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Chapter 3 

A dry electrode-based compact-sized sEMG Sensor for 

myoelectric hand prosthesis 
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3.1 Introduction 

Measurement of surface electromyography (sEMG) signals requires the use of myoelectrodes 

and appropriate preprocessing circuitry (Drost et al. 2006). The quality of the sEMG signal for 

controlling prosthesis mainly relies on factors like electrode type, its placement on the skin, 

and the preprocessing circuitry (Shobaki et al. 2013; Imtiaz et al. 2013). Surface myoelectrodes 

give the basic assessment of the EMG signal under the skin. These are categorized into wet 

and dry type electrodes (Figure 3.1). Silver-silver chloride (Ag/AgCl) is a wet type electrode 

that provides good signal quality and low electrode-skin impedance but has some limitations. 

These electrodes may cause irritations and allergies to the skin, and their long-time use can 

degrade the quality of the signal because the gel in the electrode dries with time. Moreover, 

these require skin preparation, which increases the time and cost of measurement (Baek et al. 

2008; Pylatiuk et al. 2009). These limitations make the wet electrodes unsuitable for prosthetic 

application. On the other hand, dry electrodes do not require gel or skin preparation procedures, 

reducing time and effort to set up. Although these electrodes may have higher skin-electrode 

impedance and may be susceptible to motion artifacts, there is a possibility of getting stronger 

sEMG signals with these electrodes (Searle and Kirkup 2000). 

  
Figure 3.1 (a) Dry type surface myoelectrodes, (b) wet type surface myoelectrodes. 
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Pascal laferriere et al, 2011 proposed dry flexible electrodes and compared their performance 

with the commercial Ag/AgCl electrodes for detecting muscle contractions under different 

loading conditions (Laferriere, Lemaire, and Chan 2011). A finely machined toothed silver 

electrode was developed for acquiring EMG signal, which showed performances similar to 

gelled type electrode and better than the flat silver surface (Jamal and Kim 2018). 

Myoelectric prosthesis requires a sensor that can reliably capture surface Electromyography 

(sEMG) signals from amputees for its controlled operation. The main problems with the 

presently available EMG devices are their extremely high cost, large response time, noise 

susceptibility, less amplitude sensitivity, larger size, and inability to provide the open-source 

platform (Supuk, Skelin, and Cic 2014; Imtiaz et al. 2013; Drost et al. 2006; Farina et al. 2014; 

Farrell and Weir 2007; Milosevic, Benatti, and Farella 2017). Moreover, the performance of 

the majority of available EMG devices is based on wet type electrodes, which cannot be used 

for long-term prosthetic applications. Some commercially available EMG sensors based on dry 

and wet type electrodes are already described in Table 2.1 of chapter 2.  

This chapter describes the development of a dry electrode-based compact sEMG sensor for the 

application of hand prostheses. The sensor consists of an electrode interface, signal 

conditioning unit, and power supply unit, all encased in a single package. The sensor is an 

upgraded version of the earlier developed sensor (described in chapter 2). The performance of 

dry electrodes employed in the electrode interface was analyzed with the conventional 

Ag/AgCl electrodes. Moreover, the output performance of the developed sensor was compared 

with commercial EMG sensor regarding the signal-to-noise ratio (SNR), sensitivity, and 

response time. Finally, the developed sEMG sensor was further tested on amputees to control 

the operation of a self-designed 3D printed prosthetic hand. 
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3.2 Materials and Methods 

3.2.1 Design and development of sEMG sensor 

The proposed sEMG sensor mainly consists of silver palette electrodes as an electrode 

interface, a signal conditioning section, and a power supply unit embedded in a single structure. 

Figure 3.2(a) shows the block diagram of the proposed sEMG sensor. Except for the electrode 

interface, the other units like the conditioning circuitry and power supply of this sensor were 

similar to that of the earlier developed sensor (described in chapter 2). 

3.2.1.1 Fabrication of electrode interface 

The skin interface of the sensor was designed using three silver palette electrodes of 1.24 cm 

diameter each. The electrodes were embedded in the sensor base at an inter-electrode distance 

of 1.25 cm, shown in Figure 3.3(b). The two electrodes at the end position are intended for 

target muscles, while the middle electrode serves as a reference to make the whole arrangement 

a differential one. This electrode configuration minimizes the motion artifacts due to electrode 

cables' movement (Gerdle et al. 1999). Silver metal as a surface myoelectrode serves several 

advantages such as the good property of biosignal conduction and biocompatibility, does not 

require skin preparation, works well under sweat and wet conditions, cheaper for long-term 

use, non-toxic and non-reactive. (Searle and Kirkup 2000; Laferriere, Lemaire, and Chan 2011; 

Jamal and Kim 2018). 
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Figure 3.2 (a) Block diagram representation of the proposed EMG sensor, (b) detailed circuit 

for the envelope detector. 

3.2.1.2 Design of preprocessing circuitry 

A signal conditioning circuitry consisting of a preamplifier, a band-pass filter, inverting 

amplifier, and envelope detector was designed to convert the raw sEMG signal directly from 

the electrodes to an even voltage signal (similar to chapter 2). Figure 3.2(a) and 3.2(b) describe 

the different stages of the EMG signal conditioning unit. 

3.2.1.3 Sensor description 

Figure 3.3(a) describes the front view of the sensor comprising the signal conditioning circuitry 

and power supply unit, whereas Figure 3.3(b) depicts the rear view of the sensor, i.e., sensor 

base showing the electrode interface. The dimension of the developed sensor is 25×70 mm2, 

which can be further reduced (up to one-third of the original dimension) by using small size 

SMD (surface-mount devices) components and professional tools for fabrication. The power 

consumption of the developed sensor was estimated 30 mA using the datasheets of the 

components employed in the circuitry. 
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Figure 3.3 (a) Front view of the developed sensor, (b) Rear view of the developed sensor. 

3.2.2 Experimental setup for Assessment of sensor performance 

3.2.2.1 Selection of sensor for comparison 

The performance of the developed sEMG sensor was validated by comparing its output 

parameters with the conventional EMG sensor. Specifications mentioned in Table 2.1 (chapter 

2) show that Ottobock 13E200 and myoware muscle sensor are the two devices that provide 

similar output as the developed sensor. Myoware muscle sensor was preferred for comparison 

due to its low cost, availability and application in prosthetics (Tavakoli, Benussi, and Lourenco 

2017).  

S.no. Gender Age Weight Type of 

Amputation 

Reason of 

Amputation 

1. Male 20 50 kg Transradial(left 

hand) 

Accident 

2. Male 50 85 kg Transradial(right 

hand) 

Accident 

3. Male 12 25 kg Transradial(right 

hand) 

Accident 

Table 3.1 Details of amputees participated in EMG data acquisition. 

EMG data were acquired from a total of ten subjects (three amputees and seven intact) using 

both sensors for determining their output parameters. Ethical approval was taken from the 
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Ethical Committee, Institute of medical sciences, BHU, Varanasi before performing this 

experiment. Details of each amputee who participated in this work with their type and the 

reason for amputation are described in Table 3.1. 

3.2.2.2 Positioning of sensors 

For acquiring the EMG data, both the sensors were attached to the forearm muscles of subjects, 

as shown in Figure 3.4. The developed sensor is dry electrode-based; it was attached using 

velcro tape, whereas the myoware muscle sensor was fixed through disposable Ag/AgCl 

electrodes. The target electrodes of both the sensors were placed at flexor carpi radialis and 

flexor carpi ulnaris, while the reference electrode of the myoware sensor was placed at the 

elbow portion. These specified muscle groups on the forearm are directly responsible for the 

palm and wrist movements of interest (Supuk, Skelin, and Cic 2014). 

 
Figure 3.4 Attachment of (a) developed sensor on the healthy subject, (b) conventional sensor 

on the healthy subject, (c), (d) developed sensor on amputees. 
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3.2.2.3 Defining the level of muscular contraction 

The EMG data for all the subjects were recorded for a different level of contractions (i.e., 

contractile force) of their forearm muscles. As the amputees cannot perform natural hand 

activities with their residual limb, the same activities were decided for amputees and healthy 

subjects to maintain uniformity in EMG data. The different levels of contractile force were 

selected from the force exerted by flexor muscles on the force-sensitive resistor (FSR) during 

contraction. A highly sensitive band comprising FSR was developed to measure muscular 

contractile force in terms of voltage. The FSR sensing portion was encased in a 3D printed 

structure to properly distribute muscular contractile force over the contact surface area. Figure 

3.5 shows the sensing area of the designed FSR band, its voltage divider circuit for converting 

the change in resistance of FSR to voltage output and its attachment to the forearm for 

measuring contractile force. Using the force curve from the FSR datasheet (FSR 406) and 

circuit in Figure 3.5(b), a force voltage calibration curve was obtained, which is shown in 

Figure 3.6 (“FSR Integration Guide - Interlink Electronics | DigiKey”). A maximum of six 

different muscular contractions were defined for recording EMG data from the obtained 

calibration curve, as indicated in Table 3.2. The output voltage of the 6th level corresponds to 

the maximum voluntary contraction (MVC) of the forearm muscle. Attachment of developed 

sensor and FSR band was done together on the forearm muscles as shown in Figure 3.5(d) for 

recording EMG signal at different contraction levels. 
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Figure 3.5 (a) Sensing area of the FSR band, (b) Output circuit for the band, (c) Attachment 

of band to the forearm, (d) Attachment of the developed sensor and band together to the 

forearm. 

FSR output voltage (V) Force (N) Contraction level 

0.8 0.18 1 

1.25 0.2 2 

1.7 0.3 3 

2.2 0.5 4 

2.8 1 5 

3.2 2.5 6 

Table 3.2 Contraction level determined from FSR output. 

 
Figure 3.6 Force voltage calibration curve for FSR band. 
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3.2.2.4 Data acquisition 

EMG data acquisition was performed using NI ELVIS II+ hardware and Lab VIEW 2015 

software interface. As per the levels defined in Table 3.2, the subjects were asked to perform 

six different levels of muscular contractions of their forearm, and ten repeated readings were 

recorded for each level. The duration of each reading was 6 seconds. All the data were acquired 

at a sampling rate of 2 kS/s. 

3.3 Results and discussion 

The developed EMG sensor mainly depends on the performance of the electrode interface and 

the employed signal conditioning circuitry. Therefore, there are several measures used to 

quantify the quality of electrodes. The most prominent are electrode-skin contact impedance 

and signal-to-noise ratio (SNR) (Konrad, 2005). 

Similarly, the overall output performance of the developed sensor can be analyzed by various 

characteristics like SNR, amplitude sensitivity, and response time. Therefore the performance 

parameters of the proposed electrode and the sensor were separately determined and compared 

with that of the standard system. 

3.3.1 Electrode performance 

The performance of silver palette electrodes embedded in the sensor was compared with the 

standard disposable Ag/AgCl electrodes regarding electrode-skin impedance and signal-to-

noise ratio (SNR). 

3.3.1.1 Electrode-skin impedance 

Grimnes’s method was used for determining the electrode-skin impedance of individual 

surface electrodes (Grimnes 1983). A constant sinusoidal current of 50 µA at 50 Hz (generated 
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by a voltage-controlled current source) was passed through the skin from one electrode and 

exited from the other. The impedance values for the proposed electrodes and disposable 

electrodes were obtained and recorded using Lab VIEW with NI ELVIS II+ hardware interface 

at a sampling frequency of 2 kS/s. The location of both the electrodes was kept the same for 

the measurement of each impedance. Impedance vs. time plot for both the electrodes was 

obtained using the recorded data for 15 minutes. The impedance values for the proposed 

electrode showed a decrease over time, which is quite clear from Figure 3.7. In general, a lower 

impedance is desired for better conduction of electrodes (Konrad, 2005). A comparison 

regarding observed impedance values for both electrodes is provided in Table 3.3. After a 

certain settling time, dry metal electrodes show comparable impedance values to wet type 

electrodes (Searle and Kirkup 2000). 

 
Figure 3.7 Obtained impedance response for both the surface electrodes. 
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3.3.1.2 Electrode SNR 

Assessment of noise performance of the proposed electrode was analyzed through evaluation 

of signal-to-noise ratio (SNR). SNR was determined as the ratio of root mean square (RMS) 

value of raw EMG signal recorded during muscular contraction to the RMS value of the 

undesired signal (i.e., baseline noise) recorded while the muscle is at rest (Agostini and 

Knaflitz 2012). The raw EMG signals with both the electrodes were recorded for maximum 

voluntary contraction (MVC) of the forearm muscle, whereas the undesired signals were 

recorded for no contraction. The data of 6 s duration were acquired for each subject. The SNR 

value was evaluated for each subject using equation (3.1). Average SNR values of all the 

subjects determined for both the electrodes are mentioned in Table 3.3. The table shows that 

the proposed electrode provides similar SNR values as the conventional Ag/AgCl electrode. 

𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10 (
𝑅𝑀𝑆𝑠𝑖𝑔𝑛𝑎𝑙

𝑅𝑀𝑆𝑛𝑜𝑖𝑠𝑒
)         (3.1) 

 

S.No. Type of electrode Area (mm2) Impedance (kΩ) SNR (dB) 

1 Disposable Ag/AgCl 314 48 24.4 

2 Silver palette 120 59 26.7 

Table 3.3 Performance comparison for surface electrodes. 

3.3.2 Sensor overall performance 

3.3.2.1 Output 

Figure 3.8 shows the EMG signals for six different levels of muscular contractions (i.e., 

activities) of an amputee recorded with both the sensors. To quantitatively analyze the 

similarity between the signals of both the sensors, a two-tailed paired t-test was conducted. 

The similarity test was performed using EMG data of all the ten subjects considering their 
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every level of muscular contraction separately. The result showed a high Pearson’s correlation 

coefficient (r > 0.95) with a p-value < 0.0001, revealing the pairing was significantly effective. 

 
Figure 3.8 Envelopes produced by the two sensors for six different levels of muscular 

contractions of an amputee. 

3.3.2.2 SNR  

To analyze the signal quality of both the sensors, their SNR values were determined. EMG 

signals using both the sensors were acquired for the same contractile force of the forearm 

muscle (i.e., for MVC), while noises were acquired for no contraction. Figure 3.9(a) shows an 

EMG waveform indicating baseline noise and signal strength, whereas Figure 3.9(b) and 3.9(c) 

describe the recorded baseline noises for a subject with both sensors. For each subject, the SNR 

value was calculated using equation (2), considering data of 6 s duration. Table 3.4 gives the 

evaluated SNR values for all the subjects with both sensors. In the results, higher SNR values 

were observed for the developed sensor than the commercial sensor. SNR measures the quality 

of the EMG signal and can range between 10 dB to 50 dB under ideal, simulated situations 

(Sinderby, Lindström, and Grassino 1995). 
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Figure 3.9 (a) SNR calculation from recorded EMG envelope, (b) Baseline noise for myoware 

sensor, (c) Baseline noise for the developed sensor. 

 

Subject Sensor SNR(dB) 

1 developed 31.86 

myoware 24.08 

2 developed 30.46 

myoware 23.32 

3 developed 30.66 

myoware 22.92 

4 developed 31.23 

myoware 23.52 

5 developed 32.02 

myoware 22.49 

6 developed 32.20 

myoware 23.20 

7 developed 32.32 

myoware 23.86 
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8 developed 31.25 

myoware 23.36 

9 developed 32.17 

myoware 23.93 

10 developed 30.47 

myoware 23.24 

Average value developed 31.46 

myoware 23.39 

Table 3.4 Evaluated SNR by sensor type. 

3.3.2.3 Sensitivity 

 Sensitivity analysis was performed for both the sensors to test the ability of the developed 

sensor module in detecting EMG amplitude variations from various subjects. Amplitude 

sensitivity for the sensors was evaluated as the ratio of incremental change in the EMG output 

voltage to the change in the muscular contractile force (i.e., input to the EMG sensor) (Thuau 

et al. 2014; Rodrigues et al. 2017). A plot was obtained for a corresponding change of average 

EMG voltage (for subjects) with a change in muscle contractile force for both the sensors. The 

slope of the obtained linear curve was calculated to give the sensitivity of the sensor. Fig. 

3.10(a) and 3.10(b) show the sensitivities of both the sensors for all the subjects and only 

amputees. The results showed that the developed sensor was 45% more sensitive than the 

myoware sensor in detecting the signal from all the subjects, whereas in the case of only 

amputees, it was 70% more sensitive than the myoware muscle sensor. Sensitivities of both 

the sensors were determined at a fixed gain value at which their SNR is maximum. Because as 
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we increase the gain of an EMG system above a certain value, its baseline noise increases, 

which decreases the SNR value of the system (Agostini and Knaflitz 2012). 

 
Figure 3.10 (a) Sensitivities of sensors for all the subjects, (b) Sensitivities of sensors for only 

amputees. 

3.3.2.4 Response time  

The sensor's response time was evaluated in terms of its output envelope's rise and fall time. 

Rise time was measured as the time required for the envelope to rise from 10% to 90% of its 

largest value. Conversely, fall time was calculated as the time taken by the envelope to fall 

from 90% to 10% of its maximum value (Greene and Lo 1998). Figure 3.11 shows the 

estimation of rise and fall time from the produced EMG envelope. Rise and fall time was 

computed from the EMG envelopes generated with both the sensors placed at the same muscle 

group for similar contractile force. For each subject, response times were determined for all 

the six levels of muscular contractions (defined in Table 3.3) using both sensors.  

In Table 3.6, the first six rows indicate the average rise and fall time calculated for each 

contraction level considering all the subjects, while the last row gives the overall rise and fall 

time for the sensors. The rise time for the developed sensor was obtained to be 57% faster 

(lower) than the myoware sensor, whereas the fall time for the sensor was observed 36% higher 
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in comparison to the commercial sensor. The charging and discharging time constant of the 

RC filter circuit mainly regulates the rise and fall time and the shape of the generated envelope 

(Balbinot and Favieiro 2013). Therefore, the value of R and C in the envelope detector stage 

was adjusted manually to obtain a smooth and faster EMG signal with lower rise time and 

higher fall time. Since the myoelectric control signal has a delay time of about 300 ms from 

the time when user intention is given, the rise time of the developed sensor is suitable for the 

intuitive application (Hudgins, Parker, and Scott 1993; Farrell and Weir 2007; Englehart, 

Hudgin, and Parker 2001). 

 
Figure 3.11 Rise and fall time calculation from an EMG envelope. 

Muscular contraction level Rise time, 𝒕𝒓 (ms) Fall time, 𝒕𝒇  (ms) 

Myoware Developed sensor Myoware Developed sensor 

1 260 110 190 300 

2 280 110 220 360 

3 310 130 230 390 

4 340 140 270 430 

5 370 160 310 480 

6 380 170 350 490 

Average 323 136 261 408 

Table 3.5 Rise and fall time for both the sensors. 
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3.4 Sensor utilization for prosthetic hand control 

The developed sensor was further utilized to control the operation of a 3D printed prosthetic 

hand by capturing the EMG signal from amputees. A 3D printed hand prototype was prepared 

and intrinsically actuated using two high torque servomotors (MG-995) (Kargov et al. 2004). 

Fingers were equipped with silicon fingertips for improving the grasping capability of the 

hand. A microcontroller chip (Arduino Nano) was installed inside the hand, which receives 

analog input from the EMG sensor and provides a digital output to servomotors. All the 

electrical and electronic components present within the hand were powered using a 2000 mAh 

lithium-ion battery. 

The proportional control strategy was implemented in the microcontroller section, which 

translates the EMG signal from the sensor to PWM output for driving servomotor. This strategy 

provides proportional actuation of the prosthetic hand fingers as per the intensity of the EMG 

signal, i.e., larger strength of EMG signal corresponds to the greater grasping force of fingers 

to close the hand. Figure 3.12 shows the scheme for the generation of control commands for 

real-time operation of the 3D printed prosthetic hand. 

 
Figure 3.12 Generation of control command using EMG signal from the sensor. 

The sEMG sensor was attached to the residual forearm stump of amputees, as shown in Figure 

3.4, for real-time control of the designed prosthetic hand. The amputees were able to 

dexterously grasp different shaped objects with the hand using their muscular contractions (i.e., 
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the intensity of EMG signal). Figure 3.13 shows the grasping of various objects with the 

prosthetic hand, using EMG signals from an amputee. 

 
Figure 3.13 Grasping of various objects performed by prosthetic hand using EMG signals from 

an amputee. 

The proportional myoelectric control provides the operating speed of the prosthetic hand that 

is dependent on the intensity of the EMG signal. This feature enables intuitive control and 

faster-grasping capability to the hand (Lenzi et al. 2012; Fougner et al. 2012; Geethanjali 

2016). The operation speed of the myoelectric hand setup was analyzed in terms of its response 

time. In addition, an experiment was performed in which response time (i.e., Closing/opening 
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time) of the prosthetic hand with both the sensors was determined from their recorded video 

of hand operation. The full closing and full opening time of prosthetic hand fingers with both 

the sensors are provided in Table 3.7. Faster closing and slower opening operation of the 

prosthetic hand was observed with the developed sensor compared to the myoware sensor. 

Based on the survey report of amputees, researchers recommended 300-400 ms as the 

acceptable closing time for the myoelectric prosthesis (Farrell and Weir 2007; Englehart, 

Hudgin, and Parker 2001; Belter et al. 2013). 

Prosthetic hand Full closing time 

(ms) 

Full opening time 

(ms) 

With developed sensor 350 650 

With myoware muscle sensor 550 450 

Table 3.6 Response time of hand with both the sensors. 

The operating speed of the prosthetic hand is primarily regulated by the combined effect of 

EMG sensor delay, microcontroller processing time, and the response time of the servomotor. 

The processing time of the Arduino nano microcontroller (in generating control command) and 

response time of the servomotor (MG-995) as per their datasheets are 40 ms and 160 ms 

(Farrell and Weir 2007). Therefore, analyzing Tables 3.6 and 3.7, the closing time of the hand 

mainly depends on the rise time of the EMG sensor envelope. Conversely, the opening time 

depends on the fall time of the envelope. 

3.5 Conclusion 

In this chapter, a dry electrode-based sEMG sensor has been designed for upper limb prosthetic 

application. The compact structure of the sensor makes it wearable for a long time used inside 

the prosthetic hand socket. Furthermore, the Silver palette electrodes used in the sensor showed 



76 
 

decent performance, i.e., electrode-skin impedance and SNR values compared to the standard 

Ag/AgCl electrodes. The developed sensor showed better output parameters such as SNR, 

sensitivity, and response time than the commercial sensor. A comparison of full features 

between a commercial sensor, a developed sensor with Ag/AgCl electrodes (in chapter 2) and 

a developed sensor with dry electrodes are presented in Table 3.8. 

Features Myoware muscle 

sensor 

Developed EMG 

sensor  

Developed EMG sensor 

with dry electrodes 

Output type 0-5 V EMG envelope 0-5 V EMG envelope 0-5 V EMG envelope 

Electrode type Disposable Ag/AgCl Disposable Ag/AgCl Silver palette 

Inter-electrode distance 2.5 cm 4 cm 1.25 cm 

Power supply unit external integrated integrated 

Power consumption 9 mA 25 mA 30 mA 

Mass 9 g 45 g 42 g 

Dimension 20×52 mm2 35×70 mm2 25×70 mm2 

SNR 23.39 dB 32.68 dB 31.46 dB 

Sensitivity 0.159 V/N 0.3944 V/N 0.2943 V/N 

Rise time 323 ms 136 ms 136 ms 

Fall time 261 ms 440 ms 408 ms 

Price in the commercial 

market 

$37.95 Prototyping cost($13) Prototyping cost($15) 

Table 3.7 Specification for the sensors. 

The sensor was successfully tested on amputees for the real-time controlled operation of the 

developed prosthetic hand. Implementation of a proportional control scheme enables the 

grasping force of the hand fingers proportional to the EMG signal strength. Based on their 

EMG signal intensity, amputees were able to grasp different shaped objects with the hand. 
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The higher sensitivity with greater SNR values of the developed sensor facilitates reliable 

detection of sEMG signal from subjects (particularly amputees) and yields smoother operation 

of the prosthetic device. The operating speed (i.e., closing/opening time) of the prosthetic hand 

is highly influenced by the sensor's response time (i.e., rise and fall time). The lower (faster) 

rise time of the sensor offers faster closing of the prosthetic hand fingers to grasp the objects 

(when the muscle is activated), whereas higher fall time provides some delay in the opening of 

hand fingers to prevent the immediate release of grasped objects (when the muscle is instantly 

relaxed). The tuning of RC parameters in the envelope detection stage of the sensor was mainly 

responsible for the generation of a smoother envelope with lower rise time and higher fall time. 

Thus, the developed EMG sensor implemented with proportional control strategy provided 

smooth and faster operation of a prosthetic hand with control on grasp force. 

The dry electrodes integrated into the skin interface of the sensor offers several benefits over 

the conventional Ag/AgCl electrodes, such as cheap for longer-time use, does not require any 

skin preparation, does not cause allergies and skin irritation when used for a longer duration, 

signal quality remains consistent over time, good performance under sweat and wet conditions 

etc. Also, a power supply within the sensor eradicates the need for an external bipolar supply, 

creating complexity to the acquisition setup. The power consumption of the developed sensor 

is higher than the myoware sensor; however, with a rechargeable battery of 350 mAh, it can 

last up to 11 hours of continuous use. Larger mass and dimension are some demerits of the 

designed sensor, which can be overcome by using tiny-sized SMD components and specialized 

tools for fabrication. 

 In future work, the EMG signals acquired with the sensor for different muscular contraction 

levels can be easily classified to achieve individual finger movement of the prosthetic hand. 
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This approach will enhance the number of grip patterns for a more precise and natural grasping 

of objects. Also, such a simple, effective, and low-cost sensor can be utilized to develop the 

affordable myoelectric hand.  
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