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Abstract

Power transformers face various transient disturbances like internal faults, external faults,

and inrush current. Differential relays are used for protection of power transformers to

detect these disturbances. When the transformer is switched on, there occurs an abrupt

rise in current level which is termed as magnetizing inrush and can be falsely interpreted

as fault by differential relay. In order to avoid false tripping of protected transformers,

various methods have evolved based on harmonics present in differential current. The

conventional differential relays employ harmonic analysis approach to determine the type

of current flowing through the transformer. The feasibility of conventional methods is

subject to the value of second and higher harmonics present in the differential current.

However, in modern transformers the value of second harmonic is comparatively very

low due to improved core materials. The ratio of dominant harmonics to fundamental

component of differential current is used along with Phase Angle Difference (PAD) of

higher harmonics for better discrimination. However, the estimation of harmonics in a

differential waveform takes time and can be inaccurate depending upon the data window

taken. A large data window can give an accurate estimate of harmonics but consumes

large time for detection. A small time window may take small detection period but suffer

from inaccuracies in harmonic estimates. This may lead to restraining the relay during

internal faults accompanying the saturation of current transformers. A thorough investi-

gation into the performance of present state of the art relays is conducted in literature,

which shows that the present relays normally utilize data samples of one cycle for de-

tection and trip may be restrained for several cycle due to CT saturation. Wave-shape

based detection is based on direct analysis of inrush and fault waveforms. In general, the

fault waveform is characterized by non-decaying nature with alternating peaks and the

inrush waveform having 1/4 cycle flat period of same polarity and also decaying peaks.

However, the three phases may not show typical unipolar inrush waveform and hence the
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main disadvantage of this algorithm is the need of cross polarization between the phases.

Furthermore, during smooth energisation this criteria may fail. Fuzzy logic methods of

inrush detection are based on harmonic restraint method and use harmonic content of

the inrush for identification. In order to get non-conflicting and correct decision, a relay

working on multi-criteria algorithm using fuzzy logic approach is used for making final

trip decision. In Artificial neural network based approaches, patterns are first trained

with inrush and fault waveforms. ANNs are elaborate mathematical models of network of

neurons and therefore, are difficult to put into a hardware. Also, it is not known for which

particular patterns it may predict the classification satisfactorily and for which it may not.

In wavelet based approaches, a mother wavelet is chosen from previously designed li-

braries such as Daubechies, Haar, Symlets, Coiflets and bi-orthogonal wavelets, to analyze

differential current. Wavelet is a mathematical tool capable of analysing a given signal

into varied scale components, having its own frequency range at each scale. The so called

standard wavelets were developed for specific type of analysis in a domain. However,

these mother wavelets were adopted in various other type of analysis without establishing

its theoretical suitability for such analysis. Thus, we come across literature using these

wavelets for analysis, without commenting on their suitability for the given purpose. The

wavelet transform of signal results in decomposition of signal into set of frequency chan-

nels of same bandwidth on logarithmic scale. Obtaining a wavelet which produces the

best interpretation of given signal is topic of wide research. A new concept of matched

wavelet which matches in shape to the signal, to be analyzed is introduced in literature.

In the present work, matched wavelet is designed for the inrush and fault waveforms of

power transformer. This goal of getting an optimal matched wavelet is achieved through

differential evolution algorithm.

0.1 Motivation, Research Gap and Objectives of the

Thesis

Extended basis of standard wavelets were used depending upon the better results of

detection. The present work is motivated to design specific wavelet for specific pattern

(inrush or fault). The frequency response of matched filter has the same shape as the
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frequency spectrum of the signal. When wavelet transform is applied to multi-resolution

analyses of signals, theoretically, it produces the similar output to those of matched filters.

Hence matched wavelet for inrush and fault waveform have been attempted in this work.

In the literature, the detection of fault and inrush has not been treated as independent of

each other. In other words, it is assumed that if inrush has been detected then it indicates

absence of fault. And this approach fails to capture simultaneous occurrence of inrush

and fault. In view of this, it is desirable that inrush and fault are detected independent of

each other. The basic philosophy used in this thesis, is to find matched wavelet for inrush

waveforms and fault waveforms independently. This approach provides fast discriminating

ability (nearly half cycle). This approach also improves the detection ability and provides

ease in studying relay mal-operations. Getting an optimal matched inrush wavelet and

fault wavelet by the use of differential evolution algorithm is attempted in the present

approach.

The major objectives of the present thesis are as follows:-

• To theoretically and practically establish the efficacy of matched wavelets for inrush

and fault detection.

• To develop set of matched wavelets in optimal sense through optimization process

to maximize wavelet coefficients obtained for inrush and fault waveforms.

• To test the obtained wavelets under various operating conditions of transformers.

• To implement the wavelet based differential protection in hardware to obtain a

proof of concept that such a ”real-time” implementation is possible in the present

state-of-the-art.

0.2 Contributions and Outline of the Thesis

The current work has following major contributions;

1. A modified scheme for differential protection of transformer using independent de-

tection of the fault and the inrush current is developed.

2. Optimal matched wavelets are developed to implement the scheme proposed in (1),

and
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3. Proposed scheme has been implemented in hardware and verification with simulation

results has been performed in real-time.

4. Real-time testing of the algorithm on the waveforms of a physical transformer is

performed to establish the efficacy of the proposed matched wavelet method, in

practical environment.

The first chapter covers the literature survey. This chapter also present the mo-

tivation, objectives, and scope of the work embodied in this thesis. The details of the

mathematical background of the wavelets and wavelet transforms are discussed in second

chapter. Also, the concept of matched wavelet and designing of matched wavelets are

described in this chapter. Matched wavelets for known standard wavelets have been ob-

tained to validate the proposed algorithm for designing matched wavelets. The matched

wavelets for inrush and fault waveforms are synthesized in Chapter 2. The efficacy of the

designed wavelets is compared with that of existing wavelets and is presented in Chapter

2.

In third chapter, various operating conditions of power transformers are discussed.

Also the effect of CT saturation is taken into consideration. Designed matched inrush

and fault wavelets are implemented for differential protection of power transformers. The

detection scheme using designed matched wavelets is applied for various test cases and

some scenarios are discussed in detail.

The hardware implementation of the proposed methods is addressed in Chapter 4.

Chapter 4 contains the details of the steps involved in hardware implementation of the

proposed scheme. The hardware implementation is done in two major steps. The first step

is to create desired input signal to be given to the filter unit, and second step is the design

of filter unit itself. The results obtained in simulation are verified for the hardware. This

chapter addresses the real-time testing of the proposed scheme. In Chapter 4, the real-

time testing of the proposed algorithm is implemented for the waveforms of a physical

transformer. The ”real” waveforms are obtained from an actual transformer and the

real-time testing of the algorithm is performed in actual scenario for several cases. The

conclusion and the future scope of the the work in the thesis are presented in Chapter 5.
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