I would like to dedicate this thesis to my loving family...

CERTIFICATE

It is certified that the work contained in the thesis titled **Studies on Design Modifications in Single-Tooth Winding Double-Stator Switched Reluctance Motor for Torque Ripple Mitigation by Tripurari Das Gupta has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.**

> Supervisor Dr. Kalpana Chaudhary Deptt. of Electrical Engg., IIT(BHU) Varanasi - 221005

DECLARATION

I, **Tripurari Das Gupta**, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of **Dr**. Kalpana Chaudhary from July-2015 to May-2021, at the Departement of Electrical Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Tripurari Das Gupta)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Dr. Kalpana Chaudhary IIT(BHU), Varanasi

Signature of Head of Department/Coordinator of School

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Studies on Design Modifications in Single-Tooth Winding Double-Stator Switched Reluctance Motor for Torque Ripple Mitigation

Name of Student: Tripurari Das Gupta

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Tenpræse Dag Gupta (Tripurari Das Gupta)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ii

Acknowledgments

Though, only my name appears on the cover of this dissertation, so many great people have contributed to its production. I owe my gratitude to all those people who have made this thesis possible and because of whom my post graduate experience has been one that I will cherish forever.

It gives me immense pleasure to get an opportunity to express my profound gratitude towards my supervisor **Dr. Kalpana Chaudhary**, Associate Professor, Department of Electrical Engineering, IIT (BHU), Varanasi for her exemplary guidance, monitoring and constant encouragement throughout the course of this dissertation.

Thank you, Prof. Kalpana Chaudhary, for allowing me to choose topics of my interest. Thank you for your patience and faith in me during this journey. Your constant monitoring and interest in my work will always remain as a happy memory. Thank you so much for your elegant lectures which nourished and improved our understanding. Thank you so much for the effective discussions.

I thank Prof. R. K. Saket for his valuable suggestions, encouraging words and the motivations at the times when I felt low. Thank you so much for installing in me the sense of confidence and ability to take this work which sometimes appeared to be very difficult.

I express my gratitude to Prof. Devender Singh, the current Head of the Department for their whole heart support.

I thank my RPEC members Prof. Rakesh Kumar Srivastava and Prof. Anil Kumar for the invaluable inspiration and numerous insightful suggestions during the entire course of this research.

I am also thankful to all the technical, non-teaching as well as official staffs of the Department of Electrical Engineering, IIT (BHU) Varanasi for their assistance when needed and also for providing me humorous relief at times. I would also like to express my extreme gratefulness towards my senior research members Dr. Raja Ram Kumar, Dr. Deepak Kumar, Dr. Praveen Kumar and Dr. Shailendra Kumar Gupta for their excellent company, support and encouragement throughout the study. I wish a special thanks to Dr. Praveen Kumar for long and effective discussions.

All along the period of my research, my colleagues provided an exciting, comfortable and mutually beneficial atmosphere. In this regard, Mr. Anil Kumar Pal, Mr. Manish Deo, Mr. Kumar Abhishek Singh and Mr. Mukesh Kumar deserve special mention and thanks. I have remembered that a lot of tensions were relieved over the tea during our work gaps, tea break-ups.

The cooperation, moral support and constant motivation which I have always received from my friends cannot be expressed in words, and I feel lucky to be blessed with such wonderful friends.

Last but not least, I thank my parents with a broad sense of reverence. Their constant encouragement, moral support and co-operation at every step of my life cannot be expressed in words. Papa and Mummy, thank you so much; you sacrificed a lot to see your children's stand in life. My special thanks are also to my brothers, sisters, sistersin-law, brothers-in-law, nephews and nieces for their love and affection. I thank my wife most importantly for her eternal support and for being on my side through entire ups and downs. Thank you for understanding the fact that I really had very less time for family during last few years. Thank you very much for providing the much needed support to the family during this period.

Tripurari Das Gupta

Abstract

This thesis represents a culmination of the studies that have been taken place in the last few years. The increase in automation leads to the electrification of several existing systems, e.g. transportation system, which require electrical machines (EMs) as primary power equipments. Permanent magnet (PM) machines currently prevail as a primary choice for high-performance electrical machines (EMs) because of their high torque/power density and high efficiency. However, the limited resources and the unstable cost of rareearth metals, and the fault-tolerant issues of PM machines appeal to the researchers for an attractive alternative to PM based motors. Switched reluctance motors (SRMs) are gaining attention because of their simple construction, low cost, ability to work in harsh environments, absence of PM and wide-speed operation. Unipolar current excitation encourages the design of low-cost inverters for SRMs, requiring only one controlling switch per phase. However, low torque/power density, low efficiency, high torque ripple and high acoustic noise demand further improvements in such motors. Using high silicon steel or amorphous steel and improving slot-fill factor enhance the efficiency of SRMs. The emersion of the double-stator SRMs (DSSRMs) as a new SRM topology with two stators and a segmented rotor exhibits significant improvement in torque density. Such machines have lower values of the normal component of air-gap flux density, which results in lower vibration and lower acoustic noise. The single-tooth winding add-on further improves its compactness and high-efficiency speed range. High torque ripple of such motors is a key issue that limits their adaptability in industrial applications. Many active and passive techniques are developed to reduce the torque ripple for the different topology of SRMs. However, this specific topology still lacks such effective techniques.

In this thesis, firstly, the design concepts of single-tooth winding radial-flux DSSRM are presented. The torque equation of this topology is derived. The calculation of stator poles and rotor segments arc angles for high output torque, selection procedure for slot/segment combination and the effect of winding polarities on motor performance are discussed in details. It is observed through finite-element method (FEM) analysis that such motor possess high torque ripple. Therefore, some design modifications are investigated for such motor topology for reducing the torque ripple. In the presented work, shifting of the rotor segments and stator/rotor surfaces are investigated to reduce the torque ripple. In this regard, the finite-element models are developed, and their static and dynamic responses are simulated. The effect of these shifts on the magnetic flux distribution in different parts of the motor is studied, and their influences on motor performance are analyzed. Besides these, the design of a new DSSRM is proposed, which has a significantly low torque ripple in a higher speed range when single-pulse control mode is active. Many of the torque ripple reduction techniques are only effective in the current chopping control mode, which is only possible in a lower speed range. In the proposed motor, the outer stator is shifted by half of the stroke angle compared to the inner stator. The respective phase windings of the inner and outer stators are excited parallelly with the same phase shift. Each rotor segment is constructed with two half rotor segments, and a wide non-magnetic region is inserted between them. In this regard, the modifications are carried out in the outer stator poles and outer half rotor segments. The efficacy of the proposed motor is investigated through FEM based simulation results. The proposed motor shows significantly reduced torque ripple for a higher speed range when single-pulse control is active.

Contents

A	Abstract v				
Li	List of Tables xi				
\mathbf{Li}	st of	Figure	es	xiii	
1	Intr	oducti	on	1	
	1.1	Motiva	ation	. 1	
	1.2	Switch	ed reluctance motor	. 2	
		1.2.1	Merits and demerits SRMs	. 3	
		1.2.2	Classification of SRMs	. 4	
	1.3	Literat	cure review	. 5	
	1.4	Contri	butions	. 10	
	1.5	Thesis	organization	. 11	
2	Des	ign Co	ncepts of Single-Tooth Winding DSSRM	13	
	2.1	Introd	uction	. 13	
	2.2	Single-	tooth winding DSSRM	. 14	
		2.2.1	The topology	. 14	
		2.2.2	The operating principle	. 16	
	2.3	Design	concepts of single-tooth winding DSSRM	. 17	
		2.3.1	Torque equation	. 17	
		2.3.2	Sizing Procedure	. 18	
		2.3.3	Calculation of stator pole and rotor segment arc angles \ldots .	. 21	
		2.3.4	Selection of slot/segment combination	. 22	
		2.3.5	Influence of winding polarities	. 25	

	2.4	Simula	ation results	28
		2.4.1	Static analysis	30
		2.4.2	Steady-state analysis	30
	2.5	Comp	arison with conventional SRM	35
	2.6	Conclu	usions	35
3	Tor	que Ri	pple Reduction in DSSRM	37
	3.1	Introd	uction	37
	3.2	Schem	atic for torque ripple reduction in DSSRM	38
	3.3	Torqu	e ripple reduction through rotor segments shift	39
		3.3.1	Influence of rotor segments shift on static inductance and torque	
			profiles	41
		3.3.2	Dynamic response and analysis of torque ripple reduction	42
		3.3.3	Harmonic analysis of torque ripple frequencies	46
		3.3.4	Suitability for reverse motoring	46
		3.3.5	Segments shift in 24/20 pole DSSRM \ldots	47
	3.4	Torqu	e ripple reduction through stator/rotor surface shift	49
		3.4.1	Rotor surface shift	49
		3.4.2	Stator surface shift	52
		3.4.3	Stator-rotor surface shift	54
	3.5	Conclu	usions	56
4	Effe	ect of S	Segment/Surface Shift on Motor Performance	59
	4.1	Introd	uction	59
	4.2	Effect	of segment/surface shift on radial force	60
		4.2.1	Effect of segment shift on radial force	60
		4.2.2	Effect of surface shift on radial force	65
	4.3	Effect	of segment/surface shift on tangential force	70
	4.4	Effect	on motor performance	72
		4.4.1	Effect of segment shift on motor performance	72
		4.4.2	Effect of surface shift on motor performance	74
	4.5	Conclu	usions	76

5	Des	ign of a New Low Torque Ripple DSSRM	79
	5.1	Introduction	79
	5.2	Torque ripple in DSSRM in High Speed Region	80
	5.3	Design Hypothesis for a Low Torque Ripple DSSRM	84
	5.4	Geometric Modifications in the Proposed DSSRM	88
		5.4.1 Modification in the Pole Height of Outer Stator	89
		5.4.2 Calculation of the Width of the Non-Magnetic Region	90
		5.4.3 Modification in the Arc Angle of Outer Rotor Segments/Stator Poles	92
	5.5	Simulation Results	94
	5.6	Conclusions	.01
6	Sun	nmary and Future Perspectives 1	03
	6.1	Research Summary	.03
	6.2	Limitations and Future Investigations	.05
\mathbf{A}	List	of Publications 1	07
	A.1	Published Journal papers	.07
	A.2	Submitted manuscript	.07

List of Tables

2.1	Valid slot/segment combinations for 3-phase single-tooth winding DSSRM.	22
2.2	Initial design parameters for the rated operation.	23
2.3	Comparison between different slot/segment combinations of DSSRM. $\ . \ .$.	25
2.4	Magnitude of the different harmonics of flux densities in different part of	
	DSSRM	29
2.5	Comparison between aiding and subtracting flux winding polarities	29
2.6	12/10 pole DSSRM design specifications	30
2.7	Performance data of 12/10 pole DSSRM at rated operating condition	33
2.8	24/20 pole DSSRM design data	34
2.9	Performance data for $24/20$ pole DSSRM	34
2.10	Comparison with conventional $12/8$ pole SRM	35
3.1	Performance comparison of $12/10$ pole DSSRM without and with rotor	
	segments shift.	45
3.2	Performance data for reverse motoring	48
3.3	Performance data for $24/20$ pole DSSRM without and with rotor segments	
	shift	48
3.4	Comparative data for rotor surface shift	52
3.5	Comparative data for stator surface shift	54
3.6	Comparison of rotor, stator and stator-rotor surface shift	56
4.1	Comparison of radial force on a rotor segment for different surface shift	70
5.1	Design specifications of the baseline DSSRM	82
5.2	Comparative data for the variation of w_{ins}	92
5.3	List of variables defined for optimization	93

5.4	Optimized values of the parameters	 94
5.5	Modified parameter values for the proposed DSSRM	 95
5.6	Comparative data for DSSRM1 and DSSRM3 at rated speed. \ldots . \ldots	 98

List of Figures

1.1	Structure of conventional 3-phase SRM with only phase A winding shown.	3
1.2	Classification of SRMs based on type of motion, flux pattern and stacking.	4
2.1	Structure of 3-phase $12/10/12$ pole single-tooth winding DSSRM. (a) Cross-	
	sectional view with only phase A windings shown. (b) Exploded view. (c)	
	The phase winding configuration.	15
2.2	Flux distribution pattern and operating principle of DSSRM. (a) Unaligned	
	position. (b) Aligned position	16
2.3	Representation of the design parameters of DSSRM. (a) Half section of 2-D	
	view. (b) Cut view of approximated linear model	20
2.4	Condition for minimum unaligned and maximum aligned inductances. (a)	
	Minimum unaligned inductance condition. (b) Maximum aligned induc-	
	tance condition	21
2.5	Flowchart for the design procedure of DSSRM	24
2.6	Flux dissemination for the simultaneous excitation of two phases. (a) Aid-	
	ing flux winding polarity. (b) Subtracting flux winding polarity	26
2.7	Flux density variation in different parts of DSSRM for aiding and subtract-	
	ing flux winding polarities. (a) Geometry points for flux density calculation.	
	(b) Exciting pole. (c) Auxiliary pole. (d) Stator yoke. (e) Rotor segment	27
2.8	Magnetic flux density vectors for rated 26 A excitation of a phase. (a)	
	Unaligned position. (b) Aligned position	31
2.9	Magnetic flux density distribution for rated 26 A excitation of a phase. (a)	
	Unaligned position. (b) Aligned position	31
2.10	Static inductance and torque profiles. (a) Static inductance. (b) Static	
	torque	32

2.11	Phase currents and torque variation with rotor position at steady-state	
	condition. (a) Phase currents. (b) Output torque	33
3.1	Schematic for torque ripple reduction. (a) Phase torques. (b) Sum of phase	
	torques	38
3.2	Proposed design modification in rotor. (a) Rotor without segments shift	
	(before modification). (b) Rotor with segments shift (after modification). $% \left(\left({{{\bf{x}}_{{\rm{a}}}}} \right) \right)$.	40
3.3	Structure of DSSRM with respect to consecutive exciting poles of a phase	
	after the segments shift.	40
3.4	Variation in static inductance and static torque profiles of $12/10$ pole	
	DSSRM with the variation of segment shift angle (δ). (a) Static induc-	
	tance. (b) Static torque.	41
3.5	Sum of the static phase torques with the shift of the rotor segments showing	
	reduction in torque dip in commutation region. $\ldots \ldots \ldots \ldots \ldots \ldots$	42
3.6	Variation of torque ripple and average output torque of $12/10~{\rm pole}~{\rm DSSRM}$	
	with rotor segments shift angle $\delta.$ (a) Torque ripple. (b) Average torque	43
3.7	Flux density plot in 12/10 pole DSSRM with rotor segments shift (δ =	
	2.5°). (a) Unaligned position. (b) Aligned position	43
3.8	Phase currents and torque variation of $12/10$ pole DSSRM without seg-	
	ments shift. (a) Phase currents. (b) Dynamic torque	43
3.9	Phase currents and torque variation of $12/10$ pole DSSRM with segments	
	shift ($\delta = 2.5^{\circ}$). (a) Phase currents. (b) Dynamic torque	44
3.10	Comparison of steady-state torques of $12/10$ pole DSSRM without and	
	with rotor segments shift.	45
3.11	Variation of output torque with rotor speed in modified DSSRM ($\delta = 2.5^{\circ}$).	46
3.12	Comparison of torque ripple harmonics showing the reduction in lower order	
	torque harmonics with the segment shift	47
3.13	Comparison of steady-state torques of $24/20$ pole DSSRM without and	
	with rotor segments shift.	47
3.14	Shifting of rotor surfaces. (a) Rotor's inner surface shift. (b) Rotor's outer	
	surface shift. (c) Rotor's both surface shift	50
3.15	Reduction in torque dip in commutation region due to rotor surface shift.	
	(a) Inner surface shift. (b) Outer surface shift. (c) Both surface shift	50

3.16	Variation of average torque and torque ripple with rotor surface shift angle	
	(δ_r) . (a) Average torque. (b) Torque ripple	51
3.17	Shifting of stator surfaces. (a) Inner stator surface shift. (b) Outer stator	
	surface shift. (c) Both stator surface shift	52
3.18	Reduction in torque dip due to stator surface shift. (a) Inner stator surface	
	shift. (b) Outer stator surface shift. (c) Both stator surface shift	53
3.19	Variation of average torque and torque ripple with δ_t (where $\delta_t = -\delta_s$). (a)	
	Average torque. (b) Torque ripple	53
3.20	Stator-rotor surface shifted DSSRM.	55
3.21	Reduction in torque dip due to stator-rotor surface shift	55
3.22	Variation of average torque and torque ripple with stator-rotor surface shift	
	angle δ_t . (a) Average torque. (b) Torque ripple	56
4.1	Plots of $(B_n^2 - B_t^2)$ for the inner and outer air-gaps of 12/10 pole DSSRM	
	without segments shift ($\delta = 0^{\circ}$) and 150° (elec.) rotor position	60
4.2	Static radial force on the rotor segments of 12/10 pole DSSRM without	
	segments shift ($\delta = 0^{\circ}$) and rated phase A current.	61
4.3	Plots of $(B_n^2 - B_t^2)$ in the inner and outer air-gaps of 12/10 pole DSSRM	
	with $\delta = 2.5^{\circ}$ and 150° (elec.) rotor position.	62
4.4	Static radial force on the rotor segments of 12/10 pole DSSRM with $\delta =$	
	2.5° and rated phase A current.	63
4.5	Dynamic force created on the rotor of $12/10$ pole DSSRM with segments	
	shift $(\delta = 2.5^{\circ})$.	64
4.6	Structure of the rotor of $12/10$ and $24/20$ pole DSSRM with shifted seg-	
	ments. (a) 12/10 pole DSSRM. (b) 24/20 pole DSSRM	64
4.7	Dynamic force created on the rotor of $24/20$ pole DSSRM with segments	
	shift $(\delta = 1.5^{\circ})$.	65
4.8	Plots of $(B_n^2 - B_t^2)$ in the inner and outer air-gaps of 12/10 pole DSSRM	
	with the rotor's outer surface shift ($\delta_r = 3^\circ$) and 150° (elec.) rotor position.	65
4.9	Static radial force on the rotor segments of $12/10$ pole DSSRM with rotor's	
	outer surface shift $(\delta_r = 3^\circ)$ and rated phase A current	66
4.10	Plots of $(B_n^2 - B_t^2)$ in the inner and outer air-gaps of 12/10 pole DSSRM	
	with both stator surface shift ($\delta_s = -2^\circ$) and 150° (elec.) rotor position.	67

4.11	Static radial force on the rotor segments of $12/10$ pole DSSRM with both	
	stator surface shift ($\delta_s = -2^\circ$) and rated phase A current	68
4.12	Plots of $(B_n^2 - B_t^2)$ in the inner and outer air-gaps of 12/10 pole DSSRM	
	with stator-rotor surface shift $(\delta_t = 2^\circ)$ and 150° (elec.) rotor position	69
4.13	Static radial force on the rotor segments of $12/10$ pole DSSRM with stator-	
	rotor surface shift $(\delta_t = 2^\circ)$ and rated phase A current	69
4.14	Plots of $(B_n B_t)$ in inner and outer air-gaps of 12/10 pole DSSRM without	
	and with rotor segment shift just after the start of the commutation of	
	phase A. (a) $B_n B_t$ in inner air-gap. (b) $B_n B_t$ in outer air-gap	71
4.15	Plots of $(B_n B_t)$ in inner and outer air-gaps of 12/10 pole DSSRM without	
	and with stator surface shift just after the start of the commutation of	
	phase A. (a) $B_n B_t$ in inner air-gap. (b) $B_n B_t$ in outer air-gap	72
4.16	Variation in the parameters of DSSRM with segments shift angle (δ). (a)	
	Flux density in segments. (b) Core loss. (c) Air-gap flux density. (d)	
	Aligned inductance. (e) Unaligned inductance. (f) Copper loss. (g) Effi-	
	ciency	73
4.17	Variation in the parameters of DSSRM with stator surface shift. (a) Flux	
	density in segments. (b) Core loss. (c) Air-gap flux density. (d) Aligned	
	inductance. (e) Unaligned inductance. (f) Copper loss. (g) Efficiency	75
5.1	2-D structure of a 3-phase radial flux $12/10$ pole DSSRM	81
5.2	Representation of DSSRM design parameters	81
5.3	Simulated response of the DSSRM1 at rated speed of 1000 rpm. (a) Phase	
	currents. (b) Output torque	83
5.4	Two separated parts of DSSRM1. (a) Inner SRM. (b) Outer SRM	84
5.5	Steady-state response of two separated SRMs at rated speed. (a) Phase	
	currents and torque of inner SRM. (b) Phase currents and torque of outer	
	SRM	85
5.6	Structure of the hypothetical DSSRM2	86
5.7	Flux distribution in DSSRM2. (a) Flux distribution with the excitation	
	of inner stator winding at 90° (elec.) rotor position. (b) Flux distribution	
	with the excitation of outer stator winding at 150° (elec.) rotor position.	86

5.8	Simulated response of DSSRM2 at the rated speed. (a) Phase currents.	
	(b) Dynamic torque	87
5.9	Initial structure of the proposed DSSRM	89
5.10	Modification in the pole height (h_{pso}) of outer stator due to the insertion of	
	the non-magnetic isolator of width w_{ins} . (a) Outer stator before insertion.	
	(b) Outer stator after insertion $(h'_{pso} < h_{pso})$	90
5.11	Calculation of leakage flux density in DSSRM1. (a) Flux density distribu-	
	tion at the unaligned position. (b) Leakage flux density calculated on the	
	field calculator line in the middle of the rotor segments	91
5.12	Matching of inductance profile of DSSRM2 and DSSRM3 between 13° to	
	22° rotor position	94
5.13	Static torque profiles for inner and outer stator. (a) Static torque for inner	
	stator. (b) Static torque for outer stator	96
5.14	Flux density distribution in the proposed model at 90 (elec.) and 150 (elec.)	
	rotor position with respect to phase A and rated operating condition. (a)	
	90 (elec.) rotor position. (b) 150 (elec.) rotor position. $\ldots \ldots \ldots \ldots$	96
5.15	Steady-state response of DSSRM3 at rated speed of 1000 rpm. (a) Phase	
	currents (b) Output torque	97
5.16	Comparison of the dynamic torques of $\ensuremath{DSSRM1}$ and $\ensuremath{DSSRM3}$ at the rated	
	speed	98
5.17	Comparison of torque ripple harmonics showing the reduction in lower order	
	torque harmonics in proposed DSSRM	99
5.18	Resultant force working on the whole motor body of DSSRM3	99
5.19	Output torque and torque ripple of proposed DSSRM with rotor speed. (a)	
	Output torque. (b) Torque ripple	100

List of Symbols

T_{avg}	Average torque
T_{max}	Maximum torque
T_{min}	Minimum torque
T_{pk2pk}	Peak-to-peak torque ripple
T_{ripple}	Torque ripple
L_u	Unaligned inductance
L_a	Aligned inductance
B_g	Air-gap flux density
B_{max}	Maximum core flux density
I_p	Peak phase current
N_s	Number of stator poles
N_r	Number of rotor segments
q	Number of phases
N_{slot}	Number of conductor per slot
N_{ph}	Number of turn per phase
m	Multiplicity of motor
l	Axial length of motor
l_g	Air-gap length
D_o	Outer diameter of motor
D_i	Inner diameter of motor
D_r	Average diameter of rotor

h_{ys}	Height of stator yoke
h_{pr}	Height of rotor segment
w_{exc}	Width of exciting pole
w_{aux}	Width of auxiliary pole
h_{psi}	Height of inner stator pole
h_{pso}	Height of outer stator pole
β_{exc}	Arc angle of exciting pole
β_{aux}	Arc angle of auxiliary pole
β_r	Arc angle of rotor segment
β_{so}	Stator slot opening angle
β_{ro}	Rotor segments separation angle
β_{ps}	Stator pole pitch angle
β_{pr}	Rotor pole pitch angle
Ν	Rated speed
$ heta_{stk}$	Stroke angle
P_{Fe}	Iron loss
P_{Cu}	Copper loss
η	Efficiency
δ	Angualr shift in rotor segment
δ_r	Angular shift in rotor surface
δ_s	Angular shift in stator surface
δ_t	Total surface shift angle

B_n	Normal component of air-gap flux density
B_t	Tangential component of air-gap flux density
f_r	Radial force density
f_t	Tangential force density
\$	U.S. Dollar

List of Abbreviations

EM	Electrical machine	
EV	Electric vehicle	
SRM	Switched reluctance motor	
TSRM	Toothed switched reluctance motor	
SSRM	Segmented rotor switched reluctance motor	
DSSRM	Double-stator switched reluctance motor	
BSRM	Bearingless switched reluctance motor	
BSSRM	Bearingless segmented rotor switched reluctance motor	
MCSRM	Mutually-coupled switched reluctance motor	
PM	Permanent magnet	
IPM	Interior permanent magnet	
AFPM	Axial-flux permanent magnet	
CCW	Counter clock-wise	
CW	Clock-wise	
FEM	Finite-element method	
SFF	Slot fill factort	
rpm	Revolution per minute	
EMF	Electro motive force	
MMF	Magneto motive force	
VSI	Voltage source inverter	
TSF	Torque sharing functions	

DITC	Direct instantaneous torque control
RPSO	Robust particle swarm optimization
SPC	Single-pulse control
i.e.	That is
e.g.	For example