CERTIFICATE

It is certified that the work contained in the thesis titled **"Reliability Assessment of Power Electronics Converters"** by **"Kumari Sarita"** has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and State-Of-The-Art for the award of Ph.D. Degree.

Supervisor Professor (Dr.) R.K. Saket Department of Electrical Engineering, IIT(BHU), Varanasi, Uttar Pradesh, INDIA.

DECLARATION

I, Kumari Sarita, certify that the work embodied in this thesis is my own bona fide work and has been carried out by us under the supervision of **Professor (Dr.) R.K. Saket** from **July-2019** to **December-2021**, at the Department of **Electrical Engineering**, **Indian Institute of Technology (Banaras Hindu University)**, **Varanasi, Uttar Pradesh, INDIA**. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Kumari Sarita

(Kumari Sarita)

Signature of the student

Date:

Place:

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of our knowledge.

Professor (Dr.) R.K. Saket (Supervisor)

Head of Department Professor (Dr.) R.K. Pandey

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: "Reliability Assessment of Power Electronics Converters".

Name of Student: Kumari Sarita

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Date: 17.01.2022 Place: 117 (BHU) Kumari Sarita

(Kumari Sarita)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

То

Savitribai Phule

(3 January 1831 – 10 March 1897)

(An Indian social reformer, educationalist, and poet)

My Parents

(Mr. Dhananjay Kumhar & Mrs. Yashoda Devi)

and

My Elder Brother

(Mr. Hare Shankar Kumhar)

ii

Acknowledgements

No doubt that the thesis is mine, but I owe my gratitude to all those people who have made this thesis work possible and because of whom my experience as a research scholar has been one that I will cherish forever.

I whole heartily express my regards and gratitude to my esteemed supervisor Dr. R.K. Saket, Professor, Department of Electrical Engineering, IIT (BHU), Varanasi, Uttar Pradesh, INDIA, for his moral guidance, mentoring, and constant encouragement during my Ph.D. work. Though he is the thesis supervisor, he has treated me just like his daughter and provided all kind of support whenever required. In addition, I would like to express profound gratitude towards my head of the department Professor (Dr.) R.K. Pandey and former head of the department Professor (Dr.) Devender Singh for their invaluable time, support, and suggestions, which made my research work easy and proficient.

I have no words to express gratitude to my faculty members. Still, I would like to mention special thanks to my subject teachers Prof. Shyam Krishna Nagar (Retd.), Prof. Ranjit Mahanty, Dr. Soumya Ranjan Mohanty, Ms. Sobhita Mehar, and Dr. N. Krishna Swami Naidu for implementing their subject concepts in my research work.

I am lucky to have Prof. R.K. Srivastava (Department of Electrical Engineering) and Prof. Suprakash Gupta (Department of Mining Engineering) as my Research Performance Evaluation Committee (RPEC) members from IIT (BHU), Uttar Pradesh, INDIA. It wasn't easy to achieve continuous progress in my research work without their suggestions and support. I would also like to thank Dr. Kalpana Choudhary (Convener, DPGC, Department of Electrical Engineering, IIT (BHU), Uttar Pradesh, INDIA) for his positiveness towards any Post Graduate student.

I am obliged to the staff members of Department of Electrical Engineering, IIT (BHU), Varanasi, Uttar Pradesh, INDIA, with special mention to Mr. Sanjeev Kumar Maurya, Mrs. Ranjana Singh, Mr. Santosh Kumar Vishwakarma, Mr. Sirish Anand, Mr. Sunil Kumar Sonkar, Mr. Satish Singh, and Mr. A.N. Singh, who have been patient to deal with my Ph.D. related work throughout.

Besides, I want to express my deepest gratitude to my seniors Dr. Abhishek Kumar, Mr. Amit Singh, Mr. Basant Sethi, and Mr. Debottam Mukherjee who supported me throughout my experimental work in the System laboratory. I am grateful to Dr. Dharmendra Kumar Dheer (National Institute of Technology, Patna, Bihar, INDIA), Prof. L.D. Arya (Department of Electrical Engineering, Medi-Caps University, Indore (MP) INDIA), Prof. D.P. Kothari (Head (Retd.) in the Centre of Energy Studies at Indian Institute of Technology, Delhi, INDIA), Prof. Ramesh C. Bansal (University of Sharjah, United Arab Emirates), Prof. Almoataz Youssef Abdelaziz (Ain Shams University & Future University, Egypt), Prof. Narottam K. Das (Central Queensland University, Melbourne, Australia), Mr. Rajvikram Madurai Elavarasan (Clean and Resilient Energy Systems (CARES) Laboratory, Texas A&M University, Galveston, United States of America), who have provided me with technical, moral, and emotional support during my research program. My gratitude would not be valid till I would not mention special thanks to my Ph.D. senior Dr. Sachin Kumar (Department of Electrical Engineering, G B Pant Institute of Engineering & Technology, Pauri-Garhwal, Uttarakhand. INDIA), my colleagues, Mr. Uday B. Rao, Mrs. Saumya Singh, Mrs. Haritha, Mr. Parijat, Ms. Sweta Sharad, Mrs. Rangoli, Mr. Siva, Mr. Hari Shankar, Mr. Ashish, Mr. Rajat, Ms. Kala, and my juniors Mr. Harsh Srivastava, Ms. Eram Taslima, Mr. Suchetan, Ms. Ruchi, Ms. Laxmi, Ms. Sanno, Ms. Purnima, Ms. Srishti, Ms. Monika, Ms. Kalpana, Mr. Kameshwar, Ms. Kiwi, Ms. Maanshi, Ms. Monika, Ms. Vaagisha, Ms. Vaibhavi, and Ms. Aanchal Verma for their continuous technical and moral support till date, without them, there was no fun and encouragement in these years at IIT(BHU) campus. In addition, I can not forget the priceless support of my research team members, Professor Saket Research Team (PSRT) group, Dr. K.S. Anand, Dr. Lokesh, Dr. Vipin, Dr. Sachin Kumar Gupta, Dr. Sanjay Kumar, Dr. Sunil Kumar Singh, and Dr. Om Prakash Bharti, Dr. Sharat, and other team members for their support in Ph.D. research work.

I am thankful to Prof. Pankaj Rai (Department of Electrical Engineering, Birsa Institute of Technology, Sindri, Dhanbad, Jharkhand, INDIA) and other faculties from my M.Tech. college for their continuous motivation regarding the completion of my Ph.D. work at the earliest. I am very much thankful to my faculties of B.Tech. college (Guru Gobind Singh Educational Society's Technical Campus, Bokaro, Jharkhand, INDIA) for their continuous support and motivation regarding the completion of my Ph.D. work at the earliest.

Special gratitude goes out to my friends with special mention to Ms. Prerana Raj, Ms. Ra-

jni Kumari, Mr. Mukesh, Mr. Manish, Ms. Kusum Kumari Oraon, Ms. Manisha Oraon, Mr. Gopal, Mr. Krishna Marandi, Mr. Karamat, Mr. Rohit, Mr. Sailesh, Mr. J. Prakash, Mr. Om, Mr. Shahid, Mr. Samim, Mrs. Nirupa Rani, Mrs. Jayanti, Ms. Babita, Ms. Juhi, Ms. Sweta Mishra, Ms. Jyoti, Ms. Bidisha Shahoo, Mrs. Surabhi Sivendra, Ms. Neelam Kumari, Mrs. Pallavi, Ms. Purnima, Ms. Rekha, Ms. Anamika, Mr. Kanchan, Mr. Suraj, Mr. Surjendu Dey, Mr. Shammi, Ms. Anupama Rani, Ms. Bhuneshwari, Ms. Pooja, Mrs. Suman, Mrs. Richa, Mrs. Nandini, Ms. Kanchan, Ms. Sunaina, Mrs. Priyanka, Mr. Jitendra, Mr. Ajit, Ms. Aakanksha Singh. S. Vardhan, and Ms. Aanchal Singh S. Vardhan, for their physical, emotional, and intellectual support, especially precious suggestions in need.

I am very much thankful to my villagers (Telotand, Dumra, Dhanbad, Jharkhand, India) for their continuous support and blessings. In family, I thank especially my grand mother, Mrs. Sarubala Devi, maternal grand mothers, Mrs. Chandmani Devi, Mrs. Pamila Devi, Mrs. Pasholya Devi, my maternal grand fathers, Mr. Shashi Bhushan Kumar, Mr. Amulya Kumar, my parents, Mr. Dhananjay Kumhar and Mrs. Yashoda Devi, my elder brother Mr. Hare Shankar Kumhar, my younger brothers Mr. Tankeshwar Kumhar, Mr. Deepak Kumar, and Mr. Madhav Kumar, my uncles Mr. Niranjan Kumhar, Mr. Dheeran Kumhar, aunties Mrs. Kalavati Devi and Mrs. Shulochana Devi, my maternal uncles Mr. Devashish Kumar, Mr. Achintya Kumar, Mr. Sanjeev Kumar, Mr. Rajeev Kumar, Mr. Bankim, and Mr. Bishwajit, maternal aunties, Mrs. Ruma Devi, Mrs. Pushpa Devi, Mrs. Geeta Devi, and Mrs. Mamta Devi for their constant emotional support and encouragement, without which this Ph.D. work would have not been completed at all. I am grateful to my other family members who have supported me along the way.

Last but not the least, I would like to present special gratitude to my would be family especially my would be husband Mr. Vishnu Kumar Paul, would be mother-in-law, Mrs. Bimla Devi, would be father-in-law, Mr. Narayan Kumhar, would be brothers-in-law, Mr. Laxman, Mr. Santosh Kumhar, Mr. Rajiv Kumbhakar, and would be sisters-in-law, Mrs. Pushpa Kumbhakar and Mrs. Seema Devi. They motivated and supported me to complete this thesis work at the earliest.

Kymari Sarita

Date: 17.01.2022

Kumari Sarita

Abstract

This thesis presents a comprehensive analysis of the reliability evaluation and fault diagnosis of inverter. The converter and inverter form important part of electrical power system. Fault detection can increase the reliability and efficiency of power electronic converters employed in the power systems. The inverters are also used to drive electric motors and Electric Vehicles (EVs). Due to high pressure and complex work in this environment, the inverters are prone to breakdowns and faults. That is why providing a way to recognize faults in the inverters is very important. The Open Circuit (OC) faults may occur because of a short circuit between two legs, OC fault in triggering pulse, and OC fault in supply connection. This thesis studies the OC fault of IGBTs of three-phase inverters. The three-phase currents are used to identify the state of the system and extracting the features using different feature extracting algorithms for fault localization. This thesis first focuses on the literature survey made for understanding the importance of inverter and its applications in Electrical power system and EVs. The Reliability and Availability (RA) evaluation have become the critical area of interest for researchers. In this thesis, the Reliability Block Diagram (RBD) with exponential probability distribution function is used for the RA analysis of seven practical grid connected solar Photo-Voltaic (PV) systems. It aims to identify the weakest subsystem of a system in order to enhance system reliability. Elaborate analysis is presented for these systems beginning from the sub-assemblies to the subsystems and then to the overall system. In addition, the subsystems are ranked based on their impact on the overall system availability using availability importance measures. It is observed that inverter forms the weakest subsystem in the solar system. Types of faults that occur in the inverter are divided into two categories: OC fault and Short-Circuit (SC) fault. In case of occurring SC fault, system current increases up to 4 or 5 times its nominal amount which makes the detection easy but the OC fault is not like SC fault and current changes are very low. That is why identifying the OC fault is very important. After coming to these conclusions, the further study and analysis have been carried out taking the OC fault diagnosis and condition monitoring of

inverter as main focus. Therefore, the overall work done in this thesis is Reliability, Availability, and Condition Monitoring (RACM) of inverters. Along with the RBD method, the Principal Component Analysis (PCA) technique is used to monitor the health status of the inverter. The technique used for condition monitoring in second chapter is an unsupervised type machine learning technique which is also a well know dimensional reduction technique. This method is also used for features extraction from data set. There are various supervised type machine learning techniques also available in the literature such as Support Vector Machine (SVM), k-Nearest Neighbor (KNN), and Artificial Neural Network (ANN) based deep learning techniques which claim better results than unsupervised machine learning techniques. These supervised machine learning techniques need strong features which can be good predictors for monitoring. The features can be obtained either from time-domain or frequency-domain analysis of the signals of the equipment to be monitored. The signal processing techniques have been observed to be good for extracting the features from the signal. Therefore, the third chapter of this thesis is focused on the role of signal processing and machine learning based algorithms for the proper condition monitoring and fault diagnosis system of inverters. The two samples based signal processing technique for fault detection is proposed and validated. For fault localization, SVM method is used which uses the Entropy of Wavelet Packet (EWP) and mean of current signals as features. The results were found satisfactory and EWP is found to be better feature than mean as the prediction results using mean as feature show misclassification of faults. For further increasing the accuracy and decreasing the time of OC fault detection, the PCA-based machine learning technique is proposed in chapter four for fault detection and Wavelet Entropy (WE) feature based SVM technique is used for the localization of fault, which gives results better than the two-samples based technique. The research is further carried out to find a best feature extraction technique which involves simple addition and subtraction operations rather than involving complicated mathematical calculus. A KNN technique involving Walsh Function (WF) based feature has been proposed in chapter five, which is found faster than the previous two techniques and giving better results (accuracy of 98-100% and detection time of lesser than 10% cycle) because the feature includes simple mathematical addition and subtraction operations. The motive of this thesis is accomplished by proposing the various techniques, which can help to increase the accuracy and enhance the RACM of inverters.

Contents

		F	Page
Ał	ostract	t	vii
Co	ontent	S	ix
Li	st of T	Fables	xiii
Li	st of F	ligures	XV
Li	st of A	Abbreviations	XX
1	Intro	oduction	1
	1.1	Historical Background	1
	1.2	Inverters in Electrical Power System	2
	1.3	Three-phase Inverter Modelling	4
		1.3.1 Failures in inverters and its causes	6
	1.4	Reliability, Availability, and Condition Monitoring (RACM)	8
	1.5	Need of RACM of Inverters	9
		1.5.1 Inverters in PV Systems	10
		1.5.2 Inverters in Wind Energy Systems	12
		1.5.3 Inverters in EVs and other drives systems	12
	1.6	Role of Signal Processing Techniques in RACM	13
	1.7	Role of Machine Learning Techniques in RACM	13
	1.8	Thesis Motivation	16
	1.9	Objectives of the Thesis	18
	1.10	Contributions of the Thesis	18
	1.11	Outlines of the Thesis	19

2	Lite	rature Survey	23
	2.1	Introduction	23
	2.2	Layouts of Solar-PV Systems	25
	2.3	Reliability and Availability Analysis	27
		2.3.1 System Decomposition	28
		2.3.2 Reliability Evaluation of Inverter System	29
		2.3.3 Reliability Modeling	30
		2.3.4 Data Collection	31
	2.4	Availability Estimation	32
	2.5	RACM of Inverters of PV Systems	35
	2.6	OC Fault Diagnosis of Inverters	38
	2.7	Summary	42
3	RAC	CM of Inverters: 2 Samples Approach	43
	3.1	Introduction	43
		3.1.1 Proposed Fault Diagnosis System	47
	3.2	Two Samples-based Method for RACM	49
		3.2.1 Two-Samples based Fault Detection Technique	49
		3.2.2 Features Extraction Technique	52
	3.3	Simulation Studies	57
	3.4	Results and Discussion	59
		3.4.1 Fault Diagnosis using EWP-SVM Technique	60
		3.4.2 Comparison between Proposed Technique and Existing Techniques	65
	3.5	Summary	68
4	RAC	CM of Inverter: Wavelet Entropy Based PCA-SVM Technique	69
	4.1	Introduction	69
	4.2	EWP-PCA-SVM Method for RACM	72
		4.2.1 OC Fault Detection using PCA	74
		4.2.2 WPD	77
		4.2.3 Wavelet Entropy	79
	4.3	Results and Discussion	80
	4.4	Summary	88

5	RAC	CM of Inverters: Walsh Function based KNN Approach	91
	5.1	Introduction	91
	5.2	WFC-KNN Approach for RACM	94
		5.2.1 Walsh-Function Coefficients (WFC)	95
		5.2.2 OC Fault Detection using WFC	96
		5.2.3 WFC-SVM and WFC-KNN Techniques for Fault Diagnosis	103
	5.3	Results and Discussion	106
	5.4	Summary	120
6	Con	clusions and Scopes for the Future Work	121
	6.1	Conclusions	121
	6.2	Benefits of the Proposed Work	123
	6.3	Scopes for the Future Work	123
Ap	pend	ix A Data Collection	125
Re	feren	ces	129
Lis	st of I	Publications	143

List of Tables

Chapter 2

2.1	Comparison of the proposed method with existing methods	25
2.2	Details of sub-assemblies of each component of PV system	33
2.3	Subsystem failure rate (YR^{-1}) estimated from Tables A.1 and A.2	33
2.4	Subsystem repair rate (YR^{-1}) estimated from Table 2.2	33
2.5	Comparison of fault detection time of proposed methods with existing techniques	41

Chapter 3

3.1	Features extracted from three-phase currents under different conditions	56
3.2	Fault diagnosis results using Simple Entropy-SVM technique	67
3.3	Comparison of fault detection time of different techniques	67

Chapter 4

4.1	Features extraction under different conditions	81
4.2	Different OC faults used to train and validate the classifier	84
4.3	Comparison of the accuracy of different fault diagnosis techniques	86
5.1	Training time for KNN and SVM classification techniques	110

5.2	Subsystem reliability of PV system for one year of operation (in %) (using eq	
	2.19)	112
5.3	Subsystem reliability of PV system for 20 years of operations (in %) (using eq	
	2.20)	112

5.4	Subsystem availability (in %)	114
5.5	Availability importance measures	114
5.6	Importance measures based on failure rates	115
5.7	Importance measures based on repair rates	115
5.8	Ranking of components affecting the availability of PV system	118
5.9	Comparison of the reliability values of PV system found from proposed method	
	and existing methods after one year of operation.	119
5.10	Comparison of the reliability values of PV system found from proposed method	
	and existing methods after twenty years of operation	119

Appendix A

A.1	Gathered data of failure rate and repair rate from literature	126
A.2	Gathered data of failure rate and repair rate from literature	127

List of Figures

Chapter 1

1.1	Inverters used in electrical power system including wind generation, solar PV	
	panel, EVs, and ESS connected to the grid.	3
1.2	Block diagram of three-phase inverter	7
1.3	Benefits of condition monitoring of system	10
1.4	Division of PV system into its components and sub-components and reliability	
	block diagram.	12
1.5	Features extraction from three-phase currents using signal processing technique	14
1.6	Features extraction from three-phase voltages using signal processing technique	14
1.7	Fault diagnosis using machine learning technique.	16

Chapter 2

2.1	Arrangement of components in PV system connected with grid	26
2.2	Division of PV system into its components and sub-components and reliability	
	block diagram.	31
2.3	The proposed methodology for RACM in PV systems	37
2.4	Flow chart of PCA-based condition monitoring algorithm.	38
2.5	Condition monitoring output showing the data points lying in normal, warning,	
	and alarm range.	39

3.1	RACM using two samples and EWP-SVM based techniques	44
3.2	Flow chart of the proposed system	46
3.3	Schematic diagram for two-samples based fault detection algorithm	48

3.4	WPD of a signal into Approximate (A) and detail (D) coefficients up to 3 levels	49
3.5	Flow chart of two-samples based OC fault detection algorithm	50
3.6	Estimated current of phase-a of the inverter under multi-IGBTs OC faults at S1	
	and S5	51
3.7	Original current of phase-a of the inverter under multi-IGBTs OC faults at S1	
	and S5	52
3.8	OC fault detection by comparing estimated and original current signals	53
3.9	The difference of actual and estimated current signal, fault occurring and alarm	
	generation	53
3.10	Simulink model of the fault diagnosis system	58
3.11	Three-phase output currents of the 3-phase, 3-level inverter under normal con-	
	dition	59
3.12	Three-phase currents for single IGBT (S1) fault	60
3.13	OC fault detection for single IGBT (S1) fault	61
3.14	Three-phase currents for multiple IGBTs (S1, S2, S5) faults	61
3.15	OC fault detection for multiple IGBTs (S1, S2, S5) faults	62
3.16	OC fault detection output with current of phase-b under OC fault in S1 \ldots	62
3.17	OC fault detection output with current of phase-b under OC faults in S1, S2,	
	and S5	63
3.18	OC fault detection output with current of phase-c under OC fault in S1 \ldots	63
3.19	OC fault detection output with current of phase-c under OC faults in S1, S2,	
	and S5	64
3.20	Classification results using proposed EWP-SVM technique	64
3.21	Classification results using simple entropy as feature extraction	65

4.1	RACM using PCA-EWP-SVM technique	70
4.2	Process flow of the proposed algorithm.	73
4.3	Data variance covered by the principal components individually and cumulatively.	74
4.4	Schematic diagram of PCA-based fault detection technique	75
4.5	OC fault detection output pattern under normal condition.	76

4.6	PCA-based OC fault detector output pattern for single IGBT.	76
4.7	PCA-based OC fault detector output pattern for multiple IGBTs	77
4.8	Decomposition of wavelet packets into Approximate and detail coefficients	78
4.9	Process flow of fault localization using WE feature	80
4.10	Three-phase currents of the inverter under normal condition	82
4.11	Three-phase currents of the inverter under OC fault in single IGBT (S1)	82
4.12	Three-phase currents of the inverter under OC faults in multiple IGBTs (S1, S5).	83
4.13	PCA-based OC fault detector output under S1 fault.	83
4.14	Classification results using simple entropy.	85
4.15	Classification results using WE of the current signal as feature	85
4.16	Accuracy of fault classification algorithm during training	87
4.17	Accuracy of fault classification algorithm during testing	88
4.18	Prototype for the proposed algorithm of fault detection and localization	89
4.19	Outputs of fault detection and localization algorithms under normal condition.	89
4.20	Outputs of fault detection and localization algorithms under fault condition in	
	switch S1	90

5.1	RACM using PCA-EWP-KNN technique.	92
5.2	Process flow of the proposed algorithm	94
5.3	Line voltage V_{ab} under normal condition	97
5.4	Line voltage V_{ab} under fault condition at $S_1 \ldots \ldots \ldots \ldots \ldots \ldots$	97
5.5	WFCs of voltage signal under normal condition	98
5.6	Reconstruction of voltage signal using WFCs	98
5.7	WFCs of voltage signal under fault condition in S_1	99
5.8	WFCs of voltage signal under normal condition with second next sample com-	
	ing in	100
5.9	WFCs of voltage signal under normal condition with third next sample coming	
	in	100
5.10	WFCs of voltage signal under normal condition with forth next sample coming	
	in	101

5.11	WFCs of voltage signal under S_1 fault condition with second next sample com-	
	ing in	101
5.12	WFCs of voltage signal under S_1 fault condition with third next sample coming	
	in	102
5.13	WFCs of voltage signal under S_1 fault condition with forth next sample coming	
	in	102
5.14	Magnitude of WFCs of window of 11 samples of voltage signal under normal	
	condition	103
5.15	Phase of WFCs of window of 11 samples of voltage signal under normal con-	
	dition	104
5.16	Magnitude of WFCs of window of 11 samples of voltage signal under fault	
	condition at S_1	104
5.17	Phase of WFCs of window of 11 samples of voltage signal under fault condition	
	at S_1	105
5.18	Fault detection and generation of alarm under fault condition at S_1	105
5.19	Zoomed view of occurrence of fault, detection and generation of alarm under	
	fault condition at S_1	106
5.20	Fault classification result using SVM-algorithm	107
5.21	Fault classification result using fine KNN-algorithm	107
5.22	Fault classification result using weighted KNN-algorithm	108
5.23	Accuracy of SVM-based fault classification technique	108
5.24	Accuracy of KNN-based fault classification technique	109
5.25	Accuracy of MLP-based fault classification technique	109
5.26	Prototype for the proposed algorithm of fault detection and localization	110
5.27	Outputs of fault detection and localization algorithms under normal condition.	111
5.28	Outputs of fault detection and localization algorithms under fault condition in	
	switch S1	111
5.29	Percentage reliability of PV systems for one year of operation	113
5.30	Percentage reliability of PV systems for 20 years of operation	113
5.31	Sub-systems availability for the studied systems.	115
5.32	Importance measures for PV module, converter and inverter	116
5.33	Sub-system availability for inverter.	116

5.34	Overall system availability before inverter redundancy	•	•		•	•	 •	•	 117
5.35	Overall system availability after inverter redundancy .								 118

List of Abbreviations

ANN	Artificial Neural Network
ASTS	Automatic Static Transfer Switch
AC	Alternating Current
AI	Artificial Intelligence
BOS	Balance of System
CNN	Convolution Neural Network
СВ	Circuit Breaker
DC	Direct Current
DA	Discriminant Analysis
DT	Decision Tree
DWT	Discrete Wavelet Transform
ESS	Energy Storage System
ESO	Extended State Observer
EWP	Entropy of Wavelet Packet
ELM	Extreme Learning Machine
EVs	Electric Vehicles

FACTS Flexible AC Transmission System

FTA	Fault Tree Analysis
FNN	Fuzzy Neural Network
FFT	Fast Fourier Transform
ннт	Hilbert-Huang transform
IGBT	Insulated Gate Bipolar Transistor
IGBTs	Insulated Gate Bipolar Transistors
ІоТ	Internet of Things
KNN	k-Nearest Neighbor
LE	Log Energy
MPPT	Maximum power point tracking
MKSTM	Mixed Kernel Support Tensor Machine
MLC	Multilevel Converters
MLI	Multilevel Inverter
MMI	Modular Multilevel Inverter
MLP	Multilayer Perceptron
MRVM	Multiclass Relevance Vector Machine
NA	Not Available
NB	Naive Bayes
OC	Open Circuit
OF	Oversampling Factor
PCA	Principal Component Analysis
PCs	Principal Components

PV	Photo-Voltaic
РСВ	Printed Circuit Board
PWM	Pulse Width Modulation
RE	Renewable Energy
RF	Random Forest
RMS	Root Mean Square
RAM	Reliability, Availability, and Maintainability
RACM	Reliability, Availability, and Condition Monitoring
RA	Reliability and Availability
RBD	Reliability Block Diagram
RBFNN	Radial Basis Function Neural Network
SVM	Support Vector Machine
SPWM	Sinusoidal Pulse Width Modulation
SOM	Self-Organizing map
SMO	Sliding Mode Observer
STM	Support Tensor Machine
SE	Shannon Entropy
SC	Short-Circuit
SM	Sub-Module
TE	Threshold-based Entropy
VPMAM	Variable Parameter Moving Average Method

WE Wavelet Entropy

WP Wavelet Packet

- WT Wavelet Transform
- **WPD** Wavelet Packet Decomposition
- WF Walsh Function
- WFC Walsh Function Coefficients