CONTENTS

Chapters	Title	Page No.
TITLE		i
CERTIFIC	CATES	ii
DECLAR	ATION BY THE CANDIDATE	iii
COPYRIC	GHT TRANSFER CERTIFICATE	iv
ACKNOV	VLEDGEMENT	v-vi
	PF CONTENTS	vii-x
LIST OF		xi-xii
		xiii-xv
LIST OF		
LIST OF A	ABBREVIATIONS	xvi-xvii
LIST OF S	SYMBOLS	xviii-xix
ABSTRA	CT	XX-XXX
1. CHAP	FER 1: INTRODUCTION	1-33
1.1 Water	A basic natural resource	1
1.2 Safe w	ater for drinking	2
1.3 Groun	dwater	3
1.4 Contai	mination of groundwater	4
1.4.1	Nitrate contamination in groundwater	4
1.4.2	Fluoride contamination in groundwater	6
1.4.3	Arsenic contamination in groundwater	7
1.5 Globa	l scenario of contamination	9
1.5.1	Nitrate contamination in groundwater: Global scenario	9
1.5.2	Fluoride contamination in groundwater: Global scenario	9
1.5.3	Arsenic contamination in groundwater: Global scenario	10
1.6 Indian	scenario of contamination	12
1.6.1	Nitrate contamination in groundwater: Indian scenario	12
1.6.2	Fluoride contamination in groundwater: Indian scenario	14
1.6.3	Arsenic contamination in groundwater: Indian scenario	16
1.7 Standa	rds for nitrate, fluoride and arsenic in drinking water	18
1.7.1	Standards of nitrate in drinking water	18
1.7.2	Standards of fluoride in drinking water	18
1.7.3	Standards of arsenic in drinking water	19
1.7.4	Globally accepted standards of nitrate, fluoride and arsenic in	19
	drinking water	

1.8		altaneous presence of more than one contaminant in groundwater	20
1.0		rinking in India	20
1.9		d of the study	30
		ectives of the present study	31
1.11	Stru	cture of the thesis	31
2 (CHAI	TER 2: LITERATURE REVIEW	34-83
2.1 0	Groun	dwater contamination	34
2.2 7	[echn	ologies for nitrate removal from water	36
2.3 T	Techn	ologies for fluoride removal from water	44
2.4 7	[echn	ologies for arsenic removal from water	57
2.5 F	Remov	val of nitrate, fluoride and arsenic in coexisting conditions	68
2.6 S	Select	ion of adsorbent	76
2	2.6.1	Hydrous bismuth oxides (HBOs) in nitrate, fluoride and arsenic removal from water	77
2.7 S	Summ	ary of Literature Review and Objectives of the present study	80
2.8 0	Chara	cterization techniques of selected inorganic adsorbent (HBO)	81
2.9 F	Resear	rch aim	82
2.10	Scope	e of the present study	82
3.	CHA	PTER 3: MATERIALS AND METHODS	84-100
3.1	Mater	ial/Glassware	84
3.2 0	Chemi	cals and Reagents	84
3.3 I	nstrui	nent	84
3.4 I	Deterr	nination of pH, nitrate, fluoride, arsenic and others parameters	87
3.5 0	Gener	al experiment	90
3	8.5.1	Stock solutions for nitrate, fluoride, and arsenic	
3		Stock solutions for intrate, nuoride, and arsenic	90
		Batch adsorption experiment	90 91
		Batch adsorption experiment	91
3		Batch adsorption experiment 3.5.2.1 Effect of adsorbent dosage 3.5.2.2 Effect of contact time	91 91
	3.5.2 3.5.3	Batch adsorption experiment 3.5.2.1 Effect of adsorbent dosage 3.5.2.2 Effect of contact time	91 91 92
3	3.5.2 3.5.3 3.5.4	Batch adsorption experiment 3.5.2.1 Effect of adsorbent dosage 3.5.2.2 Effect of contact time Column adsorption experiment	91 91 92 92
3 3.6 A	8.5.2 8.5.3 8.5.4 Adsorj	Batch adsorption experiment 3.5.2.1 Effect of adsorbent dosage 3.5.2.2 Effect of contact time Column adsorption experiment Regeneration studies	91 91 92 92 94
3 3.6 A 3.7 A	3.5.2 3.5.3 3.5.4 Adsorj	Batch adsorption experiment 3.5.2.1 Effect of adsorbent dosage 3.5.2.2 Effect of contact time Column adsorption experiment Regeneration studies	91 91 92 92 94 95
3.6 A 3.7 A 3.8 C	3.5.2 3.5.3 3.5.4 Adsorj Adsorj	Batch adsorption experiment 3.5.2.1 Effect of adsorbent dosage 3.5.2.2 Effect of contact time Column adsorption experiment Regeneration studies otion kinetics studies	91 91 92 92 94 95 95
3.6 A 3.7 A 3.8 C 3.9 C	3.5.2 3.5.3 3.5.4 Adsorj Adsorj Comp Calcul	Batch adsorption experiment 3.5.2.1 Effect of adsorbent dosage 3.5.2.2 Effect of contact time Column adsorption experiment Regeneration studies ption kinetics studies ption isotherm studies eting anions studies	91 92 92 94 95 95 96
3.6 A 3.7 A 3.8 C 3.9 C	3.5.2 3.5.3 3.5.4 Adsorj Comp Calcul nitrate	Batch adsorption experiment 3.5.2.1 Effect of adsorbent dosage 3.5.2.2 Effect of contact time Column adsorption experiment Regeneration studies ption kinetics studies ption isotherm studies eting anions studies ation of adsorption potential (mg/g) and percentage removal of	91 92 92 94 95 95 96
3.6 A 3.7 A 3.8 C 3.9 C n 3.10	3.5.2 3.5.3 3.5.4 Adsorj Compo Calcul nitrate Char	Batch adsorption experiment 3.5.2.1 Effect of adsorbent dosage 3.5.2.2 Effect of contact time Column adsorption experiment Regeneration studies otion kinetics studies otion kinetics studies eting anions studies ation of adsorption potential (mg/g) and percentage removal of , fluoride and arsenic	91 92 92 94 95 95 96 96

3.13 Selection of adsorbent

99

3.14 P	reparations of Hydrous Bismuth Oxide (HBO) media	100
4. CH	IAPTER 4: RESULTS AND DISCUSSION 10)1-179
	Os as possible sorbent for arsenic removal from aqueous	101
	utions	102
	nultaneous removal of nitrate, fluoride and As(V) by HBOs	102
	m the mixed solution in batch adsorption experiment	105
4.2	6	105
	.2 Effect of mixed powder dosage	108
	.3 Effect of contact time	111
	.4 Preference of adsorption	112
4.2	.5 Simultaneous removal of nitrate, fluoride and As(V) from mixed	113
	solution in presence of competitive anions	
	4.2.5.1 Effect of bicarbonate	113
	4.2.5.2 Effect of sulfate	114
4.3 Ad	sorption kinetics studies	116
4.3	.1 First order kinetic model	117
4.3	.2 Second order kinetic model	118
4.3	.3 Weber-Morris (WM) kinetic model	119
4.4 Ad	sorption isotherm studies	130
4.4	.1 Langmuir isotherm model	130
4.4	.2 Freundlich isotherm model	131
4.4	.3 Dubinin-Redushkevich (DR) isotherm model	132
4.5 The	ermodynamic studies	145
	nultaneous removal of nitrate, fluoride and As(V) by HBO _{12mix}	147
	m mixed solution in column adsorption experiment	
	.1 First cycle of contaminants removal	148
	generation and reuse of HBO_{12mix}	152
4.7		152
4.7		152
4.7	5	152
4.7	C C	155
	sting of experimental results by mathematical empirical models	160
	3.1 Bohart-Adams model	161
	3.2 Thomas model	161
4.8	3.3 Yoon Nelson model	162
4.9 Per	formance of HBO12mix powder in real ground water of IIT (BHU)Varanas	si
-	ked with nitrate, fluoride and As(V) contaminants	163
4.9	1	163
4.9	1	164
4.10	Bismuth in treated water	168

4.11	Characteriza	tions of adsorbent	169
	4.11.1	X-Ray Diffraction (XRD) of HBO _{12mix}	169
	4.11.2	Scanning Electron Microscopy (SEM)	171
	4.11.3	Energy-Dispersive X-ray Spectroscopy (EDS)	172
	4.11.4	Fourier Transform Infrared Spectroscopy (FTIR)	174
	4.11.5	pH at Point of Zero Charge (pHpzc)	176
	4.12 Pros	pect and challenges of using HBO as an adsorbent for	177
	grou	ndwater treatment in POU system	
	4.13 Cost	analysis of HBO _{12mix}	178
5. CH	APTER 5: S	UMMARY AND CONCLUSIONS	180-187
5.1 St	immary		180
5.2 Co	onclusions		185
5.3 St	uggestions for	future work	187
R	EFERENCE	S	188-240
L	IST OF PUB	LICATIONS	

LIST OF FIGURES

Figure No.	Title	Page No
Figure 1.1	Water on earth	2
Figure 1.2	Quality deterioration of ground water	4
Figure 2.1	Different classes of adsorbents used for the removal of	39
	nitrate from water	
Figure 3.1	Ion meter for measuring pH	85
Figure 3.2	Ion meter for measuring nitrate and fluoride concentrations	86
Figure 3.3	Arsenator set up for measuring arsenic concentrations	86
Figure 3.4	Wagtech Digital Arsenator Kit	87
Figure 3.5	Grain size distribution of adsorbent	93
Figure 3.6	Experiment set up for column adsorption	94
Figure 4.1	Effect of adsorbent dosages on simultaneous removal of	104
	contaminants from mixed solution	
Figure 4.2	Effect of mixed powder (a) HBO _{12mix} and (b) HBO _{13mix}	110
	on simultaneous removal of nitrate, fluoride and As(V)	
	from mixed solution	
Figure 4.3	Effect of contact time on contaminants removal and	112
	sorption potentials of HBO12mix powder from mixed	
	solution	
Figure 4.4	Effect of bicarbonate and sulfate ions on simultaneous	115
	removal of nitrate, fluoride and As(V) from mixed	
	solution	
Figure 4.5	Linearized kinetic plots of pseudo first order model for	121
	nitrate, fluoride and As(V) sorption from mixed	
	solution	
Figure 4.6	Linearized kinetic plots of pseudo second order model	122
	for nitrate, fluoride and As(V) sorption from mixed	
	solution	100
Figure 4.7	Linearized kinetic plots of Weber-Morris model for	123
	nitrate, fluoride and As(V) sorption from mixed	
E '	solution	124
Figure 4.8	Langmuir isotherm linearized plots for nitrate, fluoride	134
E '	and As(V) sorption on HBO _{12mix}	125
Figure 4.9	Freundlich isotherm linearized plots for nitrate, fluoride	135
Eiguna 4 10	and As (V) sorption on HBO_{12mix}	126
Figure 4.10	DR model isotherm linearized plots for nitrate, fluoride and $A_{\alpha}(V)$ comption on HPO.	136
Figure 4.11	and $As(V)$ sorption on HBO_{12mix} Removal of nitrate fluoride and $As(V)$ by HBO_{12mix}	150
1 igule 4.11	Removal of nitrate, fluoride and $As(V)$ by HBO_{12mix} adsorbent in column mode of operation in first cycle;	150
	(a) Breakthrough curves for nitrate, fluoride and As(V);	
	(a) breaktinough curves for intrate, into fue and $As(v)$,	

	(b)Variation of pH with increasing volume of effluent;(c) Changing concentrations of chloride in effluent	
Figure 4.12	Chloride uptake by HBO_{12mix} adsorbent during first regeneration	152
Figure 4.13	Removal of nitrate, fluoride and As(V) by HBO _{12mix} adsorbent in column mode of operation in second cycle; (a) Breakthrough curves for nitrate, fluoride and As(V); (b) Variation of pH with increasing volume of effluent; (c) Changing concentrations of chloride in effluent.	154
Figure 4.14	Chloride uptake by HBO _{12mix} adsorbent during second regeneration	155
Figure 4.15	Removal of nitrate, fluoride and As(V) by HBO _{12mix} adsorbent in column mode of operation in third cycle; (a) Breakthrough curves for nitrate, fluoride and As(V); (b) Variation of pH with increasing volume of effluent; (c) Changing concentrations of chloride in effluent.	157
Figure 4.16	Breakthrough curves for nitrate, fluoride and $As(V)$ through HBO _{12mix} powder in down flow mode of operation in three cycles	158
Figure 4.17	Variation of effluent pH through HBO _{12mix} powder in column mode of operation in three cycles	159
Figure 4.18	Characteristics of effluents from column using sand with HBO _{12mix} in the bed and ground water of IIT(BHU) spiked with nitrate, fluoride and As(V) as influent; (a)Breakthrough curves for nitrate, fluoride and As(V); (b) Variation of pH with increasing volume of effluent; (c) Changing concentrations of chloride in effluent; (d) Concentration of sulphate in the effluent, and (e) Concentration of alkalinity in the effluent	166
Figure 4.19	XRD patterns of HBO_{12mix} (a) in original form (b) after adsorption of nitrate, fluoride and arsenic onto the material	170
Figure 4.20	SEM micrographs of HBO _{12mix} (a) in original form and (b) after adsorption of nitrate, fluoride and arsenic from solution	172
Figure 4.21	EDS patterns of HBO_{12mix} (a) in original form and (b) after adsorption of nitrate, fluoride and arsenic from solution	173
Figure 4.22	FTIR Spectra patterns of HBO _{12mix} (a) in original form and (b) after adsorption of nitrate, fluoride and arsenic from solution	174

Table No	Title	Page No
Table 1.1	Nitrate contamination in water: Global scenario	9
Table 1.2	Fluoride contamination in water: Global scenario	10
Table 1.3	Arsenic contamination in water: Global scenario	11
Table 1.4	Districts in India with high nitrate concentrations in	12
	groundwater	
Table 1.5	Districts in India with high fluoride concentrations in	14
	groundwater	
Table 1.6 (a)	Districts in India with high arsenic concentrations in	16
	groundwater	
Table 1.6 (b)	Districts in India with Arsenic (>0.05 mg/L) in ground	17
	water	
Table 1.7	Anions standards in drinking water	20
Table 1.8	State wise names of the districts (partly) in India affected	21
	by nitrate, fluoride and arsenic contamination of ground	
	waters	
Table 1.9	Districts of India reported with presence of more than	26
	one contaminant (nitrate, fluoride or arsenic) in	
	groundwater beyond permissible limits for drinking	
Table 2.1	Common groundwater contaminants	34
Table 2.2	Comparative analyses of the removal technologies	35
	applicable for anionic contaminants removal from water	
Table 2.3	Important features of some major nitrate removal	38
	technologies	
Table 2.4	Important characteristics of different adsorbents	40
	examined for nitrate removal from water	
Table 2.5	Important characteristics of different adsorbents	48
	examined for fluoride removal from water	
Table 2.6	Important characteristics of different adsorbents	59
	examined for arsenic removal from water	
Table 2.7	Characteristics of adsorbents used for simultaneous	68
	removal of more than one contaminant (nitrate, fluoride	
	and arsenic) coexisting in water	

LIST OF TABLES

Table 2.8	Characteristics of hydrous bismuth oxides (HBOs) and their preparation methods for nitrate, fluoride and arsenic removal from water	79
Table 2.9	Techniques for characterization of inorganic adsorbents	81
Table 4.1	Arsenic removal efficiencies of hydrous bismuth oxides (HBO ₁)	101
Table 4.2	Effect of adsorbent dosage on simultaneous removal of contaminants from mixed solution	105
Table 4.3	Sorptive Potentials of HBOs for nitrate, fluoride and As(V) from water	106
Table 4.4	Simultaneous removal of nitrate, fluoride and $As(V)$ from mixed solution using HBO _{12mix} powder	108
Table 4.5	Simultaneous removal of nitrate, fluoride and $As(V)$ from mixed solution using HBO _{13mix} powder	109
Table 4.6	Preferential Sorptive Characteristics of HBO _{12mix}	112
Table 4.7	Kinetic parameters for adsorption of nitrate, fluoride and $As(V)$ on HBO_{12mix} powder	124
Table 4.8	Trend analysis for kinetic parameters of nitrate, fluoride and arsenic sorption from the solution on HBO _{12mix} powder	129
Table 4.9	Initial and final parameters of adsorption isotherm on HBO _{12mix} powder	137
Table 4.10	Isotherm parameters of adsorption for adsorption of nitrate, fluoride and $As(V)$ on HBO_{12mix} powder	138
Table 4.11	Trend analysis for isotherm parameters of nitrate, fluoride and arsenic sorption from the solution on HBO _{12mix} powder	143
Table 4.12	Effect of temperature on nitrate, fluoride and As(V) sorption process on HBO _{12mix} based on mean adsorption energy (<i>E</i>) of D-R isotherm studies	144
Table 4.13	Trend analysis of maximum adsorption capacity (q_o) of HBO _{12mix} for nitrate, fluoride and As(V) from aqueous solutions	144
Table 4.14	Thermodynamic parameters for simultaneous removal of nitrate, fluoride and As(V) by HBO _{12mix} powder	147
Table 4.15	Relation between anions sorbed and chloride released from HBO _{12mix} in first cycle of column experiment	151

Table 4.16	Relation between anions sorbed and chloride released	155
	from HBO _{12mix} in second cycle of column experiment	
Table 4.17	Relation between anions sorbed and chloride released	158
	from HBO _{12mix} in third cycle of column experiment	
Table 4.18	Parameter of different mathematical models used on	162
	Column study data	
Table 4.19	Characteristics of initial and final solutions in batch	163
	experiments with ground water spiked contaminants	
Table 4.20	Relation between anions sorbed and chloride released	167
	from HBO _{12mix} in ground water column experiment	
Table 4.21	Determination of Bismuth in treated water	168
Table 4.22	XRD patterns of (a) Original HBO _{12mix} and (b) Spent	171
	HBO _{12mix}	
Table 4.23	FTIR Spectroscopic Analyses of HBO12mix before	175
	(original form) and after adsorption	
Table 4.24	pHpzc of different forms of HBOs	177
Table 4.25	Cost of production of some adsorbents	179

LIST OF ABERVIATIONS

AAS	Atomic Absorption Spectrophotometer
AgNO ₃	Silver nitrate
As (III)	Arsenite/Arsenic (III)
As (V)	Arsenate/Arsenic (V)
BaCl ₂	Barium chloride
Bi(OH) ₃	Bismuth hydroxide
Bi ₂ O ₃	Bismuth trioxide
BiOOH	Bismuthyl hydroxide
BIS	Bureau of Indian Standard
CER	Chloride exchange ratio
EC	European commission
EDS	Energy dispersive X-ray spectroscopy
FT-IR	Fourier Transform Infra-red spectroscopy
GV	Guidelines value
HBO ₁	Hydrous Bismuth Oxide 1(1:1 v/v)
HBO ₂	Hydrous Bismuth Oxide 2 (1:2 v/v)
HBO ₃	Hydrous Bismuth Oxide 3 (1:3 v/v)
HBO _{12mix}	HBO ₁ +HBO ₂
HBO _{13mix}	HBO ₁ +HBO ₃
HCl	Hydrochloric acid
HCO ₃ -	Bicarbonate (alkalinity)
НМО	Hydrous metal oxide
JCPDS	International Centre for Diffraction Data 12 Campus Boulevard, Newtown Square, PA 19073-3273 U.S.A.

KCrO ₄	Potassium chromate
MCL	Maximum contamination level
ML	Mandatory limit
Na2HAsO4.7H2O	Sodium arsenate dibasic heptahydrate
Na ₂ SO ₄	Sodium sulfate
NaBH ₄	Sodium borohydride
NaCl	Sodium chloride
NaF	Sodium fluoride
NaHCO3	Sodium bicarbonate
NaNO ₃	Sodium nitrate
NaOH	Sodium hydroxide
NH ₂ .SO ₃ H	Sulphamic acid
NO ₃ ⁻	Nitrate
PL	Permissible limit
rpm	Revolution per minute
SEM	Scanning Electron Microscope
SO ₄ ²⁻	Sulphate/ Sulfate
TISAB	Total Ionic Strength Adjustment Buffer
USEPA	United States Environmental Protection Agency
WHO	World health organization
XRD	X-ray diffraction

LIST OF SYMBOLS

°C	Degree Celsius
μg/g	Microgram/gram
μg/L	Microgram/Liter
b	Adsorption equilibrium constant (L/mg)
c	Constant related to the Weber and Morris model
С	Effluent or final concentration (mg/L)
Ce	Concentration at equilibrium (mg/L)
Co	Influent or initial concentration (mg/L)
Cu	Coefficient of uniformity
D ₁₀	Effective particle size in mm
\mathbf{D}_{60}	Effective size through which 60% particle will pass in mm
E	Mean free energy of adsorption (kJ/mol)
\mathbf{F}^{-}	Fluoride
F [−] g	Fluoride Mass in gram
g	Mass in gram
g H	Mass in gram Hight of column
g H K	Mass in gram Hight of column Constant related to adsorption energy
g H <i>K</i> K1	Mass in gram Hight of column Constant related to adsorption energy Pseudo-first-order rate constant (min ⁻¹)
g H K K1 K2	Mass in gram Hight of column Constant related to adsorption energy Pseudo-first-order rate constant (min ⁻¹) Pseudo-second-order rate constant (min ⁻¹)
g H K K1 K2 K3	Mass in gram Hight of column Constant related to adsorption energy Pseudo-first-order rate constant (min ⁻¹) Pseudo-second-order rate constant (min ⁻¹) Weber Morris rate constant (min ^{-1/2})
g H K K1 K2 K3 Kba	Mass in gram Hight of column Constant related to adsorption energy Pseudo-first-order rate constant (min ⁻¹) Pseudo-second-order rate constant (min ⁻¹) Weber Morris rate constant (min ^{-1/2}) Bohart adam rate constant [mL/(min mg)]
g H K K1 K2 K3 Kba Kth	Mass in gram Hight of column Constant related to adsorption energy Pseudo-first-order rate constant (min ⁻¹) Pseudo-second-order rate constant (min ⁻¹) Weber Morris rate constant (min ^{-1/2}) Bohart adam rate constant [mL/(min mg)]

mg/g	Milligram/gram
mg/L	Milligram/Liter
n	Freundlich constant
Ν	Normality (moles equivalent/Liter)
Р	Standard thermodynamic equilibrium constant (L/g)
pHpzc	Point of zero charge
qa	Theoretical adsorption capacity (mg/g)
Q ba	Bohart adam maximum concentration of solute (mg/g)
q e	Adsorption capacity at equilibrium (mg/g)
qo	Maximum adsorption capacity (mg/g)
q t	Adsorption capacity at any time t (mg/g)
Q th	Thomas maximum concentration of solute (mg/g)
R	Gas constant (8.314 J/mol K)
t	Service time of column under the above conditions (h)
Τ	Absolute temperature in Kelvin (K)
v	Linear flow velocity of feed to bed (mL/cm ²)
X	Relative cost of operation
ΔG°	Change in Gibbs free energy
ΔH°	Change in enthalpy
ΔS°	Change in entropy
3	Polanyi potential
Γ	Time (t) when C/ $C_o = 0.5$.
K _f	Isotherm constant related to adsorption capacity