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 Chapter 4 

Single-channel sEMG based control of multi-functional 

prosthetic hand 
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4.1 Introduction 

There is rapid development in the field of upper-limb prosthesis due to the advancement in the 

EMG sensor, actuator, controller, and design-fabrication technologies. Various available 

prosthetic hands with multi-degrees of freedom (DOF) can provide decent grasping capability 

and a sufficient number of grip patterns to users (Endo et al. 2011; Belter et al. 2013). Although 

these hands offer several features and functionalities, their cost is excessively high; also, these 

require a significant number of training sessions for their accurate performance (Cordella et al. 

2016; “I-Limb Quantum”; “Bebionic Hand”; “Michelangelo Prosthetic Hand”; 

“VINCENTevolution 3”). 

The complete control of the multi-DOF myoelectric hand requires a large number of EMG 

sensors that significantly increases the cost and complexity of the system. Acquisition of multi-

channel EMG data involves placing multiple bipolar electrodes or high-density electrode 

arrays on the forearm muscle. Such configuration makes the system bulky, complex, costly 

and less robust (Cipriani, Controzzi, and Carrozza 2011; Al-Timemy et al. 2013; Geng et al. 

2016; Khushaba et al. 2017). The currently available prosthetic devices are controlled through 

a pattern recognition scheme based on the multiple inputs from EMG sensors and other devices 

like pressure sensors, accelerometers, mobile phones, etc. Pattern recognition (PR) based 

control scheme includes two significant steps, i.e., feature extraction and classification, for 

attaining higher output performance. First, the acquired EMG signals are transformed into a 

feature vector in the feature extraction process that corresponds to different hand activities. 

And then, the extracted features are further classified to recognize the specific motion patterns 

for controlling prosthesis (Englehart et al. 1999; Oskoei and Hu 2008; Ahsan, Ibrahimy, and 
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Khalifa 2011). The control schemes utilizing only single-channel EMG data to classify 

multiple hand activities have attained popularity currently.  

A simple approach for prosthetic control was proposed by utilizing single-channel EMG to 

classify four different hand motions (Chan, Lam, and Parker 2000). Vijay Pal et al., 2008 

classified low level and complex muscle contraction like finger flexion using a single-channel 

EMG system for controlling prosthetic devices (Singh and Kumar 2008). Giuseppina Gini et 

al., 2012 acquired and analyzed EMG signals (for different muscular contractions) by 

positioning electrodes on the forearm to distinguish multiple hand movements for the 

application in prosthetics (Gini et al. 2012). Wang et al., 2017 utilized single-channel EMG 

based PR to generate eight gestures for controlling a prosthetic hand (N. Wang, Lao, and Zhang 

2017). A simple and effective technique was presented that utilizes only a single-channel 

sEMG to recognize up to four gestures for controlling multi-DOF prosthetic hands (Tavakoli, 

Benussi, and Lourenco 2017). A single-channel sEMG envelope based gesture recognition 

technique was proposed for robotic application (Wu et al. 2018). 

Classification using single-channel EMG has several advantages over multi-channel EMG: (1) 

it does not require skilled positioning of a large number of electrodes that can make the 

acquisition setup complex and bulky, (2) lowers overall cost and, (3) reduces the computational 

complexity and time. Increasing the number of EMG channels will increase the classification 

accuracy but handling such a large number of featured data sets makes the task complicated 

(Maitrot et al. 2005; Erim and Lin 2008; S. Arjunan and Kumar 2010; Phinyomark, 

Phukpattaranont, and Limsakul 2012; S. P. Arjunan, 2008.). The classification of single-

channel EMG data remains unpopular for the application of real-time control of multi-

functional hand prostheses. The main issues are (1) the single-channel EMG system generates 
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a limited number of patterns, (2) sometimes it becomes hard to distinguish the patterns 

produced for different activities and, (3) the electrical noise interference associated with the 

EMG signal. Utilizing EMG envelopes for different contraction levels of forearm muscles 

rather than using patterns for different hand motions can overcome problems related to single-

channel EMG (Wu et al. 2018). 

This chapter proposes a multi-functional prosthetic hand that can perform six different grip 

patterns utilizing a single channel EMG signal from subjects. A previously designed sEMG 

sensor (in chapter 3) was utilized here for detecting muscular activations in the form of a 0-5 

V linear envelope. The EMG signals acquired from the forearm muscles of various subjects 

for their different levels of muscular contraction were classified using a Fuzzy logic system to 

enable six predefined hand gestures. The performance parameters such as accuracy, sensitivity, 

specificity, precision, and F1 score were determined and analyzed to see the effectiveness of 

classification. Further, the classification based control scheme was implemented in hardware 

for real-time operation of the developed prosthetic hand. The hand could perform six distinct 

grip patterns to grasp various objects utilizing EMG signals from subjects. 

4.2 Materials and Methods 

4.2.1 Electromyography 

4.2.1.1 EMG sensor 

Surface EMG signals consist of significant information regarding the activation of muscles 

that can be effortlessly utilized to control prosthetic devices. However, as these signals are 

influenced by several noises present within and outside the system, their reliable detection 

becomes complex. Therefore, a dry electrode-based single-channel sensor (described in 

chapter 3) was employed in this work to record EMG signals from subjects reliably (Prakash, 
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Sharma, and Sharma 2019). The sensor's output is a 0-5 V linear envelope proportional to the 

strength of muscular contraction. Figure 4.1 displays the basic block diagram of the sensor 

showing various stages. 

 
Figure 4.1 Block diagram of the sensor showing different stages. 

4.2.1.2 Muscle contractile force 

A sensitive band was designed using a force-sensitive resistor (FSR) to measure muscular 

contractile force in terms of voltage. The FSR sensing area was encased in a 3D printed 

structure to properly distribute muscular contractile force over the contact surface area 

(Esposito et al. 2018). Figure 4.2(a) shows the sensing portion of the designed FSR band, and 

4.2(b) depicts the voltage divider circuit for translating the change in resistance of FSR to the 

voltage output. The designed FSR band was attached to the flexor carpi ulnaris muscle on the 

forearm, as shown in Figure 4.2(c). Using the voltage output from the FSR band, a maximum 

of six different muscular contractile forces were defined in terms of % of maximum voluntary 

contraction (MVC) for recording EMG data. Table 4.1 describes the allocation of six different 

levels of muscle contractions in which the sixth level corresponds to MVC. 
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Figure 4.2 (a) FSR band, (b) translating circuit, (c) attachment of FSR band on the forearm. 

FSR output voltage (V) Contraction Contraction level 

0.8 25% of MVC 1 

1.25 40% of MVC 2 

1.7 55% of MVC 3 

2.2 70% of MVC 4 

2.8 85% of MVC 5 

3.2 MVC 6 

Table 4.1. Contraction levels for recording EMG data. 

4.2.1.3 Sensor attachment to the forearm 

Both the FSR band and the sEMG sensor were placed close to each other on the flexor carpi 

ulnaris muscle of the forearm, as depicted in Figure 4.3(b). The specified muscle on the forearm 

is directly responsible for the flexion of fingers and movement of the wrist (Supuk, Skelin, and 

Cic 2014; Lobo-Prat et al. 2014). FSR band measures the level of muscle contraction (in 

voltage) in terms of percentage maximum voluntary contraction (%MVC). At the same time, 

the sensor measures the EMG signals for each contraction level. Since the designed EMG 

sensor is dry electrode-based, it was attached to the forearm muscles using velcro tape. Figure 
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4.3(a) shows the attachment of the sEMG sensor to the residual forearm stump of a left-hand 

amputee. 

 
Figure 4.3 (a) Sensor attached on the forearm muscles of a transradial amputee, (b) attachment 

of sensor and FSR band together on the forearm muscles. 

4.2.2 Subjects 

EMG signals for fifteen subjects (five amputees and ten intact) were acquired for their different 

contraction levels (i.e., contractile force) of forearm muscles using the designed sensor.  Before 

conducting this experiment, ethical approval was taken from the ethical committee, institute of 

medical sciences, BHU, Varanasi, India. Table 4.2 provides the particulars of amputees with 

their type and reason for amputation, participated in this experiment. In addition, written 

consent was taken from each subject who participated in this work. The contraction levels were 

decided based on the force exerted by the flexor muscles on the force-sensitive resistor (FSR) 

during contraction. As the amputees cannot perform natural hand activities with their residual 

limb, to maintain consistency in EMG data, similar activities (i.e., contraction of muscles at 

different forces) were decided for amputees and healthy subjects. 
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S.no. Gender Age Weight Type of Amputation Reason of Amputation 

1. Male 50 85 kg Transradial (right hand) Accident 

2. Male 12 25 kg Transradial (right hand) Accident 

3. Male 20 50 kg Transradial (left hand) Accident 

4. Female 25 52 kg Transradial (right hand) By birth 

5. Male 30 61 kg Transradial (right hand) Accident 

Table 4.2. Details of amputees participated in the experiment. 

4.2.3 Experimental protocol and data acquisition 

The output of both the devices (i.e., FSR band and EMG sensor) were connected to the analog 

input ports of the data acquisition (DAQ) device. Data acquisition was executed on the Lab 

VIEW 2015 software platform at a sampling frequency of 2 kHz. The real-time interface of 

the DAQ device shows the muscle contraction level and its corresponding envelope of the 

EMG signal. For EMG recording, all the subjects were instructed to sit comfortably on the 

chair, with their elbow joint rested on the table. Each subject, watching the computer screen, 

performed six different levels of muscular contractions as per Table 4.1. For each contraction 

level, ten repeated EMG data were recorded. Each action (i.e., muscle contraction) was done 

by the subjects for 5 s and for the same duration, data were recorded. All the contractions done 

in this study were isometric in which muscle length remains constant (Nazmi et al. 2016). 

4.2.4 Feature Extraction 

Feature extraction is an important technique for extracting valuable information present in the 

sEMG signal and eliminating the undesired part and interferences. The feature vector should 

be carefully selected for the successful classification of the EMG signal. The EMG signal 

features are chiefly classified as time-domain (TD), frequency domain (FD), and time-
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frequency domain (TFD). TD features refer to the statistical parameters which are directly 

derived from the signal amplitude varying with time. On the other hand, FD features give the 

power spectrum density (PSD) of the signal, which are indirectly computed using various 

transform techniques. TFD features provide collective information about the time and 

frequency of the signal. These features can depict frequency-changing details of the signal at 

distinct time intervals, i.e., non-stationary behavior about the signal (Nazmi et al. 2016).TD 

features are extensively used for EMG signal classification over FD and TFD features due to 

their decent performance in low noise environments and lesser computational time as well as 

complexity   (Englehart et al. 1999; Oskoei and Hu 2008; Al-Mulla, Sepulveda, and Colley 

2011; Ahsan, Ibrahimy, and Khalifa 2011; Khushaba et al. 2017). Also, the TD features are 

most suitable for real-time applications like the control of prosthetics. Although the EMG 

signal is stationary, i.e., its statistical properties change over time, but TD features assume the 

data as a stationary signal (Phinyomark, Phukpattaranont, and Limsakul 2012). In this work, 

four TD features were proposed through an extensive literature survey and were computed on 

LabVIEW using the pre-processed EMG data of 5 s duration. These statistical features in the 

time domain are described as follows: 

(i) Mean Absolute Value (MAV) 

The MAV is defined as the average of the absolute value of the EMG signal. It is directly 

related to the levels of muscular contractions and is applied widely for myoelectric control 

application. 

MAV =
1

N
∑ |xn|N

n=1          (4.1) 
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Where 𝑥𝑛 represents the EMG signal in a segment n, and N denotes the length of the EMG 

signal. 

(ii) Integrated EMG (IEMG) 

It is the summation of the magnitude of the EMG signal for a given number of samples. It is 

related to the EMG signal sequence firing point (Phinyomark, Phukpattaranont, and Limsakul 

2012). 

IEMG = ∑ |xn|N
n=1           (4.2) 

(iii) Maximum Value of Signal (MAX) 

The maximum value of the EMG signal is its peak amplitude for a given length. This feature 

is used for a signal whose amplitude swings above zero value. 

(iv) Root Mean Square (RMS) 

It gives the square root of the average power of the EMG signal calculated for a given period. 

It is related to the constant force and non-fatigued contraction of the muscle. It is also similar 

to the standard deviation method. 

RMS = √
1

N
∑ xn

2N
n=1          (4.3) 

4.2.5 Classification 

The EMG signal features for six different contraction levels of forearm muscles were classified 

to recognize six predefined gestures of the hand (shown in Figure 4.9) using Fuzzy logic 

classifier (FLC). 
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4.2.5.1 Design of classifier 

The Fuzzy logic (FL) classifier was designed on LabVIEW utilizing the Fuzzy system designer 

tool. The Gaussian membership function (MF) was used for the inputs and triangular MF for 

the output to perform FL classification. The Centre of area (COA) was employed as a method 

for defuzzification. Based on the knowledge from the different levels of contraction, the rules 

were formed. The rules created for FLC are mentioned in Table 4.3. 

Rules MAV IEMG MAX RMS Result 

1 Level 1 Level 1 Level 1 Level 1 Fine pinch 

2 Level 2 Level 2 Level 2 Level 2 Tripod grip 

3 Level 3 Level 3 Level 3 Level 3 Spherical grip 

4 Level 4 Level 4 Level 4 Level 4 Fingers flexion 

5 Level 5 Level 5 Level 5 Level 5 Cylindrical grip 

6 Level 6 Level 6 Level 6 Level 6 Power grip 

Table 4.3. Fuzzy rules. 

The Four extracted features, i.e., MAV, IEMG, MAX, and RMS, were inputs to the FLC, and 

each input variable has six fuzzy sets, i.e., Level 1, Level 2, Level 3, Level 4, Level 5 and 

Level 6. The outputs of FLC were six hand gestures, which are Fine pinch, Tripod grip, 

Spherical grip, Fingers flexion, cylindrical grip, and power grip. Figure 4.4 shows the block 

diagram describing the FL classification process from a single sEMG channel for recognizing 

six different hand gestures. 
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Figure 4.4 Block diagram for Fuzzy logic classification based control scheme. 

4.2.5.2 Classifier’s performance 

For assessment of classification performance, the parameters such as accuracy, sensitivity, 

specificity, precision and 𝐹1 score were determined. These statistical parameters are 

extensively used for analyzing the utility of classification-based systems (Gandolla et al. 2016). 

Accuracy (ACC) was defined as the ratio of the total number of correctly classified samples to 

the total number of samples. ACC was evaluated using equation (4.4), where  

True positive (TP): gives the number of samples correctly classified for a specific hand gesture.  

False positive (FP): provides the number of samples wrongly classified for the same hand 

gesture.  

True negative (TN): furnishes the number of samples correctly classified as other hand 

gestures.  

False negative (FN): gives the number of samples wrongly classified as the same hand gesture.  

Accuracy(ACC) =     
(∑ TP +∑ TN)

(∑ TP +∑ TN+∑ FP +∑ FN)
       (4.4) 
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The only accuracy is not adequate to decide the appropriate class since it does not include the 

misclassifications, and there can be systematic error bias (Castro, Arjunan, and Kumar 2015). 

Therefore the other parameters like sensitivity (SEN), specificity (SPE), precision (PR), and 

𝐹1 score were considered in this study and computed using equations (4.5)-(4.8). 

Sensitivity was defined as the ratio of the total number of correctly classified samples for the 

specific gesture to that of the total number of classified samples for the same gesture. 

Sensitivity(SEN) =     
∑ TP

(∑ TP +∑ FN)
        (4.5) 

Specificity was defined as the ratio of the total number of correctly classified samples as the 

other gestures to that of the total number of classified samples as other gestures. 

Specificity(SPE) =     
∑ TN

(∑ TN +∑ FP)
        (4.6) 

Precision was defined as the ratio of the total number of correctly classified samples for the 

specific gesture to the total number of classified samples. 

Precision(PR) =     
∑ TP

(∑ TP +∑ FP)
        (4.7) 

F1 score was defined as the harmonic mean of precision and sensitivity. It analyzes the 

classifier’s performance better than the accuracy. 

F1 Score(F1) =     
2(SEN∗PR)

(SEN+PR)
         (4.8) 

4.2.6 Real-time implementation and testing 

4.2.6.1 Prosthetic hand development 

Inmoov hand model parts were printed using Raised 3D N1 printer and were assembled as 

shown in Figure 4.5(a) (InMoov n.d.). The 3D printed hand was extrinsically actuated (i.e., the 
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location of actuators outside the hand) using five high torque servomotors (MG-995) via 

tendons (Kargov et al. 2004). Each finger was individually activated through their servomotor. 

Pulleys attached to the motors were used to manipulate the tendons to provide flexion and 

extension of fingers. High tension fishing line of 0.60 mm diameter was utilized as tendons. 

The hand was capable of providing a total of 16 degrees of freedom (DOF). Silicon caps were 

installed at the tip of each finger to improve the gripping ability of the hand. 

 
Figure 4.5 (a) Developed 3D printed hand prototype, (b) experimental setup for real-time 

operation of hand. 

4.2.6.2 Control scheme 

A control strategy in myoelectric prosthesis translates the classified features of the EMG signal 

to control command for actuation of the prosthetic device. The FL based classification scheme 

was further implemented in hardware for real-time operation of developed multi-DOF hand 

prototype. The classifier output (i.e., hand gestures in terms of weight) was fed to the threshold-

based position controller to generate control signals to drive the servomotors linked 

mechanically with a 3D printed hand. The threshold control algorithm was employed to govern 

the servomotor position to get the desired flexion and extension of fingers. Figure 4.6 shows 
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the scheme for controlling multifunctional prosthetic hands using a single-channel EMG signal 

from the forearm. All the software parts of the control scheme were performed on LabVIEW 

and were converted to Arduino programming code (using Arduino compatible compiler for 

LabVIEW). The Arduino microcontroller receives analog input from the EMG sensor and 

generates pulse width modulation (PWM) signal for the operation of servomotors. The 

microcontroller was integrated inside the hand assembly. All the electrical and electronic 

components present in the hand prototype receive power supply from a 5 V, 10000 mAh battery 

bank. The designed sEMG sensor was interfaced with the developed hand prototype to produce 

a multifunctional myoelectric hand prototype. 

 
Figure 4.6 The control scheme for real-time control of the developed prosthetic hand. 

4.2.6.3 Method for testing and analysis 

The developed prosthetic hand setup was tested on five subjects (two amputees and three 

intact) for executing different grasping activities. Figure 4.5(b) describes the experimental 

setup for controlling prosthetic hand utilizing EMG signals from the user’s forearm muscle. 

The EMG sensor was positioned at the flexor carpi ulnaris muscle of the participant’s forearm 

through the velcro strap for providing an input signal to the prosthetic device. The participants 
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were advised to keep their forearms at a stable position while testing. The hand prototype was 

fixed vertically upward on the table.  

All five participants were asked to perform the six different grip actions of the hand using their 

six distinct levels of muscular contractions. Subjects attempted each grip action 20 times, and 

the number of correct attempts was noted. Each grip action was performed for about 30 s. 

Moreover, the time elapsed for performing each grip action was evaluated from the recorded 

video of hand operation, considering all the subjects. The elapsed times for accomplishing 

different grip patterns give the response times of the developed prosthetic hand. 

4.3 Results  

4.3.1 Sensor output 

The EMG envelopes obtained for six distinct contraction levels of forearm muscles from a 

subject using the designed sensor are shown in Figure 4.7.  

 
Figure 4.7 EMG envelopes for six levels of muscular contraction using the designed sensor. 
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4.3.2 Extracted features 

The feature extraction process was performed by evaluating and analyzing four statistical 

features. Figure 4.8 describes the 3D plots showing the variation of four TD features, i.e., 

MAV, IEMG, MAX, and RMS, with six different levels of muscular contractions for all the 

subjects. 

 
Figure 4.8 3D plot for variation of (a) MAV, (b) IEMG, (c) MAX, (d) RMS with different 

muscular contraction levels for all the subjects. 

4.3.3 Classification performance 

The performance of the FL system was tested for a total of 450 attempts (i.e., 75 attempts for 

each gesture). The percentage of success for classifying six hand gestures is described in Table 

4.4. 
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Hand 

gesture 

Level 

number 

Total number of 

testing attempts 

Number of 

correctly 

classified motion 

Number of 

wrongly classified 

motion 

Percentage of 

success (%) 

Fine pinch 1 75 75 0 100 

Tripod grip 2 75 69 6 92 

Spherical 

grip 

3 75 72 3 96 

Fingers 

flexion 

4 75 71 4 94.6 

Cylindrical 

grip 

5 75 70 5 93.3 

Power grip 6 75 75 0 100 

Overall success 95.98 

Table 4.4. Achieved classification percentages for the six gestures. 

In biomedical decision-making procedures, the ROC analysis technique is widely employed to 

determine the discrimination capability of the classification system  (Taşar and Gülten 2017). 

In this work, FLC algorithm performance through ROC analysis for six hand activities is 

described in Table 4.5. 

ROC analysis Hand Gestures 

Classification 

output 

Fine 

pinch 

Tripod 

grip 

Spherical 

grip 

Fingers 

flexion 

Cylindrical 

grip 

Power 

grip 

Fine pinch 75 0 0 0 0 0 

Tripod grip 0 69 1 0 0 0 

Spherical grip 0 6 72 4 0 0 

Fingers flexion 0 0 2 71 5 0 

Cylindrical grip 0 0 0 0 70 0 

Power grip 0 0 0 0 0 75 

Table 4.5. ROC analysis for each hand activity. 
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The five performance parameters determined using equation (4)-(8) are expressed in a 2 x 2 

contingency table. Contingency matrices for each hand gesture are described in Table 4.6. 

Fine pinch 

TP=75 FN=0 75 

FP=0 TN=375 375 

75 375 450 

ACC=1.0 

SEN=1.0 

SPE=1.0 

PR=1.0 

F1=1.0 

 

Tripod grip 

TP=69 FN=1 70 

FP=6 TN=374 380 

75 375 450 

ACC=0.984 

SEN=0.985 

SPE=0.984 

PR=0.92 

F1=0.951 

 

Spherical grip 

TP=72 FN=10 82 

FP=3 TN=365 368 

75 375 450 

ACC=0.971 

SEN=0.878 

SPE=0.991 

PR=0.96 

F1=0.917 

 

Fingers flexion 

TP=71 FN=7 78 

FP=4 TN=368 372 

75 375 450 

ACC=0.975 

SEN=0.910 

SPE=0.989 

PR=0.946 

F1=0.927 

 

Cylindrical grip 

TP=70 FN=0 75 

FP=5 TN=375 375 

75 375 450 

ACC=0.988 

SEN=1.0 

SPE=0.986 

PR=0.933 

F1=0.965 

 

Power grip 

TP=75 FN=0 75 

FP=0 TN=375 375 

75 375 450 

ACC=1.0 

SEN=1.0 

SPE=1.0 

PR=1.0 

F1=1.0 

 
 

Table 4.6. Contingency matrices. 

4.3.4 Real-time testing of the multi-functional prosthetic hand 

The developed prosthetic hand implemented with FL classification based control strategy was 

tested in real-time to produce the six predefined grip patterns shown in Figure 4.9. 
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Figure 4.9 Six predefined grip patterns of the human hand and the grip patterns obtained by 

prosthetic hand. 

With six grip patterns, the prosthetic hand was able to grasp objects of various shapes utilizing 

different levels of muscular contraction. Figure 4.10 shows the grasping actions performed by 

the prosthetic hand using the EMG signal of a subject. 

 
Figure 4.10 Different grasping actions performed by the prosthetic hand utilizing EMG signal 

from a subject. 
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The number of correct grip actions performed by the subjects out of 20 attempts for each grip 

action is provided in Table 4.7.  The last row of the table provides the average success % of all 

the subjects for accomplishing each grip pattern. The overall success rate for all the grip 

patterns was observed at 91.3 %.  

Number of 

attempts  

(20) 

Numbers of correctly executed grip action 

Fine 

pinch 

Tripod 

grip 

Spherical 

grip 

Fingers 

flexion 

Cylindrical 

grip 

Power 

grip 

Subject 1 18 16 16 15 18 20 

Subject 2 18 17 18 17 19 19 

Subject 3 19 18 18 18 18 19 

Subject 4 19 19 18 17 19 20 

Subject 5 20 19 19 18 19 20 

Average % of 

success 

94 89 89 85 93 98 

Table 4.7. The number of correct grip actions performed by the subjects. 

Furthermore, the response times of the prosthetic hand evaluated for each grip pattern, 

considering all the subjects, are illustrated in the box whisker’s plot shown in Figure 4.11. The 

plot shows the variation of response times of each grip action type for all the subjects in which 

average and standard deviation are indicated. 

There were some movements observed for the forearm with respect to the elbow joint while 

doing real-time testing. But these movements did not affect the muscular contraction level in 

performing a specific grip activity. Each subject participated in the hand prosthesis trial for 

about two hours, and there was no report of muscle fatigue from any of them. 
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Figure 4.11 Variation of the response time of prosthetic hand for performing each grip pattern 

considering all the subjects. 

4.4 Discussion 

The designed EMG sensor was able to produce a linear and smooth envelope proportional to 

the level of muscular contraction. This attribute of the sensor allows the allocation of different 

contraction levels to identify various hand gestures. 

The extracted features from the recorded EMG signals for all the subjects are distinguishable 

for every level, which is clear from the 3D plot shown in Figure 4.8. The time-domain features 

were used as a decent source of input for the Fuzzy logic classifiers to recognize the predefined 

hand gestures. Fuzzy systems can detect patterns in biomedical data that are not easily 

discoverable by other means. Fuzzy logic (FL) uses the tolerance of inaccuracy, ambiguity, 

and slight stretch, to attain controllable, robust, and affordable alternatives for classifications 

(Ajiboye and Weir 2005). Ahmad and Chappel classified the contraction on wrist muscles to 

control artificial hand using FL classifier and achieved an accuracy of 97 % (Ahmad, 2009). 
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Xie et al., 2014 suggested that the rule-based approaches within the FL schemes can mimic 

intentions more closely compared to the other classification systems (Xie et al. 2014). 

In this study, all six hand gestures were identified, with an overall success rate of more than 

94%. However, the determined performance parameters showed the average classification 

accuracy above 98% and the other parameters such as sensitivity, specificity, precision, and 

F1 score over 95%. Thus, the accuracy of the proposed system was observed comparable to 

that of multichannel channel EMG based classification performed by the researchers (Chan, 

Lam, and Parker 2000; Singh and Kumar 2008; Castro, Arjunan, and Kumar 2015; F. Wang, 

Oskoei, and Hu 2017). This approach reduces the overall cost and the complexity of the system 

and makes the approach more practical for the application of hand prosthesis control.  

Moreover, utilizing EMG signal envelopes rather than EMG signal patterns for performing 

classification provides a more reliable approach requiring very little training effort and more 

intuitive for the user. Because pattern recognition based classification rely on matching of 

produced EMG patterns with the training patterns but these patterns tend to change 

significantly due to factors such as sweat, electrode shift, muscle fatigue, etc. (Hargrove, 

Englehart, and Hudgins 2008; Ortiz-Catalan et al. 2012; Roche et al. 2014; Stango, Negro, and 

Farina 2015). 

Further, the FL classification scheme, along with the threshold control, was implemented in 

real-time to achieve six different grip patterns of the designed prosthetic hand, i.e., fine pinch, 

tripod grip, spherical grip, fingers flexion, cylindrical grip, and power grip. The subjects 

utilizing EMG signals for their distinct levels of muscular contractions could accomplish six 

different grasping activities with an overall success rate above 91%. The response time for 
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executing different grip patterns was observed at less than 400 ms, which is an acceptable delay 

for myoelectric hand operations (Englehart, Hudgin, and Parker 2001). The prosthetic hand 

system with the designed control strategy was able to accomplish different grasping operations 

that can furnish activities of daily livings (ADLs). 

4.5 Conclusion 

As per this research, multiple operations, i.e., grip patterns, were obtained for the developed 

prosthetic hand using a single channel EMG sensor. The acquired data with the self-designed 

sensor were classified to identify six different hand gestures using the Fuzzy logic system. The 

classifier's overall performance was evaluated in terms of classification accuracy, sensitivity, 

precision, specificity, and F1 score for recognizing every gesture. The output gestures from the 

classifier were performed in real-time on the developed hand prototype. Using EMG signals 

for different synergies of forearm muscles, the hand was able to implement six distinct grip 

patterns for dexterous grasping of various-shaped objects with a very less number of training 

sessions. The developed hand validated on five subjects showed a success rate (>91%) and 

faster response for performing different grip actions.  The developed multi-functional hand in 

the future can be validated for many users to see its tolerance level to external disturbances. 

The one disadvantage of the proposed system is that its functional capability is confined to six 

hand actions. Also, there should be control over the grip force while grasping objects, which 

can be achieved by installing pressure sensors at the fingertips and implementing a closed-loop 

control system. 
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Moreover, such a multi-functional hand based on the single-channel EMG system can provide 

a low-cost solution to amputees for performing their primary tasks of daily living as compared 

to the commercially available hands. 
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