularities 

related to the development of a real-time ATC estimator. 

 

  


