Contents

\mathbf{A}	bstra	nct		\mathbf{v}
	0.1	Motiv	ation, Research Gap and Objectives of the Thesis	. vi
	0.2	Contri	ibutions and Outline of the Thesis	. vii
Li	st of	Table	S	xiii
\mathbf{Li}	st of	Figur	es	xv
Ν	omer	nclatur	e	xxv
1	Intr	oducti	ion	1
	1.1	Outlin	1e	. 1
	1.2	Litera	ture Survey for Differential Protection of Transformer	. 2
	1.3	Motiv	ation, Research Gap, Objectives and scope of the Thesis	. 9
	1.4	Outlin	ne of The Thesis	. 10
	1.5	Summ	ary	. 11
2	Dev	velopm	ent of Matched Wavelets for Differential Signals	13
	2.1	Outlin	1e	. 13
	2.2	Wavel	ets Families	. 14
		2.2.1	Wavelet Transforms [1]	. 16
		2.2.2	Refinement Relation	. 17
	2.3	Match	ed Wavelet Theory	. 19
		2.3.1	Motivation and Mathematical Foundation	. 19
		2.3.2	Filter Coefficients of Matched Wavelet : Problem Formulation	. 22
	2.4	Differe	ential Evolution	. 25
		2.4.1	DE Algorithm	. 26

		2.4.2	Repairing Infeasible Solution in DE	28
	2.5	Optim	al Matched Wavelets using DE	29
	2.6	Result	s and Discussion	32
		2.6.1	Comparison with Existing Wavelets	34
	2.7	Summ	ary	36
3	Ma	tched `	Wavelet based Protection of Power Transformers	39
	3.1	Outlin	ne	39
	3.2	Syster	n Model and Description	40
		3.2.1	Magnetizing Inrush	40
		3.2.2	Faults in Power Transformers	47
		3.2.3	CT Saturation	49
		3.2.4	Effects of CT Saturation on External and Internal Fault Signals	55
		3.2.5	Transformer Ratings	59
		3.2.6	Robustness	59
	3.3	Transf	former Differential Protection Scheme	61
		3.3.1	Existing Transformer Differential Protection Scheme	61
		3.3.2	Proposed Scheme for Transformer Differential Protection	61
		3.3.3	Matched Wavelets for Inrush and Fault Waveforms	63
	3.4	Result	s and Discussion	66
	3.5	Summ	ary	70
4	Har	dware	Implementation	91
	4.1	Outlin	1e	91
	4.2	Outlin	e of the Hardware Implementation Studies	92
	4.3	Hardw	vare Simulation for Inrush- and Fault-Filter: (Stage-2)	95
	4.4	Result	s of Hardware-Simulation Model (Stage 2): Testing Accuracy of Im-	
		pleme	ntation	96
	4.5	Hardw	vare Implementation-I (Stage 3)	98
		4.5.1	Waveform-Board Design	102
		4.5.2	Filter-Board Design	106
		4.5.3	Hardware Set-up (Stage 3)	109
		4.5.4	Results and Discussion (Stage 3)	111

	4.6	Hardv	vare Implementation-II (Stage 4)	112
	4.7	Hardv	vare Results on a Physical Transformer	124
		4.7.1	Inrush Conditions	124
		4.7.2	In-zone Fault Conditions	126
		4.7.3	External Fault under CT Saturation	129
		4.7.4	Energizing Transformer under Faulted Condition	130
		4.7.5	Inter-turn Faults	131
	4.8	Summ	nary	132
-	C	1 • .	1 Fisters Comments	F 0
5	Cor	nclusio	n and Future Scope 1	53
5	Cor 5.1	iclusio Concl	n and Future Scope 1 usions	1 53 153
5	Cor 5.1 5.2	n clusio Concl Futur	n and Future Scope 1 usions	1 53 153 155
5	Cor 5.1 5.2	Concl Futur	n and Future Scope 1 usions	153 153 155
5 A	Cor 5.1 5.2 ppen	Concl Futur dix I	n and Future Scope 1 usions . e Scope . 1 .	153 153 155 1 59
5 A A	Cor 5.1 5.2 ppen	Concl Futur dix I dix II	n and Future Scope 1 usions . e Scope . 1 1 1 1 1 1 1 1 1 1 1 1	153 153 155 1 59
5 A A	Cor 5.1 5.2 ppen ppen	Concl Futur dix I dix II	n and Future Scope 1 usions 1 e Scope 1 1 1 1 1 1 1 1 1	153 155 155 1 59 1 61

List of Tables

2.1	DE Parameter Values	29
3.1	CT parameters for transformer	56
3.2	Transformer Model Parameters for MATLAB	59
3.3	Transformer Model Parameters for PSCAD Simulator	59
3.4	Threshold and Worst Case Detection Scenario for Inrush Wavelet Filter	
	(K=12, Number of Constraints=14)	67
3.5	Summary Results for Inrush Detection	70
3.6	Summary Results for Fault Detection	70

List of Figures

1.1	Taxonomy of literatures on Harmonic Restraint methods	4
1.2	Taxonomy of literatures on Wave shape methods	4
1.3	Taxonomy of literatures on Fuzzy Logic Methods.	5
1.4	Taxonomy of literatures on ANN methods	6
1.5	Taxonomy of literatures on DT based method	6
1.6	Taxonomy of literatures on Wavelet Analysis (WA) based method	8
2.1	Matched wavelet (solid line) versus desired signal(dotted) from ref. [2]. Y-	
	axis: Wavelet coefficient values/signal, X-axis: Sample index	21
2.2	A function close to a ramp function (left) and its matched wavelet(right)	
	taken from ref. [3]. Y-axis: Wavelet coefficient values (right)/signal (left),	
	X-axis: Sample index.	22
2.3	Sequence of operations in DE	26
2.4	Illustration of crossover process for $D = 5$	28
2.5	Flowchart for DE algorithm	31
2.6	Signal(db6) and its corresponding matched wavelet for $N = 6$	33
2.7	Signal(db6) and its corresponding matched wavelet for $N=5$ and 2 con-	
	straints	34
2.8	Inrush waveform and matched inrush wavelets	35
2.9	Fault waveform (L-G fault) and matched fault wavelets	36
2.10	Comparison of detection efficiency of wavelets. (a) Normalized differential	
	current waveform (b) Matched wavelet based inrush filter response (c) db4	
	wavelet based inrush filter response (d) db5 wavelet based inrush filter	
	response (e) db7 based inrush filter wavelet response	37

3.1	Differential protection of transformer	41
3.2	Flux produced in the core is in quadrature with applied voltage	42
3.3	Transformer circuit	42
3.4	Primary voltage and flux for one cycle of operation	43
3.5	Inrush current phenomena [4]	44
3.6	Test system for inrush and in-zone faults (source impedance $Zs = 0.0318 \angle -$ 88.1759)	45
3.7	Test system for generating over-excitation condition (source impedance $Zs = 0.0318 \angle - 88.1759$)	46
3.8	Test system for generating sympathetic inrush current (source impedance $Zs = 0.0318 \angle - 88.1759$)	48
3.9	Circuit for external fault with CT saturation (source impedance $Zs = 0.0318 \angle -88.1759$)	50
3.10	Test system for inrush and internal faults (source impedance $Zs = 0.0318 \angle -$ 88.1759)	51
3.11	Circuit for internal fault with CT saturation at 60% winding (source impedance))
	$Zs = 0.0318 \angle -88.1759) \dots \dots$	52
3.12	CT drawing	53
3.13	B-H curve example for different core materials	53
3.14	Primary currents, secondary currents, and magnetic dipoles in the core during symmetrical saturation	54
3.15	Primary currents, secondary currents, and magnetic dipoles in the core during asymmetrical saturation	55
3.16	CT currents for external fault: (a) Primary and secondary CT (LT side) currents (b) Primary and secondary CT (HT side) currents (c) Differential	
	current of the transformer	57
3.17	(a) Zoomed portion of CT secondary differential current (with and with- out noise) pertaining to in-zone fault (b) CT primary and CT secondary	
	differential current (with and without noise) pertaining to in-zone fault	58

3.18	(a) Zoomed portion of CT secondary differential current (with and with-	
	out noise) pertaining to internal fault (b) CT primary and CT secondary	
	differential current (with and without noise) pertaining to in-zone fault at	
	60 % of transformer winding	58
3.19	Simulink test system	60
3.20	A schematic logic set-up for relay operation (Existing Scheme)	62
3.21	A schematic logic set-up for relay operation (Proposed Scheme) $\ldots \ldots$	63
3.22	Inrush waveform and matched inrush wavelets	64
3.23	Fault waveform (L-G fault) and matched fault wavelets	65
3.24	(a) Normalized differential current waveform (b) Response of inrush-filter	
	(c) Response of fault-filter $\ldots \ldots \ldots$	66
3.25	Case of magnetizing inrush and its noisy version for 315 MVA transformer,	
	angle of inception 0° (a) Zoomed portion of CT secondary differential cur-	
	rent (b) CT secondary differential current (c) Response of inrush-filter (d)	
	Response of fault-filter	70
3.26	Case of over-excitation current and its noisy version for 315 MVA trans-	
	former, angle of inception 180° (a) Zoomed portion of CT secondary differ-	
	ential current (b) CT secondary differential current (c) Response of inrush-	
	filter (d) Response of fault-filter \ldots \ldots \ldots \ldots \ldots \ldots \ldots	71
3.27	Case of sympathetic inrush current and its noisy version for 315 MVA $$	
	transformer, angle of inception 180° (a) Zoomed portion of CT secondary	
	differential current (b) CT secondary differential current (c) Response of	
	in rush-filter (d) Response of fault-filter \hdots	72
3.28	Case of sympathetic inrush current and its noisy version for 315 MVA trans-	
	former with load, angle of inception 0° (a) Zoomed portion of CT secondary	
	differential current (b) CT secondary differential current (c) Response of	
	inrush-filter (d) Response of fault-filter	73
3.29	Case of magnetizing inrush current and its noisy version for 25 MVA trans-	
	former (a) Zoomed portion of CT secondary differential current (b) CT	
	secondary differential current (c) Response of inrush-filter (d) Response of	
	fault-filter	74

3.30	Case of L-G fault current and its noisy version for 315 MVA transformer,	
	angle of inception 0° with fault resistance 0.01 ohm (a) Zoomed portion of	
	CT secondary differential current (b) CT secondary differential current (c)	
	Response of inrush-filter (d) Response of fault-filter	75
3.31	Case of L-G fault current and its noisy version for 25 MVA transformer,	
	angle of inception 0° (a) Zoomed portion of CT secondary differential cur-	
	rent (b) CT secondary differential current (c) Response of inrush-filter (d)	
	Response of fault-filter	76
3.32	Case of 25 MVA transformer energized under fault (L-G fault) at 0° and its	
	noisy version (a) Zoomed portion of CT secondary differential current (b)	
	CT secondary differential current (c) Response of inrush-filter (d) Response	
	of fault-filter	77
3.33	Case of L-G fault current and its noisy version for 315 MVA transformer	
	with fault resistance 0.1 $ohm,$ angle of inception 180° (a) Zoomed portion	
	of CT secondary differential current (b) CT secondary differential current	
	(c) Response of inrush-filter (d) Response of fault-filter $\ldots \ldots \ldots \ldots$	78
3.34	Case of L-G fault current and its noisy version for 315 MVA transformer	
	with fault resistance 0.5 $ohm,$ angle of inception 180° (a) Zoomed portion	
	of CT secondary differential current (b) CT secondary differential current	
	(c) Response of inrush-filter (d) Response of fault-filter	79
3.35	Case of L-G fault current and its noisy version for 315 MVA transformer	
	with fault resistance 1 $ohm,$ angle of inception 180° (a) Zoomed portion of	
	CT secondary differential current (b) CT secondary differential current (c)	
	Response of inrush-filter (d) Response of fault-filter	80
3.36	Case of external fault current and its noisy version for 315 MVA trans-	
	former, angle of inception 10° (a) Zoomed portion of CT secondary differ-	
	ential current (b) CT secondary differential current (c) Response of inrush-	
	filter (d) Response of fault-filter \ldots	81
3.37	Case of L-G fault current and its noisy version under moderate saturation	
	for 315 MVA transformer, angle of inception 0° (a) Zoomed portion of CT	
	secondary differential current (b)CT primary and CT secondary differential	
	current (c) Response of inrush-filter (d) Response of fault-filter	82

- 3.38 Case of inter-turn fault current at 60% of winding and its noisy version for
 315 MVA transformer, angle of inception 0° (a) Zoomed portion of CT secondary differential current (b) CT primary and CT secondary differential current (c) Response of inrush-filter (d) Response of fault-filter 83

4.1924.2Details of hardware simulation model (stage 2) 93 4.3944.4944.596 4.6Inrush-filter/fault-filter hardware simulation model for two samples 97

4.7	(a)Magnetizing inrush current waveform given as input to inrush- and fault-	
	filters (b) Response of inrush-filter (c) Response of fault-filter	99
4.8	(a)Over fluxing current waveform given as input to inrush- and fault-filters	
	(b) Response of inrush-filter (c) Response of fault-filter	99
4.9	(a)In-zone fault without CT saturation given as input to inrush- and fault-	
	filters (b) Response of inrush-filter; the quantization errors in digital im-	
	plementation are evident for very small values of responses (c) Response of	
	fault-filter	100
4.10	(a)In-zone fault (L-G fault) with CT saturation given as input to inrush-	
	and fault-filters (b) Response of inrush-filter; the quantization errors in	
	digital implementation are evident for very small values of responses (c)	
	Response of fault-filter	101
4.11	(a)External fault (L-G fault) with CT saturation given as input to inrush-	
	and fault-filters (b) Response of inrush-filter (c) Response of fault-filter	102
4.12	The complete flow of process	102
4.13	Hardware simulation model for creating Input	103
4.14	Recorded simulation waveform for magnetizing inrush using hardware sim-	
	ulation model	105
4.15	Recorded simulation waveform for over-flux inrush waveform using hard-	
	ware simulation model	107
4.16	Recorded simulation waveform for in-zone fault without CT saturation us-	
	ing hardware simulation model	107
4.17	Recorded simulation waveform for in-zone fault (L-G fault) with CT satu-	
	ration using hardware simulation model	108
4.18	Recorded simulation waveform for external fault (L-G fault) without CT	
	saturation using hardware simulation model	108
4.19	Hardware set-up	110
4.20	(CH2) Magnetizing inrush current. (CH1) Response of inrush-filter indi-	
	cating inrush.	112
4.21	(CH2) Magnetizing inrush current. (CH1) Response of inrush-filter indi-	
	cating inrush.	113

4.22	(CH2) Magnetizing Inrush current. (CH1) Response of fault-filter indicat-	
	ing no fault.	. 114
4.23	(CH2) In-zone fault (L-G fault) current with low CT saturation. (CH1)	
	Response of fault-filter indicating fault	. 115
4.24	(CH2) In-zone fault (L-G fault) current with low CT saturation. (CH1)	
	Response of inrush-filter indicating no inrush.	. 116
4.25	(CH2) Over fluxing current. (CH1) Response of inrush-filter indicating	
	inrush	. 117
4.26	(CH2) Over fluxing current. (CH1) Response of fault-filter indicating no	
	fault	. 118
4.27	(CH2) External fault (L-G fault) current with CT saturation. (CH1) Re-	
	sponse of inrush-filter indicating inrush	. 119
4.28	(CH2) External fault (L-G fault) current with CT saturation. (CH1) Re-	
	sponse of fault-filter indicating no fault	. 120
4.29	(CH2) In-zone fault (L-G fault) current with moderate CT saturation.	
	(CH1) Response of inrush-filter indicating no inrush.	. 121
4.30	(CH2) In-zone fault (L-G fault) current with moderate CT saturation.	
	(CH1) Response of fault-filter indicating fault	. 122
4.31	Hardware set-up	. 123
4.32	(CH2) Inrush current. (CH3) Response of inrush-filter indicating inrush.	. 125
4.33	(CH2) Inrush current. (CH3) Response of fault-filter indicating no-fault.	. 126
4.34	(CH2) Inrush current with load. (CH3) Response of inrush-filter indicating	
	inrush	. 127
4.35	(CH2) Inrush current with load. (CH3) Response of fault-filter indicating	
	no-fault.	. 128
4.36	(CH2) Sympathetic inrush current. (CH3) Response of inrush-filter indi-	
	cating inrush.	. 129
4.37	(CH2) Sympathetic inrush current. (CH3) Response of fault-filter indicat-	
	ing no-fault.	. 130
4.38	(CH2) Sympathetic inrush current with load. (CH3) Response of inrush-	
	filter indicating inrush.	. 131

4.39	(CH2) Sympathetic inrush current with load. (CH3) Response of fault-	
	filter indicating no-fault.	132
4.40	(CH2) Fault (L-G fault) current under low CT saturation. (CH3) Response	
	of inrush-filter indicating no-inrush	133
4.41	(CH2) Fault (L-G fault) current under low CT saturation. (CH3) Response	
	of fault-filter indicating fault.	134
4.42	(CH2) Fault (L-G fault) current under moderate CT saturation. (CH3)	
	Response of inrush-filter indicating no-inrush.	135
4.43	(CH2) Fault (L-G fault) current under moderate CT saturation. (CH3)	
	Response of fault-filter indicating fault	136
4.44	(CH2) Fault (L-G fault) current under high CT saturation. (CH3) Re-	
	sponse of inrush-filter indicating no-inrush	137
4.45	(CH2) Fault (L-G fault) current under high CT saturation. (CH3) Re-	
	sponse of fault-filter indicating fault.	138
4.46	(CH2) Fault (L-G fault) current with fault resistance $= 0.1$ ohm. (CH3)	
	Response of inrush-filter indicating no-inrush.	139
4.47	(CH2) Fault (L-G fault) current with fault resistance = $0.1 ohm$. (CH3)	
	Response of fault-filter indicating fault	140
4.48	(CH2) Fault (L-G fault) current with fault resistance = $0.5 ohm$. (CH3)	
	Response of inrush-filter indicating no-inrush.	141
4.49	(CH2) Fault (L-G fault) current with fault resistance = $0.5 ohm$. (CH3)	
	Response of fault-filter indicating fault	142
4.50	(CH2) Fault (L-G fault) current with fault resistance $= 1 ohm$. (CH3)	
	Response of inrush-filter indicating no-inrush.	143
4.51	(CH2) Fault (L-G fault) current with fault resistance $= 1 ohm$. (CH3)	
	Response of fault-filter indicating fault	144
4.52	(CH2) External fault (L-G fault) current. (CH3) Response of inrush-filter	
	indicating inrush.	145
4.53	(CH2) External fault (L-G fault) current. (CH3) Response of fault-filter	
	indicating no-fault.	146
4.54	(CH2) Transformer fault current when energized under in-zone fault (L-G	
	fault). (CH3) Response of inrush-filter indicating no-inrush.	147

4.55	(CH2) Transformer fault current when energized under in-zone fault (L-G $$	
	fault). (CH3) Response of fault-filter indicating fault	148
4.56	(CH2) Inter-turn fault current at 80% of winding. (CH3) Response of	
	inrush-filter indicating no-inrush.	149
4.57	(CH2) Inter-turn fault current at 80% of winding. (CH3) Response of	
	fault-filter indicating fault	150
4.58	(CH2) Inter-turn fault current at 50% of winding. (CH3) Response of	
	inrush-filter indicating no-inrush.	151
4.59	(CH2) Inter-turn fault current at 50% of winding. (CH3) Response of	
	fault-filter indicating fault.	152