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Abstract

This thesis represents a culmination of the studies that have been taken place in the

last few years. The increase in automation leads to the electrification of several existing

systems, e.g. transportation system, which require electrical machines (EMs) as primary

power equipments. Permanent magnet (PM) machines currently prevail as a primary

choice for high-performance electrical machines (EMs) because of their high torque/power

density and high efficiency. However, the limited resources and the unstable cost of rare-

earth metals, and the fault-tolerant issues of PM machines appeal to the researchers for

an attractive alternative to PM based motors. Switched reluctance motors (SRMs) are

gaining attention because of their simple construction, low cost, ability to work in harsh

environments, absence of PM and wide-speed operation. Unipolar current excitation

encourages the design of low-cost inverters for SRMs, requiring only one controlling switch

per phase. However, low torque/power density, low efficiency, high torque ripple and high

acoustic noise demand further improvements in such motors. Using high silicon steel

or amorphous steel and improving slot-fill factor enhance the efficiency of SRMs. The

emersion of the double-stator SRMs (DSSRMs) as a new SRM topology with two stators

and a segmented rotor exhibits significant improvement in torque density. Such machines

have lower values of the normal component of air-gap flux density, which results in lower

vibration and lower acoustic noise. The single-tooth winding add-on further improves its

compactness and high-efficiency speed range. High torque ripple of such motors is a key

issue that limits their adaptability in industrial applications. Many active and passive

techniques are developed to reduce the torque ripple for the different topology of SRMs.

However, this specific topology still lacks such effective techniques.

In this thesis, firstly, the design concepts of single-tooth winding radial-flux DSSRM

are presented. The torque equation of this topology is derived. The calculation of sta-

tor poles and rotor segments arc angles for high output torque, selection procedure for
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slot/segment combination and the effect of winding polarities on motor performance are

discussed in details. It is observed through finite-element method (FEM) analysis that

such motor possess high torque ripple. Therefore, some design modifications are inves-

tigated for such motor topology for reducing the torque ripple. In the presented work,

shifting of the rotor segments and stator/rotor surfaces are investigated to reduce the

torque ripple. In this regard, the finite-element models are developed, and their static

and dynamic responses are simulated. The effect of these shifts on the magnetic flux

distribution in different parts of the motor is studied, and their influences on motor per-

formance are analyzed. Besides these, the design of a new DSSRM is proposed, which has

a significantly low torque ripple in a higher speed range when single-pulse control mode

is active. Many of the torque ripple reduction techniques are only effective in the current

chopping control mode, which is only possible in a lower speed range. In the proposed

motor, the outer stator is shifted by half of the stroke angle compared to the inner stator.

The respective phase windings of the inner and outer stators are excited parallelly with

the same phase shift. Each rotor segment is constructed with two half rotor segments, and

a wide non-magnetic region is inserted between them. In this regard, the modifications

are carried out in the outer stator poles and outer half rotor segments. The efficacy of

the proposed motor is investigated through FEM based simulation results. The proposed

motor shows significantly reduced torque ripple for a higher speed range when single-pulse

control is active.
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