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Chapter 5 

A novel force myography sensor to measure muscle 

contraction for controlling hand prosthesis 
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5.1 Introduction 

Non-invasive assessment of muscle contraction has extensive applications in the diagnosis of 

neuromuscular disorders, muscle fatigue analysis, controlling prosthetics, etc. (Spires, Kelly, 

and Davis 2014; Lobo-Prat et al. 2014; Veer and Sharma 2018; Veer 2015; Sharma and Veer 

2016). Contraction can be measured by monitoring the electrical or mechanical activity of the 

muscle(Schoening 1986). Surface electromyography (sEMG) is the most frequently used 

technique for quantifying the electrical activity of muscles underlying the skin. Nowadays, 

EMG measurement (from voluntary muscle contraction) is widely utilized for active prosthesis 

control and other human-machine interfaces (HMI) due to its intuitiveness (Tavakoli, Benussi, 

and Lourenco 2017; Pancholi and Joshi 2018; Veer, Agarwal, and Kumar 2016). 

Surface electromyography involves the use of myoelectrodes, which provide the crude 

assessment of EMG signal under the skin and appropriate pre-processing circuitry to obtain 

amplified as well as a filtered version of the signal directly from the electrodes(Veer 2014). 

The correct measurement of the EMG signal involves the proper placement of electrodes with 

good electrical interaction with the skin (Schoening 1986; Day, 2002; Chowdhury et al. 2013). 

Conductive gel-based electrodes can achieve a good and steady electrical contact with the skin, 

but for long-term application, dry electrodes are preferred(Jamal and Kim 2018). However, 

dry electrodes offer high electrode-skin impedance and are also susceptible to motion artifacts 

(Searle and Kirkup 2000).  The EMG signal quality is dependent on the anatomy and 

physiology of the muscle-skin interface and the signal conditioning circuitry of the detection 

unit. Moreover, the acquisition of EMG signals is very sensitive to the various noise sources 

(Chowdhury et al. 2013; Amrutha and Arul 2017). These noises, up to a great extent, can be 

minimized using appropriate pre-processing circuitry, post-processing techniques, and 
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effective training schemes but cannot be eliminated (Hargrove, Englehart, and Hudgins 2008; 

Naik et al. 2016).  

The activity of muscle can also be monitored by detecting the changes in mechanical features 

during contraction. Muscle contraction leads to shortening of the muscle, change in cross-

section areas, increase in toughness, and increases the mechanical vibrations associated with 

the muscle. Mechanomyography (MMG), optomyography (OMG), and force myography 

(FMG) are some of the measurement techniques for identifying these mechanical variations 

occurring during muscular contraction. MMG is measured as the mechanical vibrations 

produced by the muscle during its activation (Ibitoye et al. 2014). It can be considered as the 

mechanical equivalent of the EMG signal. Accelerometers, piezoelectric sensors, 

microphones, and LASER distance sensors are various sensors for assessing the MMG signal. 

There are some case studies in which MMG signal has been characterized for analyzing muscle 

function, prosthesis control, identifying neuromuscular diseases, and evaluation of muscle 

during sports and medicine (M. A. Islam et al. 2013). MMG has several advantages over EMG, 

such as simple acquisition setup, high signal-to-noise ratio (SNR), and resistant to external 

electromagnetic interference. However, it is more sensitive to movement artifacts than the 

EMG signal, which can significantly influence results (Woodward et al. 2019; A. Islam et al. 

2012). OMG is another new approach that utilizes photoelectric sensors for detecting 

mechanical variations of muscle during contraction. It offers higher SNR and enhanced 

robustness against the undesired features and limitations of MMG and EMG (Hamed Hamid 

Muhammed and Raghavendra, 2014). OMG can provide a cheap and contactless assessment 

of muscular contraction that can be efficiently utilized to generate the control signal for upper-

limb prosthesis and other rehabilitation applications (H. H. Muhammed and Jammalamadaka 
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2016). But as compared to the EMG, the OMG signal is more affected by motion artifacts and 

also exhibits slight delay, which may affect the performance for real-time control applications 

(Chianura and Giardini 2010; “An IR Muscle Contraction Sensor” 2014.).  

FMG is a recently developed technique that utilizes force-sensitive resistors (FSRs) to register 

the volumetric changes of muscle during its activity. Unlike EMG, FMG is inexpensive, simple 

to use, insensitive to external electrical interference, does not requires the use of electrodes and 

complex conditioning circuits (Jiang et al. 2017; Yaniger 1991). Moreover, FMG produces a 

more repeatable pattern and shows higher overall stability over time than EMG (Jiang et al. 

2017; Connan et al. 2016). FMG can provide an assessment of muscular contraction that can 

be efficiently utilized to generate the control signal for upper-limb prosthesis and other 

rehabilitation applications. In recent applications, FMG based control system has gained much 

attention for the utilization of prosthetic devices (Cho et al. 2016; Ha, Withanachchi, and Yihun 

2019; Radmand, Scheme, and Englehart 2016; Li et al. 2012; Zhen G Xiao and Menon 2014). 

The overall realization of the FMG system is less expensive as it requires fewer FSRs than the 

EMG system, which involves large numbers of electrodes for detecting distinct gestures of 

muscle activity(Ha, Withanachchi, and Yihun 2019).  

However, previous studies reported that the direct use of FSR on the skin could only furnish 

qualitative information about muscle activation. The simple FSR element cannot provide 

quantitative details like how the FSR output is related to the intensity of contractions and the 

comparative analysis with other sensors. They only supply the basic information about the 

activation and relaxation of the muscle (Lukowicz et al. 2006; Junker et al. 2008).  Also, using 

a basic voltage divider as a conditioning circuit for FSR produces nonlinearities, large drift 

errors, and variation in sensitivity over its operating range. These errors and nonlinearities 
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could be minimized using suitable electronic conditioning circuitry and signal processing 

systems, (Kalantari et al. 2012; Matute et al. 2018). 

Despite having several advantages, FMG is still unpopular for the application of prosthesis 

control. The main reasons are instability of the sensor on the skin, the inconsistent transmission 

of muscular contractile force onto the sensor, wearability, reliability, robustness, cost, 

accessibility, etc.(Esposito et al. 2018).  

This chapter presents a novel FMG sensor for faithfully detecting the muscle contraction to be 

applied for hand prosthesis control. The sensor is designed using a pair of FSR elements 

mounted inside a 3D printed chassis, which receives muscular contractile force through 

hemispherical elastomer couplers (prepared from PDMS). The sensor also includes a specific 

conditioning circuit (with an appropriate power supply) for producing a voltage output 

proportional to the intensity of contraction. The sensor is simple, compact, sensitive, and easily 

attachable on the residual upper limb of amputees to reliably capture the mechanical activity 

of muscle. The sensor produces an output signal comparable to the linear envelope of the EMG 

signal. The designed sensor was successfully tested on five different human subjects to control 

a 3D printed prosthetic hand for performing grasping operations utilizing the proportional 

scheme. The sensor was able to provide a smoother and faster operation of the prosthetic device 

than a conventional EMG sensor. 

5.2 Materials and Methods 

5.2.1 Design of FMG Sensor 

Contraction leads to the change in volume and stiffness of the muscle, which imparts outward 

forces. These forces can be sensed through FSR by placing it on the skin in conjunction with 
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a sensitive portion of the muscle. However, the direct placement of FSR on the skin (i.e., 

without any mechanical coupler) may provide unreliable and ambiguous results.  

FSR mainly consists of a conductive polymer, which shows the piezoresistive effect (i.e., a 

decrease in resistance with an increase in applied force to its active area). Figure 5.1 shows the 

different layers of FSR-402, which are a semiconductive layer, spacer adhesive, and the 

conductive layer (“FSR Integration Guide”). Direct interaction of the FSR element on the skin 

will exert uneven force on its sensing area and prevent the semiconductive layer from making 

proper electrical contact with the conductive polymer. In this situation, the output produced by 

the FSR may not provide the exact amount of force that was applied. There should be an 

assembly that will provide uniform distribution of muscular contractile force over the sensing 

portion (active area) of the FSR for getting reliable output from it. Such an arrangement can 

be achieved using an appropriate size elastomer between the applied force and the FSR active 

area. Because as long as the force distribution is uniform, the repeatability of the device will 

be preserved. 

 
Figure 5.1 Construction of FSR showing its different layers. 
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A specific mechanical assembly consisting of an elastomer coupler and a 3D printed base was 

designed for the even transmission of muscular contractile force on the FSR sensing portion. 

The coupler was made using polydimethylsiloxane (PDMS) material and was moulded into a 

hemispherical shape of 1.27 cm diameter (“FSR Integration Guide”). PDMS has wide 

applications in fabrications and characterization of electronic circuits as well as materials and 

offers advantages such as chemical stability, biocompatibility, transparency, flexibility, 

thermal conductivity, etc. (Chen et al. 2018; Kim, Lee, and Choi 2013). The flat surface of the 

coupler was positioned onto the FSR active area, while its convex portion was intended for 

sensing force directly from the skin. The FSR element, along with the coupler, was mounted 

inside a 3D printed chassis, as shown in Figure 5.2. The rigid base made of polylactic acid 

(PLA) provides back support to the FSR plate by preventing its inappropriate bending and 

promotes uniform distribution of force over the sensing area.  When the sensor assembly is 

attached to the subject, the convex part creates slight subsidence to the skin, making the device 

a bit more sensitive to detect even the shorter contraction of the muscle. When the muscle is 

contracted, it imparts a uniform force on the FSR sensing area through the hemispherical 

coupler. The chassis, FSR plate, elastomer coupler, and conditioning circuitry constitute an 

FMG sensor that can be attached to forearm muscles using Velcro tape or belt. The FMG sensor 

comprises a pair of FSRs which can simultaneously detect the contractions occurring at two 

different target muscle in the range of 3 cm distance. 
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Figure 5.2 Mechanical arrangement for uniform distribution of force on the FSR. 

5.2.2 Signal conditioning 

The buffered voltage divider circuit is shown in Figure 5.3(a) is the most common circuit for 

translating the change in resistance of FSR to the voltage output (Amft et al. 2006). A fixed 

supply voltage is applied across the series combination of FSR and reference resistor (R1) while 

the output voltage is measured across R1. The circuit gives a non-linear relationship between 

resistance and voltage, which is clear from equation (5.1). The value of R1 is appropriately 

selected to achieve the desired force sensitivity of the FSR. A buffer is employed after the 

voltage divider to fulfill the impedance requirements of the measuring circuit.   However, in a 

practical situation, the voltage divider arrangement in the circuit is unable to maintain a 

constant voltage drop across the FSR, which may affect accuracy, sensitivity, drift, and 

repeatability in measurement (Matute et al. 2018). Thus, the use of voltage dividers in the 

signal conditioning circuitry is less preferred. 

𝑉𝑜𝑢𝑡 =
𝑅1𝑉𝑐𝑐

(𝑅1+𝑅𝐹𝑆𝑅)
         (5.1) 
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Figure 5.3 (a) Buffered voltage divider, (b) bipolar supply circuitry, (c) buck converter, (d) 

transimpedance amplifier. 

A transimpedance amplifier circuit shown in Figure 5.3 (d) permits a fixed voltage across FSR, 

making sensitivity constant for a wide range of input forces. If the value of VFSR (i.e., the 

supply voltage to FSR) in equation (5.2) is kept smaller than 200 mV, drift tends to increase, 

and there exists a non-linear relationship between FSR output voltage and current (Matute et 

al. 2018; Paredes-Madrid et al. 2018). While if the supply voltage is increased, the drift 

reduces, and some linear relationship starts to build up. Moreover, increasing the supply 

voltage above 2 V will lead to the degradation of FSR sensitivity non-linearly (Lebosse et al. 

2011). The sensor should have constant sensitivity over time, such that repetitive muscular 

contractions can be easily observed. Therefore, the supply voltage was fixed to a trade-off 

value of 1.85 V to preserve the FSR’s sensitivity and minimize the drift. FSR drift and 

sensitivity degradation cannot be eliminated but can be efficiently reduced using suitable 

conditioning circuits, as implemented in this work. The value of feedback resistance RF was 

chosen 10 kΩ to attain the desired sensitivity (“FSR Integration Guide”). 
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𝑉𝑜𝑢𝑡 =
−𝑉𝐹𝑆𝑅

(𝑅𝐹𝑆𝑅)
× 𝑅𝐹          (5.2) 

In Figure 5.3(b), 3.7 V from the battery was first increased to 10 V using a boost converter 

circuit and then transformed to a bipolar supply of ±5 V employing a single-to-dual circuit for 

powering the operational amplifier IC present within the signal conditioning. A buck converter 

circuit is shown in Figure 5.3(c) was incorporated to supply a constant input (1.85 V) to FSR. 

All the signal conditioning circuitry and the power supply unit were embedded in the sensor 

chassis for making it a standalone device. 

 
Figure 5.4 Designed FMG sensor (a) front view, (b) rear view, (c) side view. 

The final output produced by the transimpedance amplifier is a 0-5 V linear envelope 

proportional to the strength (force) of contraction. The designed FMG sensor can provide two-

channel output since it comprises two FSR elements and their signal conditioning units and 

power supply. A single pole double throw (SPDT) switch was incorporated for powering on 

the sensor. Figure 5.4(a) and 5.4(c) show the front and side views of the designed FMG sensor 

showing the hemispherical tip for sensing the muscular contractions on the skin, whereas 

Figure 5.4(b) shows the rearview consisting of the switch, connectors, and battery.  
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5.2.3 Static and dynamic characteristics of the FMG sensor 

Static calibration for the developed sensor was performed to quantify the relation between 

applied force and output voltage. For this, different weights were applied perpendicularly on 

the hemispherical tip (active area) of the sensor one by one, and the output voltages were 

recorded. The output voltages were recorded for 120 s after the application of static loads to 

measure the actual drift attained by the sensor. The drift was calculated as a percentage of 

variation in the sensor’s output voltage from the predicted value, as per the equation (5.3). 

𝐷𝑟𝑖𝑓𝑡(𝑡) =
𝑉𝑜(𝑡)−𝑉𝑜(0)

𝑉𝑜(0)
× 100       (5.3) 

Where Vo(t)  is the voltage output of the sensor at a time ‘t’ and Vo(0) the voltage output of the 

sensor immediately after the application of load (i.e., the predicted value). 

Hysteresis error for the developed sensor was analyzed through variation of output voltage 

with the increasing and decreasing intensity of applied weight (i.e., loading and unloading). 

The repeatability error of the sensor was evaluated for five repeated applications of the same 

load on the sensor. It was determined as a percentage of relative standard deviation (RSD) 

calculated for the application of eleven different weights. RSD can be calculated using the 

formula in equation (5.4). 

𝑅𝑆𝐷 =
√((𝑋−�̅�))/𝑛

�̅�
× 100        (5.4) 

Where �̅� is the mean value of data samples, X is any value in the data samples, and n is the 

number of samples. 

The dynamic characteristic of the sensor was analyzed in terms of its frequency response, 

which was determined experimentally to test its ability to record rapidly varying FMG signals. 

A specific arrangement shown in Figure 5.5 was made to measure the sensor’s magnitude and 
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phase response at different mechanical frequencies. A mini electrodynamic shaker (model 

2007E from Modal shop) was fixed on the table such that its vibration tip makes direct contact 

with the hemispherical sensing tip of the FMG sensor, which was held vertical using a vise. 

An accelerometer (ADXL345) was fixed to the upper part of the vibration tip of the shaker for 

measuring its acceleration. 

 
Figure 5.5 Experimental arrangement for the measurement of the frequency response of the 

designed FMG sensor. 

The mini shaker was stimulated with a sinusoidal voltage (18 V) of increasing frequency (i.e., 

1 Hz to 3 MHz) using a function generator (DX-4005). The FMG sensor data and the 

accelerometer data were simultaneously acquired using a data acquisition (DAQ) device 

(Advantech, USB-4716) during the vibrations at different frequencies. All the data were 

acquired at a sampling frequency of 2 kHz.  Since the weight of the shaker and accelerometer 

assembly is fixed, the actual force applied to the sensor was calibrated in terms of voltage using 

the acceleration produced by the accelerometer. The gain magnitude of the frequency response 

was determined as the ratio of FMG sensor output (in voltage) to the actual force computed 
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from the accelerometer data. At the same time, the phase magnitude of the frequency response 

was determined by calculating the time-lag between the positive-slope zero-crossings of the 

actual sinusoidal force applied and the voltage output of the FMG sensor (Esposito et al. 2018). 

5.2.4 Similarity with the EMG signal 

In order to accomplish a quantifiable comparison between the developed FMG sensor and 

traditional EMG sensor, simultaneous measurements of FMG and EMG signals were 

performed for eight subjects (five healthy and three transradial amputees) from their forearm 

muscles. The FMG sensor and the EMG sensor were placed close to each other on the flexor 

carpi ulnaris muscle, as shown in Figure 5.6, as this muscle on the forearm is responsible for 

the movement of the wrist and fingers (Lobo-Prat et al. 2014; Supuk, Skelin, and Cic 2014). 

The curved sensing tip of the FMG sensor was positioned on the belly of the muscle such that 

any contraction can be easily detected. 

 
Figure 5.6 Placement of FMG sensor and EMG sensor on the forearm muscle of a subject. 

 The employed EMG sensor (i.e., myoware muscle sensor from advancer technologies) can 

provide the raw as well as the linear envelope of the EMG signal. The signals using both the 
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sensors were simultaneously acquired using the DAQ device at a sampling frequency of 2 kHz 

with 16-bit precision. The subjects were asked to perform voluntary muscle contractions of 

different duration and intensities. 

5.2.5 Controlling hand prosthesis 

The ability of the designed FMG sensor was further tested for controlling hand prosthesis 

implementing a proportional control scheme. A five-fingered, 3D printed hand was prepared, 

which was extrinsically actuated using two high torque servomotors (MG-995) (Kargov et al. 

2004). The hand includes the microcontroller circuit, which controls the actuators using input 

signals from different sources like EMG devices, force sensors, switches, etc. A 2000 mAh 

lithium-polymer battery was integrated into the hand assembly for supplying power to 

servomotors and the microcontroller. Silicon caps were installed on the fingers to enhance the 

grasping capability of the 3D printed hand.  

The proportional control scheme was realized, which provides actuation of the prosthetic hand 

fingers according to the intensity of the input signal from muscular contraction (Farina et al. 

2014). Such a scheme offers intuitive control and faster-grasping capability to the hand 

(Fougner et al. 2012). 

 First, the prosthetic hand operation was performed using the EMG control signal, after which 

it was done utilizing FMG sensor control. Amputees sequentially wore both the sensors on 

their forearm muscle (i.e., flexor carpi radialis muscle) and performed some basic operations 

like opening/closing and grasping simple and delicate objects with the developed prosthetic 

hand. Response time (closing/opening time) of the prosthetic hand with both the sensors were 

obtained from the recorded video of hand operation to see the ability of sensors in producing 

a faster control signal. Figure 5.7 shows the attachment of the designed FMG sensor on the 
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residual forearm stump of an amputee for controlling the operation of a 3D printed hand 

prototype. 

 
Figure 5.7 Controlling 3D printed hand prosthesis using the FMG signal of an amputee. 

5.3 Results and discussion 

5.3.1 Static and dynamic results 

The static calibration curve for the designed FMG sensor is shown in Figure 5.8. From the 

obtained curve, it can be concluded that the sensor's sensitivity remains almost constant over 

a lower range of input weight and starts to vary as weight increases above a specific value. The 

sensor is more sensitive to lighter loads as compared to heavier loads. The designed sensor can 

be a good option for detecting the shorter to larger muscular contractions of forearm muscles 

based on this feature. 
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Figure 5.8 Static calibration curve for the FMG sensor. 

For the application of different static loads, the developed sensor output was recorded for 120 

s, whose variation is shown in Figure 5.9. The drift error was determined with all the weights 

applied on the sensor for 120 s. Variation of drift error in percentage for all the applied weights 

is shown in Figure 5.10. The drift error has no relation with the loads; however, its value is 

always confined below 7 %. This feature of the sensor is acceptable as per the datasheet of 

FSR. 

 
Figure 5.9 Recorded output of the sensor for 120 s after application of different static loads. 
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Figure 5.10 FMG sensor drift error at different applied weights. 

The hysteresis curve shown in Figure 5.11 was obtained through the variation of output voltage 

with the increasing and decreasing strength of applied weight. The average hysteresis error 

calculated for the sensor was 6 %. 

 
Figure 5.11 Hysteresis curve obtained for the sensor. 
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Repeatability error for the sensor considering all the applied loads analyzed in terms of RSD 

percentage is described in Figure 5.12. The determined average repeatability error for the 

sensor was 3 %. However, the variation of RSD percentage was found larger for lighter loads. 

The obtained frequency response curve for the designed sensor is depicted in Figure 5.13. 

There are a flat amplitude response and linear phase, up to 400 Hz. A resonance peak was 

detected at about 800 Hz. Therefore bandwidth of the sensor is sufficient to characterize the 

rapidly varying FMG signal correctly, as the FMG spectrum for humans varies from 1-500 Hz 

(Zhen Gang Xiao and Menon 2019). 

 
Figure 5.12 Repeatability error of the sensor at different loads. 
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Figure 5.13 Dynamic response of the sensor: magnitude frequency response (upper panel) and 

phase frequency response (lower panel). 

5.3.2 EMG-FMG comparison 

The following results were obtained when subjects performed contraction of their forearm 

muscles with different intensities by flexing their fingers at a different strength. Figure 5.14 

shows simultaneously recorded raw EMG signal, its linear envelope, and FMG signal from the 

sensors for three different muscular contractions of decreasing intensity of a healthy subject. 

The first contraction represents the maximum voluntary contraction (MVC), while the other 

two contractions correspond to 50 % and 25 % of MVC. The EMG linear envelope was 

considered a percentage of MVC, whereas FMG signals were measured in volts. 
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Figure 5.14 Simultaneous recordings of (a) raw EMG signal, (b) linear envelope of EMG, (c) 

FMG sensor output for three different contractions of forearm muscle of decreasing intensity. 

 

A good similarity was observed between the EMG linear envelope and the signal produced by 

the FMG sensor. A two-tailed paired t-test was performed between these two signals for 

quantitatively analyzing their similarity. The result showed a high Pearson's correlation 

coefficient (r > 0.87) with a p-value < 0.0001 exhibiting the pairing was significantly effective. 

The similarity test was done using data of eight subjects for their total twenty-four contractions.  

However, at the end of the contraction EMG signal showed a delay with respect to the FMG 

signal. This delay is mainly due to the envelope detection stage involved in the EMG 

conditioning circuitry(D’Alessio and Conforto 2001). 
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5.3.3 Hand prosthesis control 

The linear envelope of the EMG signal was first utilized to control the prosthetic hand 

implementing a proportional control scheme. Further, the FMG control signal was used instead 

of an EMG signal for executing various hand operations (Figure 5.15). A total of three 

amputees and two healthy subjects participated in this trial and were asked to perform grasping 

of objects of daily livings with the 3D printed hand. The subjects were able to accomplish the 

assigned hand activities and reported no considerable differences between the EMG control 

and FMG control of the prosthetic hand. Subjects also revealed that the designed FMG sensor 

was easier and more comfortable to wear than the EMG sensor, which requires gelled 

electrodes.  

 
Figure 5.15 Different grasping operations performed by an amputee wearing a hand prosthesis. 

Moreover, the closing/opening time of the prosthetic hand with the EMG sensor was computed 

450/550 ms, while with the FMG sensor, it was 350/300 ms. This result shows that the FMG 

control provides a faster operating speed of the prosthetic device than the EMG control. 
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Therefore based on these preliminary tests and results, it can be concluded that the designed 

FMG sensor can become an excellent alternative to the EMG device for controlling a prosthetic 

hand. 

5.4 Conclusion 

In this chapter, a new FMG sensor has been presented that can detect the muscular contraction 

applied for controlling hand prostheses. The typical mechanical design and signal conditioning 

circuit of the sensor enables a measurable and reliable detection of muscular contraction 

compared to earlier research involving simple FSR sensors. The integration of a mechanical 

coupler, FSR element, conditioning circuitry, and power supply on a single chassis makes the 

sensor compact, wearable for immediate and long-term use.  The designed dual-channel sensor 

is a low-cost device that provides a non-invasive assessment of muscle activation (under the 

skin) and produces an output proportional to the intensity of contraction. Also, the sensor does 

not require the use of electrodes or any electrical interaction with the subject’s skin and does 

not need any pre-processing filters to detect muscular contraction levels as required by the 

other techniques like EMG or MMG. The designed sensor based on the piezoresistive effect 

provides a simple and sensitive mode to detect muscular contractions of different intensities. 

The signal produced by the sensor is comparable to EMG linear envelope and also faster in 

response. 

However, the designed sensor suffers from some static errors like drift and sensitivity errors, 

which can be minimized by further improvement in the signal conditioning circuitry (Paredes-

Madrid et al. 2018; Matute et al. 2018).  
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The sensor was successfully tested on human subjects for controlling the operation of an 

intrinsically actuated 3D printed hand prosthesis utilizing the proportional control strategy. 

The sensor provides faster operation of the prosthetic hand as compared to the conventional 

EMG sensor.  

Such a sensor can effectively monitor the muscular contraction as detected by the EMG device 

without any effect of noise sources such as electromagnetic interference, motion artifacts, etc., 

and can be used as an excellent alternative to an EMG sensor for controlling prosthesis or other 

assistive devices. 

The current study deals with a two-channel FMG sensor, which can be possibly expanded to 

an array of sensors for measuring contractions at multiple locations of muscles and tackling 

the crosstalk associated with the surrounding muscles. Moreover, the FMG sensor, along with 

the EMG and MMG sensor, can be effectively applied for diagnosing neuromuscular diseases, 

studying muscle fatigue, and controlling a multifunctional prosthetic hand. 
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