Contents

A	Abstract			\mathbf{v}	
Li	List of Tables x				
List of Figures			es	xiii	
1	\mathbf{Intr}	oducti	on	1	
	1.1	Motiva	ation	. 1	
	1.2	Switch	ed reluctance motor	. 2	
		1.2.1	Merits and demerits SRMs	. 3	
		1.2.2	Classification of SRMs	. 4	
	1.3	Literat	ture review	. 5	
	1.4	Contri	butions	. 10	
	1.5	Thesis	organization	. 11	
2	Des	ign Co	ncepts of Single-Tooth Winding DSSRM	13	
	2.1	Introd	uction	. 13	
	2.2	Single-	tooth winding DSSRM	. 14	
		2.2.1	The topology	. 14	
		2.2.2	The operating principle	. 16	
	2.3	Design	concepts of single-tooth winding DSSRM	. 17	
		2.3.1	Torque equation	. 17	
		2.3.2	Sizing Procedure	. 18	
		2.3.3	Calculation of stator pole and rotor segment arc angles	. 21	
		2.3.4	Selection of slot/segment combination	. 22	
		2.3.5	Influence of winding polarities	. 25	

	2.4	Simula	ation results	28
		2.4.1	Static analysis	30
		2.4.2	Steady-state analysis	30
	2.5	Comp	arison with conventional SRM	35
	2.6	Conclu	usions	35
3	Tor	que Ri	pple Reduction in DSSRM	37
	3.1	Introd	uction	37
	3.2	Schem	atic for torque ripple reduction in DSSRM	38
	3.3	Torqu	e ripple reduction through rotor segments shift	39
		3.3.1	Influence of rotor segments shift on static inductance and torque	
			profiles	41
		3.3.2	Dynamic response and analysis of torque ripple reduction	42
		3.3.3	Harmonic analysis of torque ripple frequencies	46
		3.3.4	Suitability for reverse motoring	46
		3.3.5	Segments shift in $24/20$ pole DSSRM	47
	3.4	Torqu	e ripple reduction through stator/rotor surface shift	49
		3.4.1	Rotor surface shift	49
		3.4.2	Stator surface shift	52
		3.4.3	Stator-rotor surface shift	54
	3.5	Conclu	usions	56
4	Effe	ect of S	Segment/Surface Shift on Motor Performance	59
	4.1	Introd	uction	59
	4.2	Effect	of segment/surface shift on radial force	60
		4.2.1	Effect of segment shift on radial force	60
		4.2.2	Effect of surface shift on radial force	65
	4.3	Effect	of segment/surface shift on tangential force	70
	4.4	Effect	on motor performance	72
		4.4.1	Effect of segment shift on motor performance	72
		4.4.2	Effect of surface shift on motor performance	74
	4.5	Conclu	usions	76

5	Des	ign of a New Low Torque Ripple DSSRM	79
	5.1	Introduction	79
	5.2	Torque ripple in DSSRM in High Speed Region	80
	5.3	Design Hypothesis for a Low Torque Ripple DSSRM	84
	5.4	Geometric Modifications in the Proposed DSSRM	88
		5.4.1 Modification in the Pole Height of Outer Stator	89
		5.4.2 Calculation of the Width of the Non-Magnetic Region	90
		5.4.3 Modification in the Arc Angle of Outer Rotor Segments/Stator Poles	92
	5.5	Simulation Results	94
	5.6	Conclusions	01
6	Sun	nmary and Future Perspectives 1	03
	6.1	Research Summary	03
	6.2	Limitations and Future Investigations	.05
\mathbf{A}	List	of Publications 1	07
	A.1	Published Journal papers	07
	A.2	Submitted manuscript	.07

List of Tables

2.1	Valid slot/segment combinations for 3-phase single-tooth winding DSSRM.	22
2.2	Initial design parameters for the rated operation.	23
2.3	Comparison between different slot/segment combinations of DSSRM. $\ . \ .$.	25
2.4	Magnitude of the different harmonics of flux densities in different part of	
	DSSRM	29
2.5	Comparison between aiding and subtracting flux winding polarities	29
2.6	12/10 pole DSSRM design specifications	30
2.7	Performance data of 12/10 pole DSSRM at rated operating condition	33
2.8	24/20 pole DSSRM design data	34
2.9	Performance data for $24/20$ pole DSSRM	34
2.10	Comparison with conventional $12/8$ pole SRM	35
3.1	Performance comparison of $12/10$ pole DSSRM without and with rotor	
	segments shift.	45
3.2	Performance data for reverse motoring	48
3.3	Performance data for $24/20$ pole DSSRM without and with rotor segments	
	shift	48
3.4	Comparative data for rotor surface shift	52
3.5	Comparative data for stator surface shift	54
3.6	Comparison of rotor, stator and stator-rotor surface shift	56
4.1	Comparison of radial force on a rotor segment for different surface shift	70
5.1	Design specifications of the baseline DSSRM	82
5.2	Comparative data for the variation of w_{ins}	92
5.3	List of variables defined for optimization	93

5.4	Optimized values of the parameters	 94
5.5	Modified parameter values for the proposed DSSRM	 95
5.6	Comparative data for DSSRM1 and DSSRM3 at rated speed. \ldots . \ldots	 98

List of Figures

1.1	Structure of conventional 3-phase SRM with only phase A winding shown.	3
1.2	Classification of SRMs based on type of motion, flux pattern and stacking.	4
2.1	Structure of 3-phase $12/10/12$ pole single-tooth winding DSSRM. (a) Cross-	
	sectional view with only phase A windings shown. (b) Exploded view. (c)	
	The phase winding configuration.	15
2.2	Flux distribution pattern and operating principle of DSSRM. (a) Unaligned	
	position. (b) Aligned position	16
2.3	Representation of the design parameters of DSSRM. (a) Half section of 2-D	
	view. (b) Cut view of approximated linear model	20
2.4	Condition for minimum unaligned and maximum aligned inductances. (a)	
	Minimum unaligned inductance condition. (b) Maximum aligned induc-	
	tance condition.	21
2.5	Flowchart for the design procedure of DSSRM	24
2.6	Flux dissemination for the simultaneous excitation of two phases. (a) Aid-	
	ing flux winding polarity. (b) Subtracting flux winding polarity	26
2.7	Flux density variation in different parts of DSSRM for aiding and subtract-	
	ing flux winding polarities. (a) Geometry points for flux density calculation.	
	(b) Exciting pole. (c) Auxiliary pole. (d) Stator yoke. (e) Rotor segment	27
2.8	Magnetic flux density vectors for rated 26 A excitation of a phase. (a)	
	Unaligned position. (b) Aligned position	31
2.9	Magnetic flux density distribution for rated 26 A excitation of a phase. (a)	
	Unaligned position. (b) Aligned position	31
2.10	Static inductance and torque profiles. (a) Static inductance. (b) Static	
	torque	32

2.11	Phase currents and torque variation with rotor position at steady-state	
	condition. (a) Phase currents. (b) Output torque	33
3.1	Schematic for torque ripple reduction. (a) Phase torques. (b) Sum of phase	
	torques	38
3.2	Proposed design modification in rotor. (a) Rotor without segments shift	
	(before modification). (b) Rotor with segments shift (after modification). $% \left(\left({{{\bf{x}}_{{\rm{a}}}}} \right) \right) = \left({{{\bf{x}}_{{\rm{a}}}}} \right)$	40
3.3	Structure of DSSRM with respect to consecutive exciting poles of a phase	
	after the segments shift.	40
3.4	Variation in static inductance and static torque profiles of $12/10$ pole	
	DSSRM with the variation of segment shift angle (δ). (a) Static induc-	
	tance. (b) Static torque	41
3.5	Sum of the static phase torques with the shift of the rotor segments showing	
	reduction in torque dip in commutation region. $\ldots \ldots \ldots \ldots \ldots \ldots$	42
3.6	Variation of torque ripple and average output torque of $12/10$ pole DSSRM	
	with rotor segments shift angle δ . (a) Torque ripple. (b) Average torque.	43
3.7	Flux density plot in 12/10 pole DSSRM with rotor segments shift (δ =	
	2.5°). (a) Unaligned position. (b) Aligned position	43
3.8	Phase currents and torque variation of $12/10$ pole DSSRM without seg-	
	ments shift. (a) Phase currents. (b) Dynamic torque	43
3.9	Phase currents and torque variation of $12/10$ pole DSSRM with segments	
	shift ($\delta = 2.5^{\circ}$). (a) Phase currents. (b) Dynamic torque	44
3.10	Comparison of steady-state torques of $12/10$ pole DSSRM without and	
	with rotor segments shift.	45
3.11	Variation of output torque with rotor speed in modified DSSRM ($\delta = 2.5^{\circ}$).	46
3.12	Comparison of torque ripple harmonics showing the reduction in lower order	
	torque harmonics with the segment shift	47
3.13	Comparison of steady-state torques of $24/20$ pole DSSRM without and	
	with rotor segments shift.	47
3.14	Shifting of rotor surfaces. (a) Rotor's inner surface shift. (b) Rotor's outer	
	surface shift. (c) Rotor's both surface shift	50
3.15	Reduction in torque dip in commutation region due to rotor surface shift.	
	(a) Inner surface shift. (b) Outer surface shift. (c) Both surface shift	50

3.16	Variation of average torque and torque ripple with rotor surface shift angle	
	(δ_r) . (a) Average torque. (b) Torque ripple	51
3.17	Shifting of stator surfaces. (a) Inner stator surface shift. (b) Outer stator	
	surface shift. (c) Both stator surface shift	52
3.18	Reduction in torque dip due to stator surface shift. (a) Inner stator surface	
	shift. (b) Outer stator surface shift. (c) Both stator surface shift	53
3.19	Variation of average torque and torque ripple with δ_t (where $\delta_t = -\delta_s$). (a)	
	Average torque. (b) Torque ripple	53
3.20	Stator-rotor surface shifted DSSRM.	55
3.21	Reduction in torque dip due to stator-rotor surface shift	55
3.22	Variation of average torque and torque ripple with stator-rotor surface shift	
	angle δ_t . (a) Average torque. (b) Torque ripple	56
4.1	Plots of $(B_n^2 - B_t^2)$ for the inner and outer air-gaps of 12/10 pole DSSRM	
	without segments shift ($\delta = 0^{\circ}$) and 150° (elec.) rotor position	60
4.2	Static radial force on the rotor segments of 12/10 pole DSSRM without	
	segments shift ($\delta = 0^{\circ}$) and rated phase A current.	61
4.3	Plots of $(B_n^2 - B_t^2)$ in the inner and outer air-gaps of 12/10 pole DSSRM	
	with $\delta = 2.5^{\circ}$ and 150° (elec.) rotor position.	62
4.4	Static radial force on the rotor segments of 12/10 pole DSSRM with $\delta =$	
	2.5° and rated phase A current.	63
4.5	Dynamic force created on the rotor of $12/10$ pole DSSRM with segments	
	shift $(\delta = 2.5^{\circ})$.	64
4.6	Structure of the rotor of $12/10$ and $24/20$ pole DSSRM with shifted seg-	
	ments. (a) 12/10 pole DSSRM. (b) 24/20 pole DSSRM	64
4.7	Dynamic force created on the rotor of $24/20$ pole DSSRM with segments	
	shift $(\delta = 1.5^{\circ})$.	65
4.8	Plots of $(B_n^2 - B_t^2)$ in the inner and outer air-gaps of 12/10 pole DSSRM	
	with the rotor's outer surface shift ($\delta_r = 3^\circ$) and 150° (elec.) rotor position.	65
4.9	Static radial force on the rotor segments of $12/10$ pole DSSRM with rotor's	
	outer surface shift $(\delta_r = 3^\circ)$ and rated phase A current	66
4.10	Plots of $(B_n^2 - B_t^2)$ in the inner and outer air-gaps of 12/10 pole DSSRM	
	with both stator surface shift ($\delta_s = -2^\circ$) and 150° (elec.) rotor position.	67

4.11	Static radial force on the rotor segments of $12/10$ pole DSSRM with both	
	stator surface shift ($\delta_s = -2^\circ$) and rated phase A current	68
4.12	Plots of $(B_n^2 - B_t^2)$ in the inner and outer air-gaps of 12/10 pole DSSRM	
	with stator-rotor surface shift $(\delta_t = 2^\circ)$ and 150° (elec.) rotor position	69
4.13	Static radial force on the rotor segments of $12/10$ pole DSSRM with stator-	
	rotor surface shift $(\delta_t = 2^\circ)$ and rated phase A current	69
4.14	Plots of $(B_n B_t)$ in inner and outer air-gaps of 12/10 pole DSSRM without	
	and with rotor segment shift just after the start of the commutation of	
	phase A. (a) $B_n B_t$ in inner air-gap. (b) $B_n B_t$ in outer air-gap	71
4.15	Plots of $(B_n B_t)$ in inner and outer air-gaps of 12/10 pole DSSRM without	
	and with stator surface shift just after the start of the commutation of	
	phase A. (a) $B_n B_t$ in inner air-gap. (b) $B_n B_t$ in outer air-gap	72
4.16	Variation in the parameters of DSSRM with segments shift angle (δ). (a)	
	Flux density in segments. (b) Core loss. (c) Air-gap flux density. (d)	
	Aligned inductance. (e) Unaligned inductance. (f) Copper loss. (g) Effi-	
	ciency	73
4.17	Variation in the parameters of DSSRM with stator surface shift. (a) Flux	
	density in segments. (b) Core loss. (c) Air-gap flux density. (d) Aligned	
	inductance. (e) Unaligned inductance. (f) Copper loss. (g) Efficiency	75
5.1	2-D structure of a 3-phase radial flux $12/10$ pole DSSRM	81
5.2	Representation of DSSRM design parameters.	81
5.3	Simulated response of the DSSRM1 at rated speed of 1000 rpm. (a) Phase	
	currents. (b) Output torque	83
5.4	Two separated parts of DSSRM1. (a) Inner SRM. (b) Outer SRM	84
5.5	Steady-state response of two separated SRMs at rated speed. (a) Phase	
	currents and torque of inner SRM. (b) Phase currents and torque of outer	
	SRM	85
5.6	Structure of the hypothetical DSSRM2	86
5.7	Flux distribution in DSSRM2. (a) Flux distribution with the excitation	
	of inner stator winding at 90° (elec.) rotor position. (b) Flux distribution	
	with the excitation of outer stator winding at 150° (elec.) rotor position.	86

5.8	Simulated response of DSSRM2 at the rated speed. (a) Phase currents.	
	(b) Dynamic torque	87
5.9	Initial structure of the proposed DSSRM	89
5.10	Modification in the pole height (h_{pso}) of outer stator due to the insertion of	
	the non-magnetic isolator of width w_{ins} . (a) Outer stator before insertion.	
	(b) Outer stator after insertion $(h'_{pso} < h_{pso})$	90
5.11	Calculation of leakage flux density in DSSRM1. (a) Flux density distribu-	
	tion at the unaligned position. (b) Leakage flux density calculated on the	
	field calculator line in the middle of the rotor segments	91
5.12	Matching of inductance profile of DSSRM2 and DSSRM3 between 13° to	
	22° rotor position	94
5.13	Static torque profiles for inner and outer stator. (a) Static torque for inner	
	stator. (b) Static torque for outer stator	96
5.14	Flux density distribution in the proposed model at 90 (elec.) and 150 (elec.)	
	rotor position with respect to phase A and rated operating condition. (a)	
	90 (elec.) rotor position. (b) 150 (elec.) rotor position. $\ldots \ldots \ldots \ldots$	96
5.15	Steady-state response of DSSRM3 at rated speed of 1000 rpm. (a) Phase	
	currents (b) Output torque	97
5.16	Comparison of the dynamic torques of $\ensuremath{DSSRM1}$ and $\ensuremath{DSSRM3}$ at the rated	
	speed	98
5.17	Comparison of torque ripple harmonics showing the reduction in lower order	
	torque harmonics in proposed DSSRM	99
5.18	Resultant force working on the whole motor body of DSSRM3	99
5.19	Output torque and torque ripple of proposed DSSRM with rotor speed. (a)	
	Output torque. (b) Torque ripple	100