CHAPTER-2

LITERATURE REVIEW

2.1 Groundwater contamination

A change in physical, chemical or biological properties of the groundwater used for drinking purpose may lead to negative impacts on human health. The contamination of the groundwater is generally irreversible i.e., once it is contaminated; it is difficult to restore the aquifer to its original water quality. Nitrate, fluoride and arsenic are the common anions that may be responsible for groundwater contamination. Many such groundwater sources suffer from these contaminants. A brief description of forms, origin and their health effects is presented in Table 2.1.

Contaminants	Species	Origin	Health affect
Nitrate	Nitrate (NO ₃ ⁻),	Nitrogen fixation,	Methaemoglobinemia,
	Nitrite (NO ₂ ⁻),	Chemical fertilizers and	Gastric cancer
	Nitrogen (N ₂)	Animal manure	
Fluoride	Fluoride (F ⁻),	Fluorspar, Cryolite,	Nausea, Salivation,
	Hydrogen Fluoride	Fluorite and Fluorapatite	Vomiting, Diarrhoea and
	(HF)		Abdominal Pain,
			Emaciation, Stiffness of
			joints and Abnormal teeth
			and bones
Arsenic	Arsenite (As(III))	Geological realgar	Vomiting, Diarrhea,
	are H ₃ AsO ₃ ,	(As ₂ S ₂), Orpiment (As ₂ S ₃)	Kidney, Liver and Lung
	$H_2AsO_3^-$, $HAsO_3^{2-}$,	and Iron pyrites	problems
	AsO ₃ ³⁻	(geogenic) and	
	Arsenate (As(V))	Anthropogenic (human	
	are H ₃ AsO ₄ ,	activities)	
	$H_2AsO_4^-$, $HAsO_4^{2-}$,		
	AsO ₄ ³⁻		

 Table 2.1: Common groundwater contaminants

(Source: CGWB, 2014; 2018)

The presence of nitrate, fluoride or arsenic in the drinking water beyond permissible limits require their treatment before use. Several methods and approaches have been developed and evaluated. Different methods have their own merits and limitations with respect to their operating conditions, such as optimal pH, temperature, efficiency, operating costs and their disposal. The main technologies for removing such contaminants include ion exchange, coagulation, membrane filtration, and adsorption (Patel et al., 2019). Table 2.2 provides a general summary of their performance in terms of different operational conditions, removal efficiency, relative cost, and post-treatment requirements.

Table 2.2 Comparative analyses of the removal technologies applicable for anio	onic
contaminants removal from water	

Technologies			Operational p	arameter and o	efficiency	
	pH and	Post-	Removal	Operational	Disposal	Reference
	Temperature	treatment	efficiency	cost		
Ion	Not	Required	60-90%	Medium	Waste brine	Onyango et al.,
Exchange	important	due to				2005; 2006
_	_	corrosivity				Khoei et al.,
		of product				2019
		water				
Coagulation	Important	Required	60-70%	High	No waste	Stephenson et
Precipitation	_	due to the		_		al., 1996;
-		production				Randtke S.J.,
		of by-				1988;
		products				Patel et al., 2019
Membrane	Not	Required	80-95%	High	High total	Madaeni et al.,
Process	important	due to			dissolved	1999;
	_	corrosivity			solids (TDS)	Pendergast et
		of product				al., 2011
		water				
Adsorption	Important	Often not	Varies	Medium	Saturated/spent	Ali et al., 2006;
		required	with		adsorbent	Faust et al.,
			adsorbents			2013;
						Xie et al., 2018

(Source: Patel et al., 2019)

Removal of anionic contaminants from water is a challenge and is very important from public health point of view. The most prevalent anionic contaminants in groundwater include nitrate, fluoride and arsenic. Arsenic has received a lot of attention from researchers. An extensive literature search was carried out on nitrate, fluoride and arsenic removal. Although all three selected contaminants (nitrate, fluoride and arsenic) are anionic in nature, many of their behaviors are unique and uncommon. Therefore, it is important to review various options for their removal from the aqueous environment.

2.2 Technologies for nitrate removal from water

There are two options to reduce the high concentration of nitrate in drinking water. The first is blending with fresh water with low nitrate concentration, or change the source of water. Use of treatment processes such as ion exchange, adsorption, reverse osmosis, biological denitrification and chemical reduction, etc. are the second alternative to achieve the safe limit for nitrate. The most important thing about these removal methods, however, is that none of them remove nitrate completely. The treatment method may remove nitrate partially with varying degrees of efficiency, much of which may depend on other substances found in the water (Bhatnagar et al., 2011). Green and Shelef (1994); Kapoor and Virarghavan (1997); Shrimali and Singh (2001) have published some of the excellent reviews on nitrate removal from drinking water. The ion exchange process is more suitable for surface water (Kapoor and Virarghavan, 1997). Many studies, such as Samatya et al., (2006), Chabani et al., (2009), Milmile et al., (2011) have given details on ion exchange

process. The adsorption process is considered to be the most attractive method of nitrate removal in terms of cost, simplicity of design and operation (Bhatnagar et al., 2010). Some of the other methods include chemical denitrification (Huang and Zhang, 2004; Chen et al., 2005; Liou et al., 2005; Kumar and Chakraborty, 2006; Ahn et al., 2008), reverse osmosis (Schoeman and Steyn, 2003), electrodialysis (Hell et al., 1998) , catalytic denitrification (Pintar et al., 2001; Barrabes and Sa, 2011; Hasnat et al., 2009, Hasnat et al., 2012; Healy et al., 2012), electrocoagulation (Kumar and Goel, 2010), electrochemical (He et al., 2019) and biological denitrification (Healy et al., 2012; Cameron and Schipper, 2012; Zhao et al., 2012). Some of the other references on nitrate removal from water are Bhatnagar and Sillanpa (2011), Christianson et al. (2013; 2015), Mohsenipour et al. (2015), Mahdavi et al. (2018), and Patel et al. (2019).

For small-scale applications, however, treatment methods based on adsorption, ion exchange, and reverse osmosis are most commonly used. Table 2.3 summarizes important features of major nitrate removal methods used for drinking water application.

S.N.	Nitrate removal	Important features
	technologies	-
1.	Adsorption	1. Requires saturated/spent adsorbent disposal.
		2. pH and temperature effects are important.
		3. Post treatment is often not required.
		4. Removal efficiency varies with different adsorbent.
		5. Medium operational cost.
2.	Biological methods	1. Requires biomass waste disposal.
		2. Temperature effect is important.
		3. Post-treatment is required due to microorganisms.
		4. >99 % efficiency can be achieved.
		5. Medium operational cost.
3.	Chemical methods	1. No waste disposal is required.
		2. pH and temperature effects are important.
		3. Post treatment is required due to production of
		byproducts.
		4. Maximum reported efficiency >60-70%.
		5. High operational cost.
4.	Ion exchange	1. Requires waste brine disposal.
		2. pH and temperature effects are not important.
		3. Post treatment is required due to corrosivity of
		product water.
		4. Approx. 90 % efficiency can be achieved.
		5. Medium operational cost.
5.	Reverse osmosis	1. Requires high TDS disposal
		2. pH and temperature effects are not important.
		3. Post treatment is required due to corrosivity of
		product water.
		4. >95 % efficiency can be achieved.
		5. High operational cost.

Table 2.3: Important features of some major nitrate removal technologies

(Source: Bhatnagar and Sillanpaa, 2011)

Adsorption is generally considered to be a better water treatment method because of its convenience, ease of use, and simplicity of design. There are several factors that influence the selection of an appropriate adsorbent for removing nitrates from water.

- (1) Initial concentrations of nitrate,
- (2) Concentrations of other competing ions in water,
- (3) Optimized dose of adsorbent,
- (4) pH of water,
- (5) Maintenance and operation.

Bhatnagar and Sillanpa (2011) compiled a list of several materials which have been examined as adsorbents for NO_3^- removal from water as shown in Figure 2.1.

Figure 2.1: Different classes of adsorbents used for the removal of nitrate from water

Table 2.4 presents important characteristics of different adsorbents used for nitrate removal from water (Bhatnagar and Sillanpa, 2011).

S. N.	Adsorbent	Adsorbate adsorbed	Concentration range	Contact time	Temperature	рН	Reference
1.	Pure alkaline	1.8	1-30	2880	30°C	-	Orlando et al.,
	lignin	mmol/g	mg/L	min			2002
2.	Sugarcane	1.41	1-30	2880	30°C	-	Orlando et al.,
	bagasse	mmol/g	mg/L	min			2002
3.	Pure cellulose	1.34	1-30	2880	30°C	-	Orlando et al.,
		mmol/g	mg/L	min			2002
4.	Rice hull	1.32	1-30	2880	30°C	-	Orlando et al.,
		mmol/g	mg/L	min			2002
5.	Coconut shell	$2.66 imes 10^{-1}$	-	-	30°C	2-4	Ohe et al.,
	activated	mmol/g					2003
	carbon	1					
6.	Bamboo	1.04×10^{-1}	-	-	30°C	2-4	Ohe et al.,
	charcoal	mmoi/g			-		2003
7.	Bamboo	1.25	0-10	7200	10°C	-	Mizuta et al.,
	powder	mg/g	mg/L	min			2004
0	Charcoal	20.16	100	5			Ö-törle en d
8.	Septome	58.10 mg/g	100 mg/I	5 min	-	-	Balta 2004
	HC1	mg/g	mg/L	11111			Dekta, 2004
9	Unmodified	408	-	-	-	-	Özcan et al
2.	sepiolite	mmol/kg					2005
10.	Surfactant-	453	_	_	_	2.0	Özcan et al
	modified	mmol/kg					2005
	sepiolite	U					
11.	Cross-linked	7.55	10-40	10	25°C	5.8	Namasivayam
	and	mg/g	mg/dm ³	min			and Höll,
	quaternized						2005
10	chinese reed	1.050.0	7.25 0		a r° cr	6.0	
12.	Original &	1.859 &	5-250	60	25 C	6.0	Cengeloglu et
	activated red	5.858 mmol/g	mg/L	min			al., 2006
13	H ₂ SO ₄ treated	2 03	115	60	25°C	~7.0	Afkhami et
15.	carbon cloth	mmol/g	mg/L	min	25 C	7.0	al., 2007
14.	Raw wheat	0.02	50-500	150	$23 \pm 2^{\circ}C$	6.8	Wang et al.,
	residue	mmol/g	mg/L	min			2007
15.	Modified	2.08	50-500	150	$23 \pm 2^{\circ}C$	6.8	Wang et al.,
	wheat residue	mmol/g	mg/L	min			2007
16.	Ammonium-	46.0	100-700	60	5°C	<8.0	Hamoudi et
	functionnalized	mg/g	mg/L	min			al., 2007
	mesostructured						
	silica	4-			0		
17.	Powder	10	-	60	25°C	<5.0	Khani and
	activated	mmol/g		mın			Mirzaei, 2008
19	Carbon	25		60	25°C	~5.0	Khani and
10.	nanotubes	mmol/g	-	min	250	<i>\</i> J.0	Mirzaei, 2008

Table 2.4 Important characteristics of different adsorbents examined for nitrate removal from water

·						-	
19.	Untreated	1.7	5-200	120	25°C	5.5	Bhatnagar et
	coconut	mg/g	mg/L	min			al., 2008
	granular		-				
	activated						
	carbon						
20.	ZnCl ₂ treated	10.2	5-200	120	25°C	5.5	Bhatnagar et
	coconut	mg/g	mg/L	min			al., 2008
	granular	00	e				,
	activated						
	carbon						
21.	Calcined	61.7-	12.7-236	1440	25°C	-	Socías-
	hvdrotalcite-	147.0	mg/L	min			Viciana et al
	type	g/kg	6				2008
	compounds	66					
22.	Lavered	20-35	0-1000	240	21°C	~8.5	Hosni and
	double	mg/g	mg/L	min			Srasra, 2008
	hvdroxides	8'8	8,				,
23.	Impregnated	16-17	10-50	120	20°C	6.2	Rezaee et al.,
	almond shell	mg/g	mg/L	min			2008
	activated	00	C				
	carbon						
24.	Chitosan	92.1	1-1000	1440	30°C	5.0	Chatterjee
	hydrobeads	mg/g	mg/L	min			and Woo,
	, ,	00	e				2009
25.	Chitosan beads	90.7	25-1000	24 ×60	30°C	5.0	Chatterjee et
		mg/g	mg/L	min			al., 2009
26.	Conditioned	104.0	25-1000	1440	30°C	5.0	Chatterjee et
	cross-linked	mg/g	mg/L	min			al., 2009
	chitosan beads		-				
27.	Wheat straw	1.10	0-25	10	15°C	-	Mishra and
	charcoal	mg/g	mg/L	min			Patel,
			-				2009
28.	Mustard straw	1.30	0-25	10	15°C	-	Mishra and
	charcoal	mg/g	mg/L	min			Patel,
							2009
29.	Commercial	1.22	0-25	10	15°C	-	Mishra and
	activated	mg/g	mg/L	min			Patel,
	carbon						2009
30.	Halloysite	0.54	100	1020	25°C	5.4	Xi et al., 2010
		mg/g	mg/L	min			
31.	HDTMA	12.83 -	100	1020	25°C	5.4	Xi et al., 2010
	modified QLD	14.76	mg/L	min			
	bentonite	mg/g					
					0		
32.	Chitosan	0.6-0.74	10-3100	4320	4 [°] C and	-	Arora et al.,
	coated zeolite	mmol/g	mg/L	min	20°C		2010
		<i>(</i> 2)		0.110	a =°~~	6.0	
33.	Zr(IV)-loaded	63	-	2440	15 C	6.0	Hassan et al.,
2.1	sugar beet pulp	mg/g	10.000	mın	05 45° 0	6.50	2010
34.	Chemically	9.14 to	10-200	-	25-45 C	6.58	Demiral and
	modified sugar	27.55	mg/L				Gunduzoğlu,
	beet bagasse	mg/g					2010

(Source: Bhatnagar and Sillanpa, 2011)

Subsequently, Ensie and Samad (2014) synthesized the SiO₂–FeOOH–Fe core shell and investigated its use in removing nitrates from water. At an initial concentration of 64 mg/L, a maximum nitrate removal of 99.84% was found at an optimal pH of 3 and a contact time of 2 h. The percentage removal depends heavily on the pH. As the initial nitrate concentration increases, the percentage removal increases. The sonication prevents the agglomeration of the nanostructure and leads to a more even distribution of the same, which ultimately leads to an increase in the percentage removal.

Jain et al. (2015) reported the impregnation of Mg, Fe, Co, Ni, Zn and Cu on aluminum oxide to improve nitrate sorption from aqueous solution. It was observed that the nitrate adsorption capacity was increased 13-fold using nickel-modified alumina compared to unmodified alumina, and the preference series of metals for impregnation on alumina was found to be Ni²⁺> Co²⁺> Zn²⁺> Mg²⁺> Cu²⁺> Fe³⁺. Adsorption experiments were carried out with an optimal dose of 2 g/L at 100 mg/L initial nitrate concentration for 6 h contact time. The Freundlich isotherm explained the adsorption process better than the Langmuir isotherm.

Chen et al. (2015) used bifunctional mesoporous silica to remove nitrate ions along with Pb. Maximum adsorption capacities of 712 μ mol/g and 1120 μ mol/g were found for Pb (II) and NO₃⁻ removal at pH 5.0.

Singh et al. (2015) carried out a series of experiments for removal of nitrates from aqueous solutions using hydrous bismuth oxides (HBO₃). HBO₃ shows a maximum nitrate sorption potential of $0.22 \text{ mg N}^{-1}/\text{g}$ with an initial nitrate concentration of 14 mg N⁻¹/L. The absence of hydroxyl ions as exchange anion for nitrate removed was indicated by the near neutral pH of the treated water. However, film diffusion and pore diffusion were found to play important roles in the sorption process. Furthermore, closer agreement with Boyd model confirmed that the rate-limiting process for the adsorption of nitrate ions on HBO₃ was by the external mass transfer.

Mehrabi et al. (2015) reported on the use of activated carbon and Fe_2O_3 nanoparticle composites to remove nitrate from water. The maximum removal of 91.3% was achieved with an adsorbent dose of 10.7 g/L in the pH range of 3-8. Based on the mean free adsorption energy E (kJ mol/L), the sorption process was found to be by physical adsorption.

Mahdavi et al. (2018) reported on humic acid-functionalized MgO, CeO₂ and ZnO nanoparticles (NPs) for removing nitrate from drinking water. The influence of various parameters such as pH (3– 8), temperature (15- 40°C), contact time (10- 1440 min) and liquid/solid weight ratio (L/S 525 mL/0.025 g) and initial nitrate concentration (22-220 mg/L) were studied. Metal oxide increased the removal efficiency of the adsorbent. The adsorption kinetics and isotherm data were found to correspond to the pseudo-second order and Freundlich models, suggesting the multilayer chemisorption of nitrate ions. The maximum adsorption capacities of nitrate (N-NO₃⁻), calculated by endpoints of isotherm experiments were 86.4 mg/g for MgO, 57.6 mg/g for ZnO and 58.6 mg/g for CeO₂ respectively.

Ao et al. (2018) reported the use of Fe° / surfactant-modified activated carbon (AC) to remove nitrate from water. The adverse effect of increasing the pH on nitrate removal could be observed. At neutral pH a removal efficiency of 72.0% was reported

while at basic pH the nitrate removal decreased to about 58%. Kinetic studies showed faster removal under acidic pH conditions.

Ranjan et al. (2019) developed the hydrous bismuth oxide (HBO₂) supplemented with metals (Fe, Mg, Ca, Cu) for nitrate sorption from aqueous solution. Fe and Cu showed a good improvement in the nitrate sorption potentials compared to Mg and Ca. The nitrate uptake increased from 8.36 to 10.82 and 10.54 mg/g when iron or copper was added to the matrix of HBO₂ in comparison to unmodified HBO₂.

Fe-Mg-Mn-LDH was developed by coprecipitation methods and its adsorption properties for nitrate was investigated by Zhou et al. (2020) at an adsorbent dose of 5 g/L in real water. The main adsorption mechanisms of nitrate removal from aqueous solutions by Fe-Mg-Mn-LDH was found to be electrostatic attraction and ion exchange.

2.3 Technologies for fluoride removal from water

The traditional method of removing fluoride from drinking water uses lime. The precipitation and coagulation processes with iron (III), activated aluminum oxide, alum sludge and calcium have been extensively investigated. In developing countries like India, Kenya, Senegal and Tanzania, defluoridation of water has been done using the most popular technique called the Nalgonda technique. The process involves adding prescribed amounts of alum, lime, and bleach powder to the raw water, followed by rapid mixing, flocculation, sedimentation, filtration, and disinfection. After adding alum and lime to the raw water, insoluble flocs of aluminum hydroxide are formed, which settle on the bottom and co-precipitate fluoride. Bleaching powder ensures disinfection during the process of the Nalgonda technique. The entire process of the

Nalgonda technique for defluoridation has typically been used in a filling and drawing unit that is completed within 2-3 h. A series of batch operations in a 7-day cycle produces water sufficient for a small community (approx. 6200 people). However, treated water contains residual aluminum (ranging from 2 to 7 mg/L) which is higher than the established WHO standard of 0.2 mg/L (Bhatnagar et al., 2011). Ion exchange, reverse osmosis, and electrodialysis have also been suggested to remove excess fluoride from drinking water. Membrane processes have the disadvantage that they are relatively expensive to install and operate and are very susceptible to fouling, deposits or membrane degradation. In addition, the electrochemical techniques are expensive to install and maintain.

Ion exchange is one of the preferred methods of fluoride removal from water. Basic anion exchange resins containing quaternary ammonium functional groups are the most common exchangers for fluoride removal from water supplies. The chloride ion of the resin is replaced by the fluoride ion of the solution. The process continues until all active sites on the resin are occupied. The resin is regenerated using the supersaturated water with dissolved sodium chloride salt. Greater electronegativity of the fluoride ions is the driving force behind the replacement of chloride ions from the resin.

Adsorption is another commonly used method of removing fluoride from water. Various adsorbents were tried to find an efficient and economical defluorination system. Activated alumina is one of the most widely used adsorbents for fluoride removal from aqueous solutions. Hardness and surface loading (the ratio of the total fluoride concentration to the dose of activated alumina) are the two critical parameters that affect the efficiency of fluoride removal by activated alumina. The adsorption process is completely pH-specific and delivers the best result in the pH range from 5.0 to 6.0. At pH> 7 silicate and hydroxide become stronger competitors of the fluoride ions for exchange sites and at pH <5 activated aluminum oxide becomes dissolved in an acidic environment, which leads to the loss of adsorbing media. Sarita Sansthan, Udaypur, Rajasthan used filters based on activated aluminum oxide with the support of UNICEF. It consisted of a bucket (approx. 20 L capacity) equipped with a microfilter that contained 5 kg of activated aluminum oxide at the bottom. This gives the best results of defluoridation (Meenakshi and Maheshwari, 2006).

Chubar et al. (2005) reported on the production of a new type of ion exchanger using iron (III) and aluminum double hydrous oxide ($Fe_2O_3 \cdot Al_2O_3 \cdot xH_2O$). It was used for the simultaneous adsorption of F⁻, Cl⁻, Br⁻, and BrO₃⁻ from solutions. The process was found following a pseudo second order kinetics for fluoride and bromide sorption.

Maliyekkal et al. (2008) reported on magnesia amended activated alumina (MAAA) as a sorbent for the removal of fluoride from drinking water. MAAA was made by calcining alumina impregnated with magnesium hydroxide at 450°C. The amended sorbent produced showed a higher fluoride sorption potential from water than activated alumina. The influence of contact time, pH value, initial fluoride concentration and adsorbent dose was investigated in batch sorption experiments. To characterize the physicochemical properties of MAAA, X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray (EDAX) and gas adsorption porosimetry analyses were carried out. With an initial fluoride concentration of 10 mg/L, a removal efficiency of more than 95% was achieved within 3 h of contact

time at neutral pH. It has been found that the sorption of fluoride on MAAA is pH dependent and decreases at higher pH values. The kinetic data followed a pseudo second order model. A maximum sorption capacity of 10.12 mg/g fluoride was observed. Bicarbonate and sulfate in higher concentrations have been found to be a hindrance to fluoride sorption.

Biswas et al. (2009) synthesized ferric tin (IV) mixed oxide (HITMO) and used it to remove fluoride from water. The effects of pH, contact time and equilibrium parameters were studied with HITMO. The material was characterized by FTIR, XRD and SEM analyses. The morphology indicated a hydrated, amorphous and irregular surface of the mixed oxide. The kinetic data indicated a pseudo-second order reaction and the overall rate was found to be multistage one.

Sujana et al. (2009) performed a series of experiments to evaluate the effectiveness of amorphous mixed iron and aluminum hydroxides in removing fluoride from aqueous solutions. The adsorbent was produced by co-precipitating Fe and Al mixed salt solutions at pH 7.5 at room temperature. A wide range of Fe:Al molar ratios (1:0, 3:1, 2:1, 1:1, and 0:1) of the oxides were tested and the samples were characterized by XRD, BET surface area and pH_{PZC} . The amorphous nature of the adsorbent was indicated in the XRD result. pH, temperature, and initial fluoride concentration are the most influential parameters that affect fluoride removal in batch adsorption studies.

Sujana and Anand (2010) investigated fluoride removal using mixed hydroxides based on iron and aluminum in various molar concentrations. The maximum adsorption capacity for fluoride was given for Fe/Al with a molar ratio of 1:1. The adsorbent was characterized before and after fluoride adsorption by XRD, TGA, SEM, EDX, TEM and FTIR analyses to understand the adsorption mechanism.

Ngameni et al. (2010) reported the use of charcoal impregnated with calcium compounds to remove fluoride. The materials were developed by impregnating wood with calcium chloride, followed by carbonization at 500°C, 650°C or 900°C. The charcoals were characterized by SEM, EDX, XRD and chemical titrations. The adsorbents were porous with a wood microstructure. XRD showed the presence of crystallized CaCO₃ and CaO. The pH of point of zero charge (pH_{PZC}) for charcoal was found to be in the range of 7.4 to 7.7.

Bhatnagar et al. (2011) has presented a summary of the properties of various adsorbents for fluoride removal from aqueous solutions (Table 2.5)

 Table 2.5: Important characteristics of different adsorbents examined for fluoride

 removal from water

S.N.	Adsorbent	Adsorbate	Concentration range	Contact	Temperature	pH	Reference
1.	Alum sludge	5.394 mg/g	5-35 mg/L	240 min	32°C	6.0	Sujana et al., 1998
2.	Acid treated spent bleaching earth	7.752 mg/g	5-45 mg/dm ³	30 min	-	3.5	Mahramanlioglu et al., 2002
3.	Activated alumina (γ- Al ₂ O ₃)	0.86 mmol/g	15-100 mg/L	384- 1440 min	30°C	5.0-6.0	Ku and Chiou, 2002
4.	Hydroxyapatite Fluorspar Activated quartz Calcite Quartz	4.54 mg/g 1.79 mg/g 1.16 mg/g 0.39 mg/g 0.19 mg/g	$\begin{array}{c} 2.50 \times 10^{-5} \\ to \\ 6.34 \times 10^{-2} \\ mg/L \end{array}$	-	-	6.0	Fan et al., 2003
5.	Activated alumina (Grade OA-25)	1450 mg/kg	2.5-14 mg/L	-	-	7.0	Ghorai and Pant, 2004

6	Metallurgical-	12 57	_	_	20°C	50-60	Pietrelli 2005
0.	grade alumina	mg/g	_		20 C	5.0-0.0	1 lettelli, 2005
7.	Alum-	40.68	1-35	90	25°C	6.5	Tripathy et al.,
	impregnated	mg/g	mg/L	min			2006
	activated		_				
	alumina						
8.	Manganese-	2.851	2.5-30	90	$30 \pm 2^{\circ}C$	7.0±0.2	Maliyekkal et
	oxide-coated	mg/g	mg/L	min			al., 2006
	alumina	20.5		1.1.10	••••		
9.	Aluminum	23.7	5.0-30	1440	23 ± 2 C	7.0±0.3	Shimelis et al.,
	hydroxide	mg/g	mg/L	min			2006
	(ITA	α 7.0					
	UHA)	7.0 mo/o					
10	Ouick lime	16.67	10-50	75	$25 + 2^{\circ}C$		Islam and
10.	Quien inne	mg/g	mg/L	min	23 ± 2 C		Patel, 2007
11.	Magnesia-	10.12	5-150	180	$30 \pm 1^{\circ}C$	6.5-7.0	Maliyekkal et
	amended	mg/g	mg/L	min			al., 2008
	activated	00	C				
	alumina						
12.	Schwertmannite	50.2-	10-90	1440	30°C-	3.8	Eskandarpour
		55.3	mg/L	min	22.6°C		et al., 2008
		mg/g	_		0		
13.	La (III)	0.350	2	1200	25°C	5.7-8.0	Puri and
	impregnated on	mM/g	mM/L	mın			Balan1, 2009
14	Alumina	7.00	10.70	120	25°C	52	Tang at al
14.	Hydrous-	7.09 mg/g	10-70 mg/I	120 min	25 C	$5.2 \pm$	2000
	Oxide coated	mg/g	iiig/L	111111		0.05	2009
	alumina						
15.	Lime stone (LS)	43.10	100	300	25°C	8.0	Jain and
	and	mg/g	mg/L	min			Jayaram, 2009
	Aluminum		_				-
	hydroxide	and					
	impregnated						
	lime stone	84.03					
16	(AILS)	mg/g	10	1.1.10			D 1 1
16.	Copper oxide	1.770 mala	10 m = /T	1440	30 ± 1 C	-	Bansiwal et al.,
	(COCA)	ing/g	mg/L	min			2010
17	Calcium ovide	101.01	1_1000	2880	25°C	5.5	Camacho et
1/.	modified	mg/g	mg/L	min	250	5.5	al., 2010
	activated		<u>8</u> , 22				, 2010
	alumina						
	and	and					
	Manganese						
	oxide modified	10.18					
	activated	mg/g					
	alumina						
18.	Alkoxide origin	2.0	0-25	1440	30 ± 2 °C	7.0	Kamble et al.,
10	alumina	mg/g	mg/L	m1n	or tro	7.0	2010
19.	Basic oxygen	4.58-	1-50 m=/T	35	25-45 C	7.0	Islam and
	furnace stag	0.07 mg/g	ing/L	mm			Pater, 2011
(5	noo. Dhatmana-		 1)	1		1	
(30U	rce: bhathagar	et al., 201	1)				

Page | 49

Subsequently, Koilraj et al. (2013) used Zn-Cr-layered double hydroxides to remove fluoride from water. A maximum absorption capacity of 31 mg F⁻/g was found in the batch experiment. Ion exchange has been inferred as the mechanism for fluoride uptake over a wide pH range (3-10) due to the buffering nature of LDH. Another modification of LDH with polysulfone resulted in high fluoride removal efficiency.

Tomar et al. (2013) performed a series of experiments to determine fluoride removal by Zr-Mn composite material. About 90% of the fluoride removal was achieved under optimal conditions of 24 g/L at pH 7 within a contact time of 2.41 min. The hydroxyl group of the adsorbent was a causative agent for the ion exchange of fluoride from the aqueous environment.

Chai et al. (2013) developed the sulfate-doped Fe_3O_4 / Al_2O_3 nanoparticles for fluoride removal from drinking water. Approximately 90% of the fluoride removal was recorded within 0.33 h of the reaction. The maximum Langmuir adsorption capacity was found to be 70.4 mg/g. However, different adsorption capacities were found at different initial concentrations. The observed displacement of sulfate by fluoride and the reduced sulfur content on the adsorbent surface indicated an anion exchange process as the dominant mechanism for fluoride adsorption by the sulfate-doped Fe_3O_4/Al_2O_3 nanoparticles.

Srivastav et al. (2013) investigated and found hydrous bismuth oxide (HBO₁) as a new material for defluorination from aqueous solution. The highest fluoride removal efficiency of 65% was observed with hydrous bismuth oxide (HBO₁) at an adsorbent dose of 50 g/L. The reaction was carried out for 3 h of contact time with

continuous stirring at ambient temperature $(25\pm2^{\circ}C)$. The pH of the treated water is observed in the range of 7.1-8.3, indicating that there is no hydroxyl ion involved in the adsorption to replace fluoride. The pseudo-second order kinetics and Langmuir isotherm appear to be a closer match than others, but the DR isotherm indicates the phenomenon of physical adsorption responsible for fluoride sorption.

He and Paul Chen (2014) used zirconium-based nanoparticles to treat excess fluoride from water. The maximum fluoride removal observed was 97.48 mg/g at pH 4 within 4 h of contact time. The ion exchange between sulfate and fluoride ions was indicated by FTIR and XPS analyses. Intra-particle surface diffusion was found to be the rate controlling step.

Dayananda et al. (2014) used CaO loaded mesoporous Al₂O₃ based adsorbents to remove fluoride from water. At a moderate adsorbent dose of 3 g/L, a removal of about 90% was achieved within 0.25 h, the maximum fluoride adsorption capacity being 136.99 mg/g. The kinetics of fluoride removal showed pseudo-second order and the adsorption followed the Langmuir isotherm. Chemisorption appeared to be the mechanism of fluoride adsorption.

Zhang et al. (2014) produced a mixture of La(III)-Al(III) loaded slag for fluoride removal from groundwater. The large amount of La-Al-O composite oxide existed on the surface of La-Al-Scoria, which is supposed to give excellent adsorption capacity for fluoride ions. The interaction between fluoride ions and the La-Al-O composite was explained by electrostatic attraction. Habuda-Staniet al. (2014) published an excellent review on fluoride adsorption from aqueous solution. The results showed that metal oxides/hydroxides and their binary or trimetallic combination reflect the higher adsorption capacities for fluoride ions. Most frequently, however, oxides and hydroxides of titanium, iron and aluminum were tested and showed the highest adsorption capacities over the wide pH range.

Tomar et al. (2015) synthesized hydroxyapatite modified activated alumina (HMAA) for the removal of fluoride from contaminated drinking water. The hybrid adsorbent has a maximum adsorption capacity of 14.4 mg F⁻/g, which is at least five times that of virgin activated alumina, which has been used extensively for fluoride removal.

Kameda et al. (2015 a) used the Mg-Al-layered double hydroxides intercalated with NO₃⁻ (NO₃•Mg–Al LDH) and Cl⁻ (Cl•Mg–Al LDH) to adsorb fluoride from aqueous solutions. Fluoride is removed from the solution by anion exchange, with NO₃⁻ and Cl⁻ being embedded in the LDH interlayer. The adsorption follows pseudo-second order reaction kinetics and the process follows Langmuir isotherm involving anion exchange. The maximum adsorption of 3.3 mmol/g on NO₃•Mg–Al LDH and 3.2 mmol/g on Cl•Mg–Al LDH were observed with equilibrium adsorption constant being 2.8 and 1.5 respectively.

Jin et al. (2015) found excellent fluoride removal using MgO microspheres. The maximum adsorption capacity was over 115.5 mg/g at pH 7, which followed the Freundlich isotherm model. The removal mechanism indicated was exchange of surface

carbonates from MgO adsorbed CO₂ molecules by fluoride. A novel hydroxyl and carbonate co-exchange mechanism was proposed for the first time.

Srivastav et al. (2015) reported about a new adsorbent, hydrous bismuth oxide (HBO₂) with fluoride sorption capacity. With an initial fluoride concentration of 10 mg/L and an adsorbent dosage of 100 g/L, the maximum fluoride removal efficiency was 51%. No involvement of hydroxyl ions was found as the pH of the treated water was measured around 7.3. The calculation of the mean adsorption energy (E) indicated physical adsorption as the predominant mechanism for fluoride removal.

Kameda et al. (2015 b) reported removal of fluoride using Mg-Al-layered double hydroxides intercalated with CO_3^{2-} ($CO_3 \cdot Mg$ -Al LDH). The values of the maximum adsorption and the equilibrium adsorption constant were 3.0 mmol/g and 1.1 x 10³, respectively, for Mg-Al oxide according to Langmuir's isotherm. The Fluoride in the F•Mg-Al LDH result of anionic exchanged in between F⁻ and CO_3^{2-} in solution. The adsorbent has been reported to have excellent removal efficiency after regeneration also. Therefore, Mg-Al oxide can be reused for fluoride removal.

Parashar et al. (2016) synthesized nanocomposites from polypyrrole/ hydrous tin oxide to remove fluoride from water. The monolayer adsorption capacity of 26.16-28.99 mg/g at pH 6.5 ± 0.1 was reported. A combination of ion exchange and adsorption has been reported as the mechanism of fluoride removal. The ion exchange between loosely bound chloride or hydroxyl ion of the adsorbent and negatively charged fluoride ions at pH> pHpzc has been considered as the dominant mechanism for fluoride sorption. Chinnakoti et al. (2016) reported the use of trititanate nanotubes (TNT) to remove fluoride from water. The maximum fluoride adsorption capacity of 58 mg/g of the adsorbent was estimated, which is far better than that of the other reported nanomaterials. Hydrolysis leads to the formation of hydroxyl groups, which provide the active centers for fluoride sorption.

Cho et al. (2016) carried out sorption experiments of fluoride and lead on hydrous chitosan beads impregnated with zirconium oxide. A binary sorbate system was achieved that could be associated with an increased positive surface charge, which favors F^- adsorption compared to a single sorbate system. A pseudo-second order kinetics was observed. The Langmuir isotherm model showed maximum sorption capacities of 22.1 and 222.2 mg/g for fluoride and lead respectively.

Jin et al. (2016) used the MgO nanoplates to remove fluoride. The adsorption kinetics suggested a pseudo second order model. The adsorption process showed a Freundlich isotherm with an adsorption capacity of over 185.5 mg/g at pH 7. The exchange of hydroxyl and carbonates were reported to be the mechanism for fluoride removal.

Mudzielwana et al. (2017) carried out the defluorination with MnO_2 -coated sodium bentonite for groundwater. More than 90% of fluoride removal was achieved by the Na-activated bentonite-clay ligand exchange at pH 4 with an initial F⁻ concentration of 5 mg/L and an optimal dosage of 1.5 mg/L.

Mukhopadhyay et al. (2017) synthesized cerium(IV) incorporated hydrous Fe (III) oxide (CIHFO) for fluoride removal from water. It was found that the fluoride adsorption via CIHFO is an ion exchange process with hydroxyl ions following Freundlich isotherm. At an initial concentration of 15.0 mg/L, a fluoride adsorption capacity of 24.8 ± 0.5 mg/g at pH 5.0-7.0 was observed. The adsorbent was found to be effective in solutions with high concentrations of fluoride.

Tang et al. (2018) examined the hydroxyapatite decorated with carbon nanotube composite (CNT-HAP) for fluoride removal. Batch adsorption experiments were carried out to examine the defluorination capacity of CNT-HAP and found a maximum adsorption capacity of 11.05 mg/g for fluoride, and adsorption data fitted with Freundlich isotherm. In addition, the adsorption of fluoride follows a pseudo-second order kinetics. The adsorption capacity is strongly influenced by the pH and coexisting anions. The results of the characterization showed that the adsorption mechanism follows an anion exchange process.

Kameda et al. (2018) found magnesium oxide to be an effective adsorbent for fluoride due to the electrostatic attraction between the positively charged MgO and F^- . The calculated activation energy value indicated chemical adsorption and a maximum Langmuir adsorption capacity of 5.6 mmol/g was estimated.

Prathna et al. (2018) evaluated the iron oxide/aluminum oxide based nano adsorbents for the simultaneous removal of arsenic and fluoride from aqueous solutions. The nanocomposites followed the Langmuir isotherm and fit well with the pseudo-second order reaction kinetics for both arsenic and fluoride. The maximum sorption capacity of the nanocomposites for As(III), As(V) and F⁻ at pH 7 was 1136 μ g/g, 2513 μ g/g and 4 mg/g, respectively. The presence of F⁻ in the model water had a synergistic effect on the removal of As(III) and As(V), while the presence of arsenic had no significant effect on the removal of F^- at pH 7.

He et al. (2019) prepared mesoporous aluminum oxide modified with lanthanum and cerium for the fluoride removal from aqueous solutions and the characterization of the adsorbents was done by XRD, BET, XRF, FTIR, TEM, XPS and pH_{PZC}. The optimized conditions showed the maximum adsorption capacity of 26.45 mg/g with a dosage of 2.0 g/L and an almost neutral state (pH = 6.0 ± 0.1). The interaction between metal and fluoride appeared leading to adsorption and presence of SO₄^{2–} and CO₃^{2–} present in the water was detrimental to the process.

Mondal and Purkait (2019) developed iron-aluminum nanocomposite and confirmed its efficiency in fluoride removal. The fluoride adsorption followed a pseudo-second order kinetic model, while the process was diffusion-controlled in several stages with the Langmuir isotherm being pursued. A maximum adsorption capacity of 42.95 mg/g was achieved with an adsorbent dosage of 0.25 g/L. Ion exchange could be the caustic mechanism for fluoride removal from solution.

Ogata et al. (2020) successfully synthesized magnesium and iron complex hydroxides (Mg-Fe-CH3.0 and Mg-Fe-CH5.0) and examined their ability to adsorb fluoride ions. Studies have shown that the adsorption mechanism is related to the ion exchange between fluoride ions and chloride ions in the interlayer space of the adsorbent. The author claims that the adsorbent has a high potential for adsorbing fluoride ions from the aqueous phase.

2.4 Technologies for arsenic removal from water

In order to help the social impact of arsenic challenges among the affected people, it is important to develop technologies to remove arsenic from drinking water. With adsorption considered to be the most common method of removing arsenic from water, various adsorbents have been developed (Mohan and Pittman, 2008). Activated carbon appears to be the most common adsorbent for arsenic adsorption (Gu et al., 2005; Chuang et al., 2005). Other adsorbents, such as activated alumina, ion exchange resins, sand, silica, clays, iron, iron compounds, and organic polymers (Mohan and Pittman, 2007) are as effective as activated carbon in removing arsenic. Activated aluminum oxide (Lin and Wu, 2001; Singh and Pant, 2004), sand coated with iron oxide (Thirunavukkarasu et al., 2002; Mohan and Pittman, 2007), granular iron hydroxide (Badruzzaman et al., 2004; Banerjee et al., 2008), modified activated aluminum oxide (Sarkar et al., 2008), hydrous iron oxide (Habuda-Stani et al., 2008), manganese oxidecoated aluminum oxide (Maliyekkal et al., 2009), activated carbon (Asadullah et al., 2014) zirconium oxide (Kwon et al., 2016), Mg / Al LDH (Rahman et al., 2016), zerovalent iron (Banerji and Chaudhari, 2017), iron-based granules (Hu et al., 2019), modified Fe₃O₄ nanocomposite (Dutta et al., 2020) and the application of nanomaterial oxides including iron, copper (Martinson and Reddy, 2009), silver, aluminum (Patra et al., 2012), titanium (Habuda-Stanic and Nujic., 2015), as adsorbents have been reported to show great promise (Lata and Samadder, 2016).

Based on the thematic reviews by McNeill and Edwards (1995) and Petrusevski et al. (2007), Feenstra et al. (2007) from the International Groundwater Resources Assessment Center, Netherlands, published "Arsenic in Groundwater: Review and Evaluation of Removal Methods". Here, the arsenic removal methods were grouped as: (A) Common Methods and (B) Emerging Methods.

- (A) Common methods are based on any of the four processes:
 - (i) Precipitation processes, including coagulation/filtration, direct filtration, coagulation assisted microfiltration, enhanced coagulation, lime softening, and enhanced lime softening,
 - (ii) Adsorptive processes, including adsorption onto activated alumina, activated carbon and iron/manganese oxide based or coated filter media,
 - (iii) Ion exchange processes, specifically anion exchange, and
 - (iv) Membrane processes, including nano-filtration, reverse osmosis and electrodialysis.
- (B) Emerging methods includes:
 - (i) Fe-Mn-Oxidation
 - (ii) Green sand filtration
 - (iii) Coagulation assisted microfiltration
 - (iv) In situ (sub-surface) arsenic immobilization
 - (v) Enhanced coagulation (aka electro coagulation, electro flotation)
 - (vi) Biological arsenic removal
 - (vii) Phytoremediation

(viii) Electrokinetic treatment

(viii) Iron oxide coated sand (IOCS)

Additionally, there are (i) Memstill, (ii) Water Pyramid, and (iii) Solar Dew Collector.

A comprehensive list of adsorbents used in arsenic removal is given in Table 2.6.

Table 2.6: Important characteristics of different adsorbents examined for arseni	C
removal from water	

S.N.	Adsorbent	Adsorbate	Concentration	Contact	Temperature	pН	References
		adsorbed	range	Time			
1.	Iron(III)-	0.84 mmole/g	7.8-78 mg/L	300	25°C	8-10	Matsunaga et
	loaded	As(III)	As(III)	min			al., 1996
	chelating resin	0.74 mmole/g	0.79-7.9 mg/L				
		As(V)	As(V)	2.10		2-4	
2.	Fe(III)/Cr(III)	11.02 mg/g	10 mg/L	240	32°C	3-10	Namasıvayam
	hydroxide	As(V)	As(V)	min			and
							1998
3	Hydrous	-		_	25°C	4-6	Suzuki et al.
51	zirconium	As(III)/As(V)			25 0		2001
	oxide						
4.	Ferriginous	72.58 % As(III)	0.12 mg/LAs(III)	30	25°C	2-8	Chakravarty et
	manganese ore	72.16 % As(V)	0.19 mg/L As(V)	min			al., 2002
5.	Manganese	53 mg/g	10-100 µg/L	120	<40°C	-	Lenoble et al.,
	dioxide	As(III)/	As(III)/ As(V)	min			2004
		22 mg/g					
		As(V)			a =0 ==		
6.	Activated	96.2 %	1 mg/L	360	25°C	7.6	Singh and Pant,
	alumina	0.180 mg/g	As(III)	min			2004
7	E ₂ (III) S;	$\frac{\text{As(III)}}{11.2.14.0 \text{ mg/g}}$	0.4.20	24×60	20.21°C	2.0	Zang I 2004
7.	Binary Oxide	$\Delta_{s}(III)$	0.4-20 mg/I	24×00	20-21 C	3-9	Zelig L, 2004
	Dinary Oxide	21.1-21.5 mg/g	iiig/L				
		As(V)					
8.	Titanium	32.4 mg/g	0.4 - 80	120-300	25°C	8.5	Bang et al.,
	dioxide	As(III)	mg/L	min			2005
		41.4 mg/g	Ũ				
		As(V)					
9.	Iron oxide-	0.2 mg/L	0.5-2 μg/L	30-480	50°C	4-	Vaishya and
	coated sand	As(V)	As(V)	min		10.2	Gupta, 2005
10.	Fe-Mn mineral	8.5 mg/g	100 µg/L	24×60	25±0.5°C	3-7	Deschamps et
	material	As(III)	-	min			al., 2005
		14.7 mg/g	100 mg/L				
		As(V)					
11.	Iron hydroxide	102 µmol/g	0.1-0.4 mmol/L	48×60	20°C	6.1±	Hlavay and
	coated alumina	As(III)	As(III)/As(V)	min		0.3	Polyak, 2005
		489 µmol/g					
		As(V)					
12.	Iron oxide-	As(III)	0.7-13.5 mg/L	120 min	15-35°C	7	Kundu and
	coated cement	As(V)	As(III)				Gupta, 2006
			0.5-10 mg/L				
			As(V)				

Literature Review

13.	Hydrous	43.86 mg/g	5-20	120	30°C	3-9	Ghosh et al.,
	Iron(III)-	As(III)	mg/L	min			2006
	Mixed Oxide	27.55 mg/g As(V)					
14.	Hvdrous	15.85 mg/g	5-10	180-240	27°C	6.5-	Manna and
	stannic oxide	As(III)	mg/L	min		8.5	Ghosh, 2007
		4.3 mg/g	0				
		As(V)					
15.	Hydrous ferric	85.3%	120	240	40°C	2-12	Jang and
	oxide	As(III)	μg/L	min			Dempsey, 2008
		< 100%					
		As(V)					
16.	Cupric oxide	26.9 mg/g	0.1-100	30	21-25°C	6-10	Martinson and
		As(III)	mg/L	min			Ready, 2009
		$\frac{22.0 \text{ mg/g}}{\text{As}(V)}$					
17.	Iron(III)-	85 mg/g	5-10	210	15-30°C	7.0	Gupta and
	titanium(IV)	As(III)	mg/L	min			Ghosh, 2009
	binary mixed	14.3 mg/g	-				
	oxide	As(V)					
18.	Manganese	42.48 mg/g	2-300	120-180	30°C	4-10	Maliyekkal et
	oxide-coated-	As(III)	mg/L	min			al., 2009
19	Magnetite	485 µg/g	100	60	20-30°C	8	Shipley et al
1).	(Fe_3O_4)	As(V)	μg/L	min	20 50 0	Ŭ	2010
20.	Ce-Ti oxide	6.8 mg/g	20 µg/L	12×60	25°C	4-10	Li et al., 2010
	adsorbent	As(III)	-	min			
		7.5 mg/g	20 mg/L				
21	TT 1	As(V)	1.0	240	20.22°C	1.6	D' 11" / 1
21.	Hydrous	22.0-33.4 mg/g	1.0 mg/I	240 min	20-23 C	4-6	Pirila et al.,
	dioxide	25.8-32.1 mg/g	iiig/L				2011
	uloilluo	As(V)					
22.	Fe (III) -Cr(III)	55 mmole/g	0.10 - 0.13	120	30°C	7	Basu and
	mixed oxide	As(III)	mmol/L	min			Ghosh, 2011
	Ţ	46.1 /	As(III)	26.60	20.25%		D 1 0011
23.	Iron–	46.1 mg/g	5-20 mg/I	36×60	20-25 C	/	Ren et al., 2011
	binary oxide	120.0 mg/g	ing/L	11111			
	onnary onnae	As(V)					
24.	Iron oxide	1.2-20 mg/g	0.3-100	-	25°C	6-9	Luther et al.,
		As(III)	mg/L				2012
		4.6-4.9 mg/g					
25	TT 1	As(V)	0.01.0.02	24.00	250	6.0	1. (1 2012
25.	Hydrous cerium ovide	1/0 mg/g	0.01-0.02 μg/L Δs(III)	24×60	25 C	0.8- 7	Li et al., 2012
	certuin oxide	107 mg/g	$0.01-0.02 \mu g/L$	11111		/	
		As(V)	As(V)			1	
26.	Fe-Mn binary	114 mg/g	5-40	24×60	25°C	7	Zhang et al.,
	Oxide	As(III)	mg/L	min			2012
		60 mg/g				1	
		As(V)	0.00.01.00				
27.	Granular TiO ₂	145-160 mg/g	0.39-2460	30	-	5-7	Yan et al., 2015
28	Fe_Ni binary	AS(III)	10 10	min	25°C	7 +	Liu et al 2015
20.	oxide	As(III)	mg/L	-	25 C	0.1	Liu ci al., 2015
	Sinde	90.1 mg/g				5.1	
		As(V)				1	

Other than adsorption, Kumar and Goel (2010) reported the use of electrocoagulation to remove arsenic (and nitrate) from drinking water. The pollutant removal efficiency was determined by voltages in the range of 10-25 volts. The maximum removal efficiency was 84% for nitrate at 25 V and 75% for As(V) at 20 V.

Srivastava and Vaishya (2013) reported As(III) removal by dynamically modified iron-coated sand (DMICS). Coated sand particles easily adsorbed the arsenic and chemisorption was responsible for the sorption mechanism. The maximum Langmuir adsorption capacity of DMICS was calculated to be 0.29 mg/g. The sorption process was pH-dependent and the maximum arsenic removal took place in the pH range of 6-8.

Chen et al. (2013) performed a series of experiments to determine arsenic adsorption through Ce-Fe oxide coated multi-walled carbon nanotubes (CF-CNTs). Excellent arsenic adsorption were reported, and it was said that electrostatic attraction and surface complexation were the major mechanisms of As(III) and As(V) removal from water.

Zhang et al. (2013) used Fe (III) -Cu (II) binary oxide to remove arsenic from water. The maximum adsorption capacities of 82.7 and 122.3 mg/g for As(V) and As(III) were given at neutral pH. In addition, carbonate and sulfate do not affect arsenic removal, while phosphate reduces arsenic sorption at higher concentrations. The binary oxide was claimed to have inexpensive synthesis, easy regeneration, and excellent arsenic removing performance.

Han et al. (2013) prepared synthetic pyrite (FeS₂) for the adsorption of As(III) and As(V). The formation of strong inner-sphere complexes is the reason for the binding of arsenic to the pyrite. Therefore, pyrite could be treated as an effective adsorbent / reactant in removing arsenic under stable anoxic conditions.

Ghosh et al. (2014) produced Mn-incorporated Fe(III) oxide (MNFO) nanoparticles for use in removing arsenic as well as iron and phosphate from groundwater. For arsenic, the adsorption capacity per unit volume from column studies was recorded as 3.34 mg/g/cm³. It is said to be a relatively inexpensive adsorbent of a harmless nature.

Habuda-Stanic et al. (2014) showed the possibilities of arsenic removal by preoxidation and its removal from the groundwater using iron coagulants. Arsenic was removed by Fe(III) ions in combination with potassium permanganate, whereas an ironbased coagulant with Fe(II) ions shows higher efficiency when hydrogen peroxide is used as an arsenic pre-oxidizer.

Habuda Stanic and Nujic (2015) reviewed this Application of nanoparticles and reported on various forms of TiO₂ or TiO₂-based materials for arsenic removal. It was found that an increase in the TiO₂ content increases the As(V) removal and the highest arsenic adsorption capacity is achieved by Fe₃O₄ magnetite nanoparticles at neutral pH (188.69 mg/g for As(III) and 153.8 mg/g for As(V)), while the lowest value for the impregnation of activated carbon granulate with Fe₂O₃ (0.181 mg/g for As(V) at pH 7 and room temperature).

Lata and Samaddar (2016) examined the use of nano adsorbents to remove arsenic from water and discussed various related challenges. Various transition metals such as Cu, Fe and Ti based compounds were investigated as arsenic removing adsorbents and their results were compared with other adsorbents. The author concluded that aluminum oxides and mixed metal oxide nanoparticles may be the best option for removing arsenic from wastewater and drinking water, respectively.

Pérez et al. (2016) investigated cationic polymer and hydrous zirconium oxidebased hybrid for As(III) and As(V) removal from water. With a higher hydrous zirconia content, higher As(III) sorption was reported, whereas a lower hydrous zirconia content showed greater As(V) sorption. The adsorption capacity of the adsorbent for As(III) and As(V) was found to be 18.8 mg/g and 19.1 mg/g, respectively. As(V) has a maximum adsorption in the pH range of 3.9- 4.5 due to the electrostatic interaction between arsenic species and adsorbent, while the maximum binding of As(III) due to the interaction between acid and base in the pH range of 7.5 to 8.0 drops.

Cantu et al. (2016) evaluated synthetic Fe_7S_8 nanoparticles for arsenic adsorption from water. Adsorption capacities of 14.3 mg/g and 31.3 mg/g were given for As(III) and As(V) adsorption. Adsorption was reported to be pH independent with low binding at pH 2 and high binding at pH 3 to about the first 20 minutes of contact time. The binding can take place through a combination of chemisorption and physisorption. Chaudhry et al. (2016) performed a series of experiments using zirconia coated sand (ZrOCS) to remove arsenic from aqueous solution. The maximum adsorption capacity of the Langmuir monolayer was found to be $136.98 \mu g/g$ at 313 K. It was found that temperature and pH did not affect adsorption efficiency. Chemical bonds could have played an important role between As (III) and ZrOCS.

Rahman et al. (2016) developed Mg-Al layered double hydroxide (MgAl LDH), intercalated with NO₃⁻, for As(V) adsorption from aqueous solutions. The adsorption process is well described by the Langmuir isotherm and the pseudo-second order kinetics. 142.86 and 76.92 mg/g are the maximum arsenic adsorption capacities for LDHs synthesized with initial Mg/Al molar ratios of 2 and 4, respectively. The chemisorption nature of adsorption and pseudo-second order kinetics was observed.

Kwon et al. (2016) synthesized composite adsorbent hydrous zirconium oxide on alginate beads (ZOAB) to remove As(III), As(V) and Cu(II) from the aqueous phase. The maximum sorption capacities for As(III), As(V) and Cu(II) were given as 32.3, 28.5 and 69.9 mg/g, respectively. In the presence of 48.6 mg/L Cu(II), the sorption capacity of As(V) increased from 1.5 to 3.8 mg/g after 240 h. The adsorption of As(III), As(V) and Cu(II) followed pseudo-second order kinetics with Freundlich and Langmuir isotherm models.

Prathna et al. (2017) evaluated the iron oxide nanoparticles for removing arsenic and fluoride. An effective fluoride removal efficiency was achieved with iron oxide nanoparticles at the pH values and concentrations investigated. Pseudo-first order reaction agrees with the adsorbent data and Freundlich isotherm model for As(III) and As(V) (R^2 value of 0.93 and 0.98 at pH 7 respectively). The maximum sorption capacity was determined to be 909 and 3333 µg/g for As(III) and As(V) respectively. The results of the study indicated that the synthesized nanoparticles could be promising adsorbents for arsenic removal in small-scale water systems.

Kolomiyets et al. (2017) reported on the removal of As(V) with titanium oxyhydrate in the pH range of 3-10. In the alkaline state, a greater sorption capacity was observed than in the acidic state (pH range of 3-5). It was assumed that the influence of the negative charge the oxide surface increases arsenic adsorption.

Prathna et al. (2018) used iron oxide/alumina oxide nan composites to remove both fluoride and arsenic from aqueous solutions. The maximum sorption capacity was given as 1136 μ g/g, 2513 μ g/g and 4 mg/g for As(III), As(V) and F⁻ at pH 7, respectively. The results of the study indicated that the synthesized nanocomposites could be promising adsorbents for fluoride and arsenic removal in small water systems.

Zhang et al. (2019) developed Fe-Ti-Mn composite oxide (FTMO) for the efficient removal of arsenic from the water environment. The maximum adsorption capacities at 25°C were determined to be 74.4 mg/g for As(V) and 122.3 mg/g of As(III). Phosphates and silicates are the main anionic species that adversely affect arsenic removal efficiency. The author reported easy regeneration of adsorbent. The high adsorption capacities and the superior selectivity make the FTMO a promising candidate for the practical treatment of arsenic-contaminated water.

Kalaruban et al. (2019) used iron incorporated granular activated carbon (GAC-Fe) to remove As(V) from water. The author found a better arsenic removal efficiency of GAC-Fe compared to unmodified GAC. The batch study confirmed that GAC-Fe had a higher Langmuir adsorption capacity at pH 6 (1.43 mg As (V)/g) than GAC (1.01 mg As(V)/g). The presence of heterogeneous adsorption sites was confirmed by adsorption experiments with intra particle diffusion in meso and micropores in GAC. Twice the volume of treated water could be achieved by GAC-Fe compared to unmodified GAC in a column study.

Hu et al. (2019) compared four treatment methods, namely ozonationmanganese-greensand filtration (OSF), OSF-iron-based granulate media adsorption (OSFIA), Burgess Iron Removal Method (BIRM) and BIRM-iron-based granulate media adsorption (BIA). on arsenic and manganese removal in Canada. The authors found that the OSFIA treatment gave the highest removal of arsenic and manganese.

Pantić et al. (2019) used copper-impregnated natural mineral tuff (T-Cu(A-C)) to remove arsenic. The high adsorption rate of pseudo-second order in the range of 0.5090.789 g/mg/min for As(V) and 0.3040.532 g/m/min for As(III) justified further use of T-Cu(A-C) in one Flow system. The fixed bed column adsorption data were fitted with empirical Bohart-Adams, Yoon-Nelson, Thomas, and Dose response models to indicate the capacities and breakthrough time dependence on influent arsenic concentration and flow rate.

Lingamdinne et al. (2019) used Graphene oxide-lanthanum fluoride nanocomposite for the adsorptive removal of arsenic from an aqueous environment. The maximum adsorption capacity was given as 18.52 mg/g (at 298 K) and was dependent on the pH value of the solution, the mass of the adsorbent, the contact time

and the As (V) concentration. The maximum adsorption capacity of 17.0 mg/g was observed. The pseudo second order kinetic model and Langmuir equation fit well with experimental data. The overall results suggest that adsorption occurs through complex formation on the inner surface and / or an ion exchange reaction, in particular above a neutral pH.

Pessoa Lopes et al. (2020) performed a series of experiments to remove As (V) from water using an integrated ion exchange membrane process in conjunction with Fe coprecipitation. The pH of the treated water was maintained within the recommended drinking water range of 6-9 without the need for external pH regulation and / or control.

Prabhakar and Samadder (2020) achieved an excellent result for As(V) removal from aqueous solutions using nano-alumina. The adsorption follows the Freundlich isotherm model. The maximum adsorption capacity of the monolayer was given as 1401.90 μ g/g at an optimal temperature of 298 K. The kinetic data indicated that the film diffusion was the controlling step. Phosphate and sulfate significantly affect removal efficiency, while competing anions such as nitrate, bicarbonate, and chloride did not have a large impact on As(V) removal efficiency.

Dutta et al. (2020) developed Fe_3O_4 based nanocomposite as an effective adsorbent for removing arsenic from water. 98% removal efficiency of As(III) and As(V) correspond to 28.27 and 83.08 mg/g, respectively. As-Fe formation complexes via legend exchange was considered as the mechanism of arsenic removal.

Ranjan et al. (2021) reported removal of arsenic with Hydrous Bismuth Oxide (HBO1). The advantage of the adsorbent included simultaneous removal of arsenic and

fluoride from aqueous solution. Physical adsorption and ion exchange were observed as the mechanism of removal with an arsenic absorption potential of 13.1-19.6 μ g/g at 0.08 mg/L As(V) concentration.

A review of the available literature indicates that the current available methods are often high in cost and the commercial technologies often require large centralized treatment units. In many cases, wells serve small communities which cannot be connected to centralized water treatment units. Therefore, it seems necessary to develop methods which are compact, transportable and easily manageable. Available technical data, experience and economies indicate that adsorption/ion exchange process is most suitable method for groundwater supply for its simplicity, effectiveness and relatively low cost.

2.5 Removal of nitrate, fluoride and arsenic in coexisting conditions

Several hydrous metal oxides (HMOs) have been used for removal of contaminants from drinking water. Obviously, some of the materials have been found useful for removal of more than one contaminant. Table 2.7 summarizes the results of some of such studies.

Table 2.7: Characteristics of adsorbents used for simultaneous removal of more	re
than one contaminant (nitrate, fluoride and arsenic) coexisting in water	

S. No	Adsorbents	Contaminants	Initial conc. (mg/L)	Efficiency/ Sorption Potential	Optimum pH range	Temp (°C)	Time (h)	Reference
1.	Polyacrylonitrile +	F^- , PO_3^{-4} , AsO_3^{-4} (Individual)	10 mg/L F ⁻	90.4% F ⁻	3.5 - 7.0	25	2	Ruixia et al., 2002
	Hydrazinehydrate	``´´´	30 mg/L PO3 ⁻⁴	99% PO3 ⁻⁴	3.0 - 5.5			
			$\frac{38 \text{ mg/L}}{\text{AsO}_3^{-4}}$	97.9% As(V)	3.0			

2	Ce(IV)-doped	$\Delta s(V) + F^{-}$	1.0	0.2	5-6	20	24	Zhang et
2.	inon avida	(Simultaneous)	mg/L	mmole/g	50	20	24	al.,
	Iron oxide	(Simultaneous)	As(V)	As(V)				2003
			+ 1.6	0.9				
			mg/L	mmole/g				
3	Aluminum	$\mathbf{F}^{-} \mathbf{A}_{s}(\mathbf{H})/\mathbf{A}_{s}(\mathbf{V})$	F-	F ⁻	7.1		3	Diñón
5.	sulfate	Γ , $As(III)/As(V)$	5.9- 4.8 mg/L	F ⁻	/.1	-	3	Miramontes
	octadecahydrate	(Individual)	F⁻					et al., 2003
	+		0.134-	99%				
	Polymeric anionic		0.075	As(III)/				
	flocculent		g/L	As(V)				
			As(III)/ As(V)					
4.	Mg ₄ Al ₂ LDH	F^- , As(V), NO ₃ ⁻	10 mg/L	80% F ⁻	7.78-8.5	-	7	Delorme et
		(Individual)	F^{-}					al., 2007
			16 mg/L	100% As(V)			5	
			As(v)					
			100 mg/L	15% NO ₂ -			7	
			NO ₃ ⁻	15/01103			,	
5.	Activated alumina	F^- , As(III)/As(V),	50 μg/L	60-90%	5.5-8.3	-	-	Mahmood
		(Individual)	As(III)	AS(III)				et al., 2007
		(Individual)	50 µg/L	>90%				
			As(V)	As(V)				
			10 mg/L	85-95%				
			F^-	\mathbf{F}^{-}				
			50 mg/L	25-35%				
			NO_3^-	NO ₃ ⁻				
6.	Cement paste	$F^{-}+PO_{3}^{-4}$	18.7 mM	1.67 mea/a	-	-	24	Park et al., 2008
		(Simultaneous)	F^-	F [−]				2008
			+	+				
			19.5 mM	1.96 meg/g				
			PO_3^{-4}	PO_3^{-4}				
			5.06	10.8				
		$NO_3 + SO_4^{2-}$	mM	mg/g				
		(Simultaneous)	NO_3^-	NO_3^-				
			+ 19.5	+ 18.4				
			mM	mg/g				
7	Hydrous ferric	$F^{-} \perp \Delta c(V) + D$	$\frac{SO_4^{2-}}{100}$	SO ₄ ²⁻ 86-98%	1.0	25 ± 1		Streat at al
/.	oxide	$\Gamma + \Delta s(v) + r$ (Simultaneous)	μg/L	60-20%	+-7	25 ± 1	-	2008
		(Sintunaneous)	As(V)	+				
				91-95%				
				As(V)				
				+				
				94-95%				
8.	Fe–Ce oxide	$As(V) + F^{-}$	13.3	1.15	5.0±0.2	20	24	Zhang et
		(Simultaneous)	mol/L	mmol/g				al., 2010
			As(V)	As(V)				
			13.3-					
			1330 mol/I					

Literature Review

rescale CSimultaneous) operation operation <thop and="" and<="" andiftered="" if="" is="" it="" redict="" th=""><th>9.</th><th>Nano-alumina</th><th>$NO_3^- + F^-$</th><th>-</th><th>55% NO₃⁻</th><th>4</th><th>25</th><th>1</th><th>Bhatnagar</th></thop>	9.	Nano-alumina	$NO_3^- + F^-$	-	55% NO ₃ ⁻	4	25	1	Bhatnagar
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	Alumina Calaium	(Simultaneous) $\overline{F} + A_{\alpha}(H)/A_{\alpha}(V)$	2000.07	00.00/2	776	25	12	et al., 2010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.	oxide	F + As(III)/As(V)	200μg/L As(III)	90 μg/g As(III)	/-/.0	25	12	2011
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(Siniunaneous)	+	+				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				5 mg/L F⁻	300 mg/g				
$ \begin{vmatrix} 100 \ grL \\ As(V) + F \\ S \ mgL \\ B \ mgL \\ As(V) + F \\ S \ mgL \\ As(V) + F \\ S \ mgL \\ As(V) + F \\ S \ mgL \\ B \ mgL \\ As(V) + F \\ S \ mgL \\ B \ mgL \\ C \ mgL \\$				1,	1,				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$100 \mu g/L$	$90 \mu g/g$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				As(v) +	+				
11.Mg-Al-CO3As(V) + F' (Simultaneous) (Simultaneous) (Simultaneous) + As(V) + (Simultaneous) + (Simultaneous) + (Simultaneous) + 				5 mg/L	450 mg/g				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.	Mg-Al-CO ₂	$As(V) + F^{-}$	F 20 ця/L	Г 3516.2 ця/я	_	-	5×24	Dadwhal et
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(Simultaneous)	As(V)	As(V)			0.121	al., 2011
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(Sintuitaneous)	+ 1 mg/I					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4 (D) NO -	F,					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$As(V) + NO_3$	$20 \mu g/L$	3479.3 ц <u>р</u> /g				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(Simultaneous)	As(v) +	As(V)				
12.Polyaluminum chlorideAs+ F (Simultaneous) $2 mgLFF+50-55 %FF+6.5-7.6F+Ingallinellaet al., 201113.Iron and aluminumbinary oxideAs(V)+ F(Simultaneous)40 mg/L(Simultaneous)90%+++10 mg/LFF90%FF7.5F25 \pm 144Liu et al.,201214.Titanium andlanthanum oxidesimpregnated ongranular activatedcarbon (TLAC)As(V)+ F(Simultaneous)30 mg/LF30.3 mg/gF4-12F-24Jing et al.,201215.Nickel(NiAHT)F+As(V)(Simultaneous)2 mg/LF0.25 mg/gF7.5 \pm 0.3F-3.33Jiménez-Núň nez etal., 201216.Activated carbon(MgAHT)F', As(III)(Simultaneous)100mg/LF98 % NO3^-99 % F'99 % F'90 % F'7.0 \pm 0.2222.0 \pm2-Abbas etal., 201417.Mg-Al layereddouble hydroxidesAs(V) + F'(Simultaneous)200 g/k F'As(V)NO1^-7.0 \pm 0.2222.0 \pm2-Abbas etal., 201417.Mg-Al layereddouble hydroxidesAs(V) + F'(Simultaneous)200 g/k F'F7.0 \pm 0.1220-2524Huang etal., 201417.Mg-Al layereddouble hydroxidesAs(V) + F'(Simultaneous)200 g/k F'F7.0 \pm 0.1220-2524Huang etal., 201518.Mg-Al layereddouble hydroxidesAs(V) + F'(Simu$				5 mg/L					
Interform <td>12</td> <td>Polyaluminum</td> <td>As+ F</td> <td>$\frac{NO_3}{2 mg/L}$</td> <td>50-55 %</td> <td>6.5-7.6</td> <td>_</td> <td>-</td> <td>Ingallinella</td>	12	Polyaluminum	As+ F	$\frac{NO_3}{2 mg/L}$	50-55 %	6.5-7.6	_	-	Ingallinella
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		chloride	(Simultaneous)	F	F ⁻	0.0 7.0			et al., 2011
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			· · · · · ·	+ 200	+ 75_85 %				
AsAs13.Iron and aluminum binary oxideAs(V) + F" (Simultaneous)40 mg/L As(V) + (Simultaneous)90% As(V) + TO% F"7.5 25 ± 1 4Liu et al., 201214.Titanium and lanthanum oxides impregnated on granular activated carbon (TLAC)As(V) + F" (Simultaneous)30 mg/L As(V) + H0 mg/L30.3 mg/g As(V) + + t0 mg/L $4-12$ S. Stell-24Jing et al., 201215.Nickel (NiAIHT) Magnesium hydrotalcite-like compound (MgAIHT)F"+As(V) (Simultaneous)2 mg/L As(V) + + t0 mg/L $0.25 mg/g$ F" (NiAIHT)7.5±0.3 S. Stell-3.33Jiménez-Nú*nez et al., 201216.Activated alumina (MgAIHT)F", NO ₃ ", As(III) (Individual)100 mg/L F S mg/L98 % NO ₃ " 90 % F" 90 % F" 90 % F"7.0± 0.2 222.0 ± 2-Abbas et al., 201416.Activated carbonF", NO ₃ ", As(III) (Individual)100 mg/L Activated carbon98 % NO ₃ " As(V) + F" S0 µg/L As(V) H Activated carbonAs(V) + F" (Simultaneous)94 % NO ₃ " As(V) + Activated carbon7.0 ± 0.2 As(V) + F" As(V) As(V) H Activated carbonAs(V) + F" (Simultaneous)200 µg/L As(V) + Activated carbonAs(V) + F" Attive for the formed f				μg/L	As				
15.If on and adminimized binary oxideAs(V) + F (Simultaneous)40 mg/L As(V) + H0 mg/L90% As(V) + To% F7.3 2.3 ± 1 4Life et al., 201214.Titanium and lanthanum oxides impregnated on granular activated carbon (TLAC)As(V) + F' (Simultaneous)30 mg/L As(V) + H0 mg/L30.3 mg/g As(V) As(V) + + 27.8 mg/g $4-12$ 24Jing et al., 201215.Nickel hydrotalcite-like compound (NiAHT)F'+As(V) (Simultaneous)2 mg/L As(V) + + 10 mg/L0.25 mg/g F' F'7.5±0.3 F'-3.33 -Jiménez- Nú*nez et al., 201216.Activated alumina (MgAHT)F', NO ₃ ', As(III) (Individual)100 mg/L F' F'98 % NO ₃ ' - 90 % F' 90 % F' 90 % F'7.0± 0.2 2 22.0 ± 2-Abbas et al., 201417.Mg-Al layered double hydroxidesAs(V) + F' (Simultaneous)200 ug/L As(V) + + 10 mg/L125.8 mg/g As(V) + + + 10 mg/L7.0 ± 0.1 20.2 524 24Huang et al., 2014	12	Incoment aluminum	$A_{\alpha}(V) + E^{-}$	As 40 mg/I	000/	75	25 + 1	4	Lin et el
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.	binary oxide	AS(V) + F	40 mg/L As(V)	90% As(V)	7.5	25 ± 1	4	2012
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	(Sintuitaneous)	+	+				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				10 mg/L F ⁻	70% F ⁻				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14.	Titanium and	$As(V)+F^{-}$	30 mg/L	30.3 mg/g	4-12	-	24	Jing et al.,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		impregnated on	(Simultaneous)	As(v) +	AS(V) +				2012
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		granular activated		10 mg/L	27.8 mg/g				
13.Intell $F + AS(V)$ $2 \text{ lng}L$ $0.25 \text{ lng}g$ 7.3 ± 0.3 $ 3.35$ Jintelle2-Nu [*] nez et al., 2012hydrotalcite-like compound (NiAIHT)(Simultaneous) $As(V)$ F^- (NiAIHT) 0.30 mg/g F^- (MgAIHT) $ 3.53$ $Jintelle2-Nu* nez etal., 201216.Activated alumina(MgAIHT)F^-, NO3-, As(III)(Individual)100mg/LF^ 98 \% NO_3^-99 \% F^ 7.5\pm 0.22 2.0 \pm22.0 \pm2-Abbas etal., 201416.Activated carbondouble hydroxidesF^-, NO3-, As(III)(Individual)100mg/LNO_3^ 98 \% NO_3^-99 \% F^-90 \% F^ 7.0\pm 0.2222.0 \pm2-Abbas etal., 201417.Mg-Al layereddouble hydroxidesAs(V) + F^-(Simultaneous)200 \mu g/LAs(V)125.8 \text{ mg/g}As(V)7.0 \pm 0.120-2520-252424Huang etal., 201518.Hadroted GenerationAu E^-F^ F^-F^ F^-F^ 20F^ 20As(V)20As(V)20As(V)20As(V)20As(V)20As(V)20As(V)20As(V)20As(V)20As(V)20As(V)20As(V)20As(V)20As(V)100As(V)100As(V)100As(V)100As(V)100As(V)100As(V)100As(V)100As(V)100As(V)100As(V)$	15	carbon (TLAC)	$\mathbf{E}^{-} + \mathbf{A}_{0}(\mathbf{V})$	F 2 mg/I	F 0.25 mg/g	75:02		2.22	Limánaz
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	15.	hydrotalcite-like	$\Gamma + AS(V)$	As(V)	0.23 mg/g F ⁻	7.5±0.5	-	5.55	Nú~nez et
$\begin{bmatrix} (NIAIH1) \\ Magnesium \\ hydrotalcite-like \\ compound \\ (MgAIHT) \end{bmatrix} \begin{bmatrix} 5 \text{ mg/L} \\ F^- \end{bmatrix} \begin{bmatrix} 0.30 \text{ mg/g} \\ F^- \\ (MgAIHT) \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -100 \\ MgAIHT \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -100 \\ MgAI$		compound	(Siniunaneous)	+	(NiAlHT)				al., 2012
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(NiAIHT)		5 mg/L	0.30 mg/g				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		hydrotalcite-like		F ⁻	г (MgAlHT)				
InterpretationInterpretationInterpretationInterpretationInterpretation16.Activated alumina $F^-, NO_3^-, As(III)$ (Individual)100 mg/L F^- 98 % NO_3^- 99 % F^- 96 % $As(III)$ 7.5 \pm 0.2 222.0 \pm 2-Abbas et al., 2014Activated carbon100 mg/L NO_3^- 94 % NO_3^- 90 % F^- 7.0 \pm 0.2 222.0 \pm 		compound							
Activated carbon(Individual) mg/L F 99% F 96% As(III) 2 $100astical., 2014$ Activated carbon 100 mg/L $NO_3^ 94\%$ NO $_3^-$ 90% F 7.0 ± 0.2 22.0 ± 2 $al., 2014$ 17.Mg-Al layered double hydroxides $As(V) + F^-$ (Simultaneous) $200\mu g/L$ $As(V)+10 mg/L200\mu g/LAs(V)++10 mg/L7.0 \pm 0.222.0 \pm 220-252424al., 201518.Hudrotod Generation100mg/L125.8 mg/gAs(V)+10 mg/L7.0 \pm 0.128.6 mg/gF^ 20-252424al., 2015$	16.	(MgAIHT) Activated alumina	F^{-} , NO ₃ ⁻ , As(III)	100	98 % NO ₃ ⁻	7.5±0.2	22.0 ±	-	Abbas et
$ \begin{vmatrix} F & 96 \% \text{ As}(\text{III}) \\ 100 & \\ mg/L \\ NO_3^- & 94 \% \text{ NO}_3^- \\ 90 \% \text{ F}^- & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 2 & 22.0 \pm \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2$			(Individual)	mg/L	99 % F		2		al., 2014
Activated carbon100 mg/L NO_3^-94 % NO_3^- 90 % F^-7.0 \pm 0.2 				F	96 % As(III)				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Activated carbon		100		7.0+0.2			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				mg/L NO ₂ -	94 % NO3 ⁻	1.0± 0.2	22.0 ±		
$\begin{array}{ c c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$				1103	90 % F ⁻		2		
17.Mg-Al layered double hydroxidesAs(V)+ F^- (Simultaneous)200µg/L As(V) 				50 µg/L As(III)	92 % As(III)				
$\begin{array}{ c c c c c c } \hline double hydroxides & (Simultaneous) & As(V) & As(V) \\ & + & + \\ 10 mg/L & 28.6 mg/g \\ \hline F & F^{-} \end{array} \qquad $	17.	Mg-Al layered	$As(V)+F^{-}$	200µg/L	125.8 mg/g	7.0 + 0.1	20-25	24	Huang et
$10 \text{ mg/L} 28.6 \text{ mg/g}$ $\overline{F} \overline{F} \overline{F}$ $10 \text{ mg/L} 28.6 \text{ mg/g}$ $\overline{F} \overline{F} \overline{F}$		double hydroxides	(Simultaneous)	As(V) +	As(V)				al., 2015
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				10 mg/L	28.6 mg/g				
1.18, Hydrated Cement As+F 10 µg/L 11.92 mg/g As 2-9 25+5 1.25 Bini eral	18	Hydrated Cement	$As+F^-$	F ⁻ 10 µg/L	F ⁻ 1.92 mg/g As	2-9	25 + 3	1.25	Bibi et al.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 0.	-,	(Simultaneous)	As	+				2015
+ 1.72 mg/g F ⁻				+	1.72 mg/g F ⁻				
Bricks Powder $5 \text{ mg/L} = 0.04 \text{ mg/g As}$		Bricks Powder		5 mg/L	0.04 mg/g As				
· · · · · · · · · · · · · · · · · · ·				Г	+				

Page | 70

		1	1			1		1
				0.84 mg/g F ⁻				
	Marble Powder			0.02 / 1				
				0.02 mg/g As				
				$^+$ 0.18 mg/g F ⁻				
19	Hydrous bismuth	$NO_2^- + F^-$	60.2	9.48	7 3-7 9	25	3	Singh et al
17.	oxide	(Simultaneous)	mg/L	mg/g	1.5 1.5	20	5	2015
		(Simulaneous)	NO ₃	NO ₃				
			+	+				
			4	0.54				
			mg/L F ⁻	mg/g F ⁻				
20.	Acid-base treated	As(III)+ F ⁻	500	23.5	5	30	5	Rathore et
	laterite	(Simultaneous)	μg/L	µg/g				al., 2016
			As(III)	As(III)				
			+	+				
			10000	545 ug/g				
			μg/L F	μg/g F				
21.	Nickel/polypyrrole	As(III)+ F^-	100-1500	2.64	5–9	25	3	Srivastava
	(Ni/PPy 1:2)	(Simultaneous)	µg/L	mg/g				et al.,
			As(III)	As(III)				2016
			5-40	67 71				
			mg/L	mg/g				
			Б-	F ⁻				
22.	TiO ₂ -La adsorbent	As(III)+ F ⁻	10 µg/L	114 mg/g	3–9	-	24	Yan et al.,
		(Simultaneous)	As(III)	As(III)				2017
		, , ,	+	+				
			25 mg/L	/8.4 mg/g				
22	Hoir 7a	$A_{\alpha}(\mathbf{V}) + A_{\alpha}(\mathbf{H}) + \mathbf{E}^{-}$	F 200	F		25	24	Dhilling of
25.	naix-Zr	As(v) + As(III) + F	200 11g/I	95.27% As(V)	-	23	24	al
		(Simultaneous)	As(III)	115(1)				2018
	Haix-Fe-Zr		+	+				
			200	95.88%				
			μg/L	As(III)				
			As(V)					
			+ 5 m a /T	+				
			5 mg/L F ⁻	95.87% F				
24.	MgAlFe-LDH	$As(V) + F^{-}$	2 mg/L	99.44%	6	25	24	Hongtao et
		(Simultaneous)	As(V)	F^-				al., 2018
		(Simulations)	+	+				
			2 mg/L	99.8%				
			F	As(V)				

Some of the finer details of these studies are as follows:

Zhang et al. (2003) reported co-adsorption of As(V) and F⁻ using a new Ce–Fe adsorbent. The surface of Ce–Fe adsorbent was considered positive at pH<5.8 as pHpzc of the adsorbent is found 5.8. Hence, As(V) and F⁻ removal was considered possible at pH> 5.8 and ion exchange with surface hydroxyl groups as mechanism. The adsorption pattern of As(V) fitted well with pseudo-first-order rate equation and both Langmuir and Freundlich models appeared applicable for sorption.

Delorme et al. (2007) examined the removal of F^- , As (V), and NO_3^- from water individually using calcined quintinite (Mg₄Al₂ double layer oxide). The adsorbent was found to have good affinity for F^- and As (V) but lower uptakes of NO_3^- due to competition with OH⁻. Presence of CO_3^{2-} was found as strong competing anion for $F^$ and NO_3^- .

Streat et al. (2008) reported on the adsorption of arsenic, phosphorus, fluoride and cadmium ions using granular iron hydroxide. The effect of the presence of fluoride on arsenic removal was studied. The isoelectric point (IEP) of the adsorbent was found to be in the range of 7-8 and the adsorption of cadmium indicated an amphoteric nature of the material.

Zhang et al. (2010) examined the effect of competing F^- and phosphate ions on As(V) removal from water by Fe–Ce oxide. It was found that As(V) and phosphate are adsorbed primarily to the surface hydroxyl group attached to the Fe surface active sites whereas the fluoride are adsorbed to the Ce surface active sites. Active surface inhibited the two categories of binding sites. Phosphorous strongly inhibited the adsorption of arsenate at the low-binding-energy sites whereas fluoride got attracted towards high-binding-energy sites. The low-energy surface site, at which As(V) is loosely bound, has a higher maximum absorption capacity (Q₁= 1.05 mmol/g), while the high-energy site, at which As(V) is relatively tightly bound, has a smaller maximum absorption capacity (Q₂= 0.80 mmol/g) through Langmuir two-site equations.

Li et al. (2011) reported the use of highly ordered mesoporous alumina and calcium-doped alumina for F^- and arsenic removal from water. The materials exhibited strong affinity to F^- and the highest defluoridation capacity as 450 mg/g. They also

showed very high arsenic removal ability. Mesoporous alumina was able to remove 200 L of arsenic contaminated water per gram of material with a pH value of 7, reducing the concentration of As(V) from 100 ppb to 1 ppb.

Dadwhal et al. (2011) used Mg-Al double layered hydroxide as adsorbent for removal of arsenic in the presence of F⁻ from water. Experiments were done to assess the arsenic removal efficiency in the presence of competing anions in the range from 1:1 to 1:32. The adsorption of arsenic in the presence of these competing ions on LDH followed the extended Sips isotherm. The study concluded that of among those ions, fluorides and nitrates have the least effect on arsenic adsorption followed by chlorides, carbonates, sulfates, and phosphates. Phosphates, in particular, have a very strong impact.

Ingallinella et al. (2011) studied the simultaneous removal of arsenic and fluoride from groundwater by coagulation-adsorption using poly aluminum chloride in batch and continuous mode of experiment. Removal efficiency of 75-85% of arsenic and 50-55% of fluoride were achieved with influent concentration of 90 to 70 μ g/L and 2.8 to 3.1 mg/L of F⁻ respectively.

Liu et al. (2012) used the iron and aluminum binary oxide (FeAlO_xH_y) to achieve the simultaneous removal of As(V) and F⁻. The introduction of aluminum oxyhydroxide (AlO_xH_y) to iron oxyhydroxide (FeO_xH_y) within iron and aluminum binary oxide (FeAlO_xH_y) enables the removal of F⁻ as well as As(V). AlO_xH_y may simultaneously remove As(V) and F⁻ over a wide pH range from 4 to 11. FeAlO_xH_y may be coated onto porous carriers such as diatomite to develop a novel adsorbent to treat water with simultaneously present As and F⁻. Jing et al. (2012) applied titanium and lanthanum oxides impregnated on granular activated carbon (TLAC) to achieved simultaneous adsorption of arsenate and fluoride. The Ti-As bond was found to give the evidence of arsenic attachment with Ti whereas fluoride was adsorbed on lanthanum oxides. Adsorption capacities of 30.3 mg/g of As(V) and 27.8 mg/g of F^- on TLAC was reported. The results of this study indicate that TLAC could be used as an effective adsorbent for simultaneous removal of As(V) and F^- .

Jimnez-Nnez et al. (2012) reported on the removal of fluorides in the presence of arsenic by compounds similar to nickel and magnesium hydrotalcite (NiAlHT, MgAlHT). It was observed that Elovich's kinetic model and chemisorptions of F⁻ dominated the process. It was found that the interferences of the competing anion in fluoride adsorption follow the order $SO_4^{2-} > As(V) > Cl^-$.

Huang et al. (2015) found the simultaneous removal of arsenic and fluoride ions by MgAl-layered double hydroxides with chloride and carbonate ions as interlayer anions in water. Arsenate sorption was the result of an ion exchange mechanism with chloride and carbonate, while fluoride sorption resulted only from chloride ion exchange. The adsorbent showed excellent adsorption properties for As(V) and F^- with maximum capacities of 125.8 and 28.6 mg/g, respectively, under neutral conditions.

Bibi et al. (2015) used hydrated cement as adsorbent for simultaneous removal of arsenic and fluoride from water. Maximum 97% and 80% removal of arsenic and fluoride respectively was reported. Adsorption reaction follows the Langmuir isotherm giving 1.92 mg/g and 1.72 mg/g for arsenic and fluoride removals respectively.

Singh et al. (2015) reported on the use of a mixed hydrous bismuth oxide (HBO₁+HBO₂) for the simultaneous removal of nitrate and fluoride from aqueous solutions. Bicarbonates and sulfates are the competing anions in groundwater, which significantly reduce performance and therefore require pre-treatment through the use of the media for drinking water treatment. The Weber-Morris model suggests that film diffusion and pore diffusion both play an important role in the sorption process, while the Boyd model confirms that external mass transport mainly determines the rate-limiting process for adsorption.

Srivastava et al. (2016) used Ni/Polypyrrole (PPy) nanocomposite as adsorbent for removal of arsenic and fluoride from contaminated water. The Ni/PPy nanocomposite prepared in the ratio of 1:2 acts as efficient adsorbent with maximum sorption potential of 2.64 and 67.71 mg/g of arsenic and fluoride respectively. Adsorbent reflect relatively higher preference for fluoride with respect to arsenic. The zero point charge of the nanocomposite in acidic pH suggests that the positive surface charge of adsorbent in acidic pH attracts the F^- and As(III) ion electrostatically and facilitates its removal.

Yan et al. (2017) examined the granular composite material TiO₂-La for the simultaneous removal of arsenic and fluoride. The material showed high adsorption capacities for As(III) (114 mg/g) and F^- (78.4 mg/g) in the pH range from 3 to 9, resulting in a high percentage (> 90%) of As(III) and fluoride adsorption have been achieved. Co-adsorption experiments showed that high fluoride concentrations inhibit As(III) adsorption, while the As(III) present at the same time has no significant influence on fluoride removal. The mechanisms at the molecular level showed that As (III) adsorption is only favorable at Ti sites at pH <7, while La adsorption sites can also

be occupied by As-La at pH> 10. The F⁻ adsorption is pH dependent and took place mainly at La sites. The granular TiO₂-La with high As(III) and fluoride adsorption capacity can be used to remove As(III) and fluoride at the same time. The findings from this study shed new light on the interaction mechanism of As(III) and F⁻ with the TiO₂-La composite.

Hongtao et al. (2018) described the synchronous adsorption of As(V) and F⁻ from aqueous solutions on MgAlFe-LDHs with different intercalating anions. F⁻ ion had advantages in the competitive adsorption on MgAlFe–Cl⁻ LDH and MgAlFe–NO₃⁻ LDH while MgAlFe–NO₃⁻ LDH for the adsorption of As(V) and F⁻ in coexisting systems with a concentration of each pollutant of 2 mg/L and an adsorbent dosage of 1.5 g/L. During the simultaneous removal process from a mixed system, As(V) and F⁻ compete for adsorption sites on the material and the results indicated that F⁻ is more in competition with MgAlFe–Cl⁻ LDH and MgAlFe–NO₃⁻ LDH. Strong interaction between As(V) and F⁻ and surface composition of the adsorbent make the adsorbent more efficient in removing arsenic and fluoride at the same time.

2.6 Selection of adsorbent

A review of available literatures suggests that among the various metal oxides used for anionic contamination removal, very few metal oxides have been explored for simultaneous removal of anionic contaminants i.e., nitrate, fluoride and arsenic from aqueous solution. In the recent years, bismuth has attracted considerable interest as potential sorbent. First, Fritsche (1993) reported removal of nitrate and other anionic contaminants by yellow bismuth hydroxide. Further, fluoride removal was reported (Srivastav et al., 2013; Singh et al., 2015; Ranjan et al., 2015). Hence, it's imperative to examine hydrous bismuth oxides for potential use in simultaneous removal of nitrate, fluoride and arsenic from water for drinking purpose.

2.6.1 Hydrous bismuth oxides (HBOs) in nitrate, fluoride and arsenic removal from water

Bismuth is a silvery white metallic element in group V of periodic table with nitrogen, phosphorus, arsenic, and antimony above it. The metallic properties of bismuth are more pronounced than that of either arsenic or antimony (Bhakti, 1977). As an element, bismuth is one of the least toxic heavy metal and cases of bismuth poisoning in industrial use have not been reported till date (Reda et al., 2021). The field of application of bismuth based chemicals is very broad and extends from the pharmaceutical industry via the substitution of toxic lead compounds to the electronics industry, where bismuth compounds are frequently used because of their unique properties. Therefore, toxicity is not a problem in handling of bismuth (Howe, 1968; Udalova et al., 2008; Cheng and Zhang, 2018).

Krause and Nelson (1956) used the "mixed oxides of bismuth" and found high selectivity for chloride ion in natural solutions. In 1960, the United Kingdom Atomic Energy Authority patented a method for recovery of plutonium (as anionic complex) from uranium and/or fission products using bismuth hydroxides. Ito and Yashida (1970) used bismuth hydroxide, Bi(OH)₃ for the adsorption of chloride. In a study, Anand and Baxi (1978 a,b) reported removal of various anions such as Cl⁻, Br⁻, I⁻, SO4²⁻, HPO4³⁻, PO4³⁻, and CrO7²⁻ from sodium salt by bismuth nitrate and basic bismuth silicate using the ion exchange process. Fritsche (1993) reported removal of nitrate using yellow bismuth hydroxide precipitate. Mishra and Singh (1998) used hydrous bismuth oxide for adsorption of barium ion at micron level and reported the process to be favored at

higher concentration, higher temperature and pH. The reaction was found to follow first order rate law and obey Freundlich isotherm with irreversible nature of adsorption.

Singh (1999) observed that among various solid bismuth compounds such as bismuth oxide, bismuth oxychloride, bismuth carbonate and bismuth hydroxide, only bismuth hydroxide showed some adsorptive properties for nitrate from aqueous solutions. Bismuth hydroxide is observed as white color fine powder in its monomeric form. However, the method of preparation of bismuth hydroxide has significant effect on the physico-chemical properties of the material and their adsorptive properties (Singh and Ghosh, 2000). The performance and efficiency of hydrous bismuth oxides (HBOs), synthesized through precipitation in presence of excessive hydroxide, was investigated for nitrate removal from water. Yellow bismuth hydroxide is possibly the polymeric form of hydrous bismuth oxide(s) and shows significant nitrate sorptive properties (Singh et al., 2012). Srivastava et al. (2013) synthesized one form of hydrous bismuth oxide, designated as HBO1 and examined fluoride removal using it. A fluoride removal efficiency of over 60% was reported at a dosage of 50 g/L HBO1 in 3 h contact time. Liu et al. (2016) synthesized bismuth oxide (Bi₂O_{2.33}) by facile solvothermal method and found gainful sorption with maximum adsorption capacities up to 285 and 229 mg/g for I⁻ and IO_3^- over wide range of pH. The selectivity towards iodine is attributed due to the adsorption-induced chemical reaction as well as the micro/nanostructure of the flower-like Bi₂O_{2.33} particles. In a similar attempt for applicability, Zhang et al. (2017) prepared a bismuth oxide/layered double hydroxide composites and tested for removal of excess iodine from water. The maximum iodine sorption capacity of 101.9 mg/g was reported at a neutral pH. The Langmuir isotherms and pseudo-second-order kinetic model was found better describing the iodine

adsorption onto the $Bi_2O_3/LDHs$ composites. Zhu et al. (2018) prepared bismuthimpregnated aluminum oxide and used it as scavenger for arsenic from water. Uptake of arsenic followed chemisorption and 91.6% of removal efficiency was obtained at an initial As(III) concentration of 5 mg/ L with flow rate of 1 mL/ min.

Various adsorbents based on bismuth and their preparatory methods for the removal of targeted ions from water have been summarized in Table 2.8.

 Table 2.8: Characteristics of hydrous bismuth oxides (HBOs) and their preparation methods for nitrate, fluoride and arsenic removal from water

S .	Bismuth	Ions	Preparation method	Reference
N.	compounds or	removed		
	HBOs			
1.	Yellow bismuth	$PO_4^{3-}, NO_3^{-},$	0.1M Bi ₂ O ₃ in 2N HCl + 2N	Fritsche, 1993
	hydroxide	SO_4^{2-}, Cl^-	NaOH	
			(1:3 V/V)	
2.	Yellow hydrous	NO ₃ -	$0.1M Bi_2O_3$ in $2N HCl + 2N$	Singh and Ghosh, 2000
	bismuth oxide		NaOH	
	(HBO ₂ & HBO ₃)		(1:2 and 1:3 V/V)	
3.	White hydrous	F-	$0.1M Bi_2O_3$ in $2N HCl + 2N$	Srivastav et al., 2013
	bismuth oxide		NaOH	
	(HBO_1)		(1:1 V/V)	
4.	Bismuth oxide	I-	Bismuth nitrate penta hydrate	Liu et al., 2016
	$(Bi_2O_{2.33})$		+ Ethanol and Ethylene	
			glycol	
			(2:1 V/V)	
5.	Bi ₂ O ₃ /LDHs	I-	Bismuth nitrate penta hydrate	Zhang et al., 2017
	composites		+ Ethanol and Ethylene	
			glycol	
6.	Bismuth-impregnated	As(III)	$Bi(NO_3)_3 + HCl+Al_2O_3$	Zhu et al., 2018
	aluminum oxide			

(Source: Ranjan et al., 2020)

2.7 Summary of Literature Review and Objectives of the present study

With an ultimate objective of developing an inorganic sorptive material to remove nitrate, fluoride and arsenic simultaneously from water, the literature review focused on collecting relevant information from the use of inorganic materials in such applications. It is observed that nitrate, fluoride and arsenic removal from groundwater intended for drinking have attracted significant attention of scientific community across the world and several metal oxides, hydroxides, bi metal oxides or layered double hydroxides (LDH) have been examined for their possible application towards such purposes. However, there is practically no report available on simultaneous removal of all the three contaminants coexisting together.

The present study also reviewed some significant developments in the area of use of hydrous bismuth oxides (HBOs) in water quality improvements. Based on such analyses, it is considered appropriate to examine HBOs in detail and evaluate their anionic sorptive properties towards simultaneous removal of nitrate, fluoride and arsenic coexisting in groundwater with levels as reported from different parts of the country.

2.8 Characterization techniques of selected inorganic adsorbent (HBO)

As for the characterization of HBO, research efforts focused on surface morphology, elemental analysis, functional group and the pH of point of zero charge (pHpzc). Some important and common techniques used in characterization of adsorbents are summarized in Table 2.9.

Table 2.9: Techniques for characterization of inorganic adsorbents

S.N.	Characteristics	Techniques
1.	Crystal structure	X-ray diffraction (XRD)
2.	Morphology	Scanning Electron Microscope (SEM)
3.	Elemental analysis	Energy-dispersive X-ray spectroscopy (EDS)
4.	Functional group on surface	Fourier Transform Infra-red spectroscopy (FTIR)
5.	pH _{PZC}	Fast alkalimetric method
	(Point of Zero Charge)	

2.9 Research aim

In the present study, hydrous bismuth oxide has been investigated with the aim to evaluate the simultaneous removal of nitrate, fluoride and arsenic from water.

Both forms of arsenic were tested and it was found that removal for arsenate was higher than arsenite. Hence, arsenate was chosen for further experiments.

2.10 Scope of the present study

The available reports on groundwater quality in India show that there are several districts where all the three major contaminants, namely nitrate, fluoride and arsenic are present in concentrations beyond the limits for drinking.

Although numerous studies have been undertaken to treat groundwater to remove individual contaminants, such as nitrate, fluoride, or arsenic using hydrous metal oxides, there is very little information available on simultaneous removal under coexisting conditions. A few studies have reported removal of two contaminants, but simultaneous removal of all the three contaminants have not been examined.

Given the observed potentials of hydrous bismuth oxides (HBOs) for the removal of anionic pollutants through adsorption, the present study focused on investigating the use of HBOs to simultaneously remove all three pollutants, namely nitrate, fluoride and arsenic, which are commonly reported to exist in groundwater for drinking purposes.

With an ultimate objective of developing bismuth based inorganic sorptive media for simultaneous removal of nitrate, fluoride and arsenic from water for drinking purpose, the scope of the present study was defined as follows:

- 1. To check the possibility of using hydrous bismuth oxides (HBOs) for simultaneous removal of nitrate, fluoride and arsenic from water.
- To estimate the nitrate, fluoride and arsenic removal potentials of selected hydrous bismuth oxides.
- 3. Characterization of the selected materials by XRD, SEM, EDS, FTIR and pH_{pzc} analyses to understand the process governing their removal.
- 4. To study their regeneration and reuse potentials for multiple cycle applications.

- 5. To study the effect of competitive anions, such as bicarbonate and sulfate on the contaminants removal potentials of the selected material
- 6. To examine their use in actual groundwater conditions spiked with reported levels of contamination by nitrate, fluoride and arsenic to make them suitable for drinking.
- 7. To record the lessons learnt and way forward.