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Chapter 2 

A low-cost, wearable sEMG sensor for upper-limb 

prosthetic application 
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2.1 Introduction 

Surface Electromyography (sEMG) is a non-invasive technique for the assessment of the 

myoelectric signal. It is usually preferred because it is painless and quite easy to acquire (Day, 

2002). The precise measurement and analysis of sEMG signals are utilized in various 

applications that include clinical diagnosis of neuromuscular disorders, the study of muscle 

fatigue, and control of prosthetics. Nowadays, sEMG has been established as a primary source 

of control for prosthetic hands due to their ease and intuitiveness (Tavakoli, Benussi, and 

Lourenco 2017; Liu and Zhou 2013; Pancholi and Joshi 2018). A single-channel sEMG is 

sufficient to detect different activations of upper-limb muscles for numerous applications in 

rehabilitation and human-computer interface (HCI) (Phinyomark, Phukpattaranont, and 

Limsakul 2012). 

The myoelectric prosthesis is a type of externally powered prosthesis that utilizes EMG signal 

from an amputee's residual limb to restore their lost capabilities. It mainly consists of a device 

for capturing EMG signals, a controller for processing these signals, and generating a control 

command in real-time to drive the actuator mechanically linked with the prosthetics (Parker, 

Englehart, and Hudgins 2006; Asghari Oskoei and Hu 2007). The operation of smart EMG-

based prosthesis, working as an artificial substitute to missing limbs, is affected by numerous 

factors like change in position of the electrode, variation in muscle contraction, the positioning 

of the forearm and limb orientation (Khushaba et al. 2016).     

A control scheme in myoelectric prosthesis translates the information contained in the EMG 

signal to control command for the actuation of prosthetic devices. Proportional and threshold 

schemes are non-pattern recognition-based myoelectric control schemes that rely on factors 

like characteristics of EMG sensor, data acquisition system, sensor position on the skin, 
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physiology of muscles and muscle fatigue for proper generation of control commands (Herle 

et al., 2012; Hudgins, Parker, and Scott 1993). In proportional control, the speed or force of 

the prosthetic hand is controlled using the intensity of the EMG signal in a proportional manner 

(Lenzi et al. 2011; Fougner et al. 2012). Such a scheme provides intuitive control and faster-

grasping capability to the hand. Although proportional control provides a limited number of 

prosthetic hand operations, an increased number of grip patterns with accurate force control 

can be achieved when combined with the pattern recognition approach (Asghari Oskoei and 

Hu 2007).  

 Electromyography signals are influenced by several factors, such as the anatomy and 

physiology of muscles and different noise sources. Inherent noise, motion artifacts, 

electromagnetic noise, and crosstalk are the most common noise sources present in the EMG 

signal (Chowdhury et al. 2013). The usual amplitude of raw sEMG signal from forearm 

muscles lies in the range of 0-10 mV p-p (peak-to-peak), and typically the frequency content 

ranges between 0-1000 Hz, showing the most relevant information between 10-350 Hz (Day, 

2002; Konrad, 2006). A signal conditioning circuitry consisting of amplifiers and filters is 

required for the reliable detection of such signals. The quality of the myoelectric signal for 

prosthetic hand control mainly depends on the conditioning circuitry of the sEMG acquisition 

system (Shobaki et al. 2013). Signal-to-noise ratio (SNR) is a significant parameter that 

measures the quality of the EMG signal and is estimated statistically by automatic or manual 

detection of muscular contraction and baseline noise from the signal (DelsysAdmin 2019.; 

Agostini and Knaflitz 2012). 

Modern EMG systems with a large number of features offer a high-quality recording of 

myoelectric signals. However, the main issues with all these commercial EMG systems are 
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their extremely high cost, non-portability, complexity, and inability to provide an open-source 

platform (Supuk, Skelin, and Cic 2014; Imtiaz et al. 2013). Clinical diagnostics requires high-

end EMG equipment capable of giving high-quality and multichannel signals. Such devices 

mainly target offline data analysis. Hence, there is no bar on their response time (Drost et al. 

2006). Whereas for prosthetic control, moderate quality EMG device with less response time 

(below 300 ms) and a high degree of intuitiveness is required (Farina et al. 2014; Farrell and 

Weir 2007; K. Englehart and Hudgins 2003; Kevin Englehart, Hudgins, and Chan 2003; Chu, 

Moon, and Mun 2006; Jiang, Lorrain, and Farina 2014; Hakonen, Piitulainen, and Visala 2015; 

Vujaklija et al. 2018). Moreover, the device should be simple, affordable, and compact enough 

to fit inside the prosthetic hand socket (Milosevic, Benatti, and Farella 2017). Table 1 describes 

the technical specifications and cost of some commercially available EMG devices (“Ottobock 

US Healthcare”; “Myo Armband”; “MyoWare Muscle Sensor”; “Trigno Wireless EMG”; 

“OYMotion Magic Now”; “Wave Plus Wireless EMG” ). 

This chapter describes the design of a compact-sized sEMG sensor, its validation, and its 

application for controlling upper-limb prosthesis. The various parameters of the designed 

sensor, such as amplitude sensitivity, SNR, and response time, were determined and compared 

with that of a commercial sEMG sensor. Further, the designed sensor was successfully trialed 

on amputees for controlling a custom-made 3D printed prosthetic hand. The sensor produces 

output as a linear envelope of 0-5 V proportional to the strength of the EMG signal, which can 

be easily interfaced with data acquisition devices (DAQ) and microcontrollers for storage and 

control applications. 
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 Ottobock 

13E200 

Myoware 

muscle 

sensor 

Myo 

armband 

Delsys 

Trigno 

Wireless 

Oymotion 

gForce-Pro 

Cometa mini 

Wave 

Input ±3 mV ±1.5 mV ±1 mV ±11 mV ±2.5 mV ±2.5 mV 

Output type 0-3.3 V 

envelope 

0-5 V 

envelope, 

Differential 

(±2.5 V) 

Differential 

(±2.5 mV) 

Differential 

(±5 V) 

Differential 

(±2.5 V) 

Differential 

(±2.5 V) 

Type of 

electrodes 

Stainless 

steel 

Disposable 

Ag/AgCl 

Stainless steel Silver Stainless 

steel (silver-

coated) 

Silver 

Number of 

channels 

1 1 8 16 8 16 

Power 

supply 

External External Integrated Integrated Integrated Integrated 

Weight 4.5 g 9 g 93 g 14.7 g (per 

channel) 

80 g 43 g 

Output 

accessibility 

Easily 

accessible 

Easily 

accessible 

Does not 

provide an 

open-source 

platform 

Does not 

provide an 

open-source 

platform 

Easily 

accessible 

Does not 

provide an 

open-source 

platform 

Price 

 

$400 $37.95 $200 $20,000  (for 

16 channel) 

$150 $15,000 (for 

16 channel) 

Table 2.1 Commercially available EMG devices. 

2.2 Materials and methods 

2.2.1 Design and construction of the sensor 

The proposed EMG sensor primarily comprises (i) skin interface for assessment of muscle 

activity under the skin (ii) signal conditioning circuit for converting the raw EMG signal 

directly from the electrodes to a linear envelope of 0-5 V (iii) a power supply unit for powering 

the signal conditioning unit, all enclosed in a single package. Figure 2.1 shows the block 

diagram of the sensor describing its integral parts. 
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Figure 2.1 Block diagram representation of the proposed EMG sensor. 

2.2.1.1 Design of skin interface 

Placement of surface electrodes on the skin detects muscle activity in electrical form. The skin 

interface was designed using three-electrode connectors, out of which two were fixed in the 

3D printed sensor chassis, intended for target muscles, while the third one was held free to be 

used as a reference. Stainless steel buttons were employed here as connectors through which 

the disposable silver/silver-chloride (Ag/AgCl) electrodes snap directly into the sensor. Figure 

3(b) shows the skin interface of the sensor consisting of two electrode snap connectors held at 

an inter-electrode distance of 4 cm, while the third connector is for connecting the reference 

electrode. Such an arrangement of electrode connectors minimizes motion artifacts, which 

usually occur due to the movement of electrode cables (Gerdle et al. 1999).  

2.2.1.2 Design of signal conditioning circuitry 

Signal boosting, removal of undesired components, and signal translation are the key tasks 

performed by the signal conditioning unit of the sensor. Figure 2.1 describes the various stages 

involved in the signal conditioning circuitry. 
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The preamplifier stage was incorporated using an instrumentation amplifier IC (i.e., INA 128P) 

with gain adjusted to a lower value of 11.7 to avoid saturation and instability in the output 

response of successive stages (Wang, Tang, and E Bronlund 2013).  

A band-pass filter stage has been added with a lower cut-off frequency of 11 Hz and the higher 

cut-off frequency of 324 Hz. The gain of the band-pass filter was kept at a value of 3.18 to 

increase the signal amplitude by some level. This stage was implemented to remove the motion 

artifacts and external noises of low frequencies and noises occurring at high frequencies. The 

overall transfer function of the designed band-pass filter is described in equation (2.1). 

𝐺(𝑠) =
12181528𝑠2

(𝑠2+167𝑠+5201)(𝑠2+4837𝑠+4137219)
  (2.1) 

A further amplification was provided with a gain of 109.7 to increase the voltage level of the 

filtered sEMG signal such that storage and control devices can effortlessly access it. The 

overall gain until this stage has been kept near 3700. 

An envelope detector circuit is shown in Figure 2.2(a) was implemented using a half-wave 

precision rectifier and an RC low-pass filter (Rice, Venkatachalam, and Wegmann 1988). This 

stage was implemented such that the magnitude of the sEMG signal should remain unaffected 

by other factors except for the excitation level of the muscles (Farina 2006). The time constant 

of an RC filter regulates the shape and the speed of the generation of the envelope. For 

producing a clear envelope of sEMG signal, the time constant of the RC filter should range 

from 10 ms to 150 ms (D’Alessio and Conforto 2001; Balbinot and Favieiro 2013). A large 

time constant assures smooth and repeatable envelopes but prevents the detection of short 

activations, whereas a short time constant shows quick variations in the envelope but reduces 

the degree of smoothness. Therefore, the time constant was adjusted to a trade-off value of 117 
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ms by manually tuning the value of R and C considering the output envelope for the prosthetic 

application (i.e., smooth and a faster envelope)  (D’Alessio and Conforto 2001). This stage 

produces the final output as a 0-5 V linear envelope of the EMG signal, proportional to the 

level of muscle contraction. A light-emitting diode (LED) was incorporated at the output of 

the envelope detector, which indicates the captured EMG signal in terms of its glowing 

intensity. 

2.2.1.3 Power supply unit 

The main reasons for including power supply unit within the sensor package are: (1) majority 

of the active components present in the signal conditioning circuitry of the sensor requires a 

dual power supply for their operation (2) to make the sensor highly compact and wearable (i.e., 

independent of external power supply which can introduce complexity in acquisition). The 

power supply unit of the sensor has been equipped with a rechargeable 3.7 V, 240 mAh lithium-

polymer battery, a step-up boost converter circuit for increasing the voltage level from the 

battery (i.e., 3.7 V to 12 V), and a single to dual supply circuit for converting the unipolar 

output voltage from booster circuit to bipolar supply. The booster circuit primarily incorporates 

a power MOSFET with fixed switching frequency from automatic pulse frequency modulation. 

Figure 2.2(b) describes the detailed circuit for the step-up booster and single to dual supply. A 

single pole double throw (SPDT) slider switch was used to power the sensor, as shown in 

Figure 2.1. 

2.2.1.4 Description of the developed sensor 

Figure 2.3(a) describes the front view of the developed sensor showing signal conditioning 

circuitry and power supply unit, whereas Figure 2.3(b) depicts the rear view of the sensor 

displaying the skin interface. The integration of electrode connectors, signal conditioning 
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circuitry, and the power supply unit in a single structure makes the sensor compact and 

wearable for long time use. The overall dimension of the developed sensor was 35×70 mm2, 

which can be further reduced (up to one-fourth of the original dimension) by using small size 

SMD (surface-mount devices) components and professional tools for fabrication. Based on the 

component's datasheet, the estimated power consumption of the sensor was 25 mA. 

 
Figure 2.2 (a) Envelope detector circuit, (b) Circuit for step-up booster and single to dual 

supply. 

 
Figure 2.3 (a) Front view of the sensor, (b) Rear view of the sensor showing the skin interface. 

2.2.2 Experimental setup for sensor validation 

2.2.2.1 Selecting a sensor for comparison 

In order to validate the performance of the developed sensor, its output characteristics were 

compared with that of a commercial EMG sensor. From the specifications mentioned in Table 
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2.1, it was be observed that Ottobock 13E200 and myoware muscle sensor are the two devices 

that provide similar nature of output as the developed sensor (i.e., linear envelope). Out of 

these two devices, myoware muscle sensor was selected for comparison because of its low 

cost, easy availability, and decent application in prosthesis control (Tavakoli, Benussi, and 

Lourenco 2017; Pancholi and Joshi 2018; Heywood et al. 2018; Tatarian et al. 2018). EMG 

data using both sensors were recorded to determine their output parameters. 

2.2.2.2 Subject selection 

A total of three Amputees and seven healthy subjects participated in EMG data acquisition. 

Table 2.2 shows the details of each amputee with their type and reason for amputation. Before 

performing this experiment, ethical clearance was taken by the ethical committee, Institute of 

medical sciences, BHU, Varanasi. 

S.no. Age Gender Weight Amputation type Amputation reason 

1. 50 Male 85 Kg Transradial(right hand) Accident 

2. 12 Male 25 Kg Transradial(right hand) Accident 

3. 20 Male 50 Kg Transradial(left hand) Accident 

Table 2.2 Details of amputees participated in acquisition. 

Subsequently, subjects were asked to sit comfortably on a laboratory chair to record their EMG 

data. Since amputees cannot perform normal hand activity with their residual limb, maintaining 

uniformity in EMG data, the same activities (i.e., muscle contraction at different levels) were 

decided for amputees and healthy subjects acquiring data. 
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2.2.2.3 Allocating different levels of muscular contraction 

Contraction leads to the variation in volume and stiffness of the muscle, which transmits 

outward forces. These forces can be detected by using force-sensitive resistors (FSRs) placed 

on the skin in conjunction with a sensitive portion of the muscle. The different levels of 

contraction were decided based on the force exerted by flexor muscles on the FSR. A highly 

sensitive band comprising FSR was developed to measure muscular contractile force in terms 

of voltage. The FSR sensing portion was encased in a 3D printed structure to properly distribute 

muscular contractile force over the contact surface area. Figure 2.4 shows the sensing area of 

the designed FSR band, its voltage divider circuit for converting the change in resistance of 

FSR to voltage output, and its attachment to the forearm for measuring contractile force. Using 

the force curve of FSR given in the datasheet (FSR-402) and relation in equation (2.2), the 

different force levels were converted to their corresponding voltage levels, shown in Table 2.3. 

𝑉𝑜𝑢𝑡 = 𝑉𝑐𝑐 ∗
𝑅

𝑅+𝑅𝐹𝑆𝑅
   (2.2) 

Where Vcc is the supply voltage, and its value was selected at 3.7 V, RFSR is the resistance of 

FSR, R is a fixed resistance of 15 kΩ, and Vout is the output voltage of FSR. A force-voltage 

calibration curve obtained for the FSR is shown in Figure 2.5. 

 
Figure 2.4 (a) Sensing area of the FSR band, (b) Output circuit for the band, (c) Attachment 

of band to the forearm. 
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Force (N) FSR output(𝑽𝒐𝒖𝒕) (V) Allocated contraction level 

0.156 0.49 - 

0.176 0.87 Level 1 

0.196 1.25 Level 2 

0.294 1.71 Level 3 

0.49 2.27 Level 4 

0.98 2.84 Level 5 

2.51 3.25 Level 6 (MVC) 

4.9 3.34 - 

9.8 3.51 - 

19.6 3.60 - 

Table 2.3 Contraction level based on FSR output. 

 
Figure 2.5 Force voltage calibration curve for the FSR band. 

For maximum voluntary contraction (MVC) of forearm muscle, the output produced by the 

FSR band was around 3.2 V similarly, for the minimum contraction of muscle, the output 

voltage was nearly 0.8 V. Consequently, analyzing the calibrated FSR output in Table 2.3, a 
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maximum of six levels of muscular contraction were allocated (in Table 2.3) for recording 

EMG signal where the sixth level corresponds to the MVC of the forearm muscle. 

2.2.2.4 Positioning of sensors 

The sensors were attached to the forearm stump of amputees and healthy subjects to capture 

their sEMG signal, as shown in Figure 2.6. The target electrode connectors of the sensors were 

fixed at flexor carpi radialis and flexor carpi ulnaris muscles via disposable Ag-AgCl (silver-

silver chloride) electrodes, while the reference electrode connector was fixed at the elbow 

portion as these muscle groups on the forearm is directly responsible for the flexion of fingers 

(Balbinot and Favieiro 2013). 

 
Figure 2.6 Attachment of sensors on the forearm of subjects. 

2.2.2.5 Data acquisition 

The output of the EMG sensor was connected to the analog input port of NI ELVIS II+ for 

data acquisition. The EMG data were acquired using Lab VIEW 2015 software interface at a 

sampling frequency of 2 kS/s. 

For recording EMG data, the subjects were asked to perform six different levels of muscular 

contractions (defined in Table 2.3) of their forearm. Ten repeated readings were recorded for 

every level. Each recording was conducted for 5 seconds duration. 
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2.3 Results and discussion 

Raw EMG signal (i.e., filtered EMG) and its envelope, obtained by the developed sensor for 

medium muscle contraction, are illustrated in Figure 2.7. The figure clearly shows that the 

sensor was capable of generating the envelope of the EMG signal. 

 
Figure 2.7 Raw EMG and its envelope obtained by the sensor. 

Figure 2.8(a) and 2.8(b) show the EMG signal envelopes for six different levels of muscular 

contractions (i.e., movements) of an amputee acquired with the developed sensor and myoware 

muscle sensor. 

2.3.1 Amplitude analysis 

Amplitude analysis of the acquired signals with both sensors was done for movement 

repetition. Figures 2.9(a) and 2.9(b) show the variability of the EMG signal on the ten 

repetitions considering all movements (i.e., contractions) and subjects. One way multivariate 

analysis of variance (MANOVA) was performed using graph pad prism. The study showed no 

significant differences between the EMG amplitudes for different movement repetitions 

(P>0.05) with both the sensors. 
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Figure 2.8 Obtained EMG Signal envelopes with (a) Developed sensor, (b) Myoware muscle 

sensor. 

 
Figure 2.9 EMG output voltage vs. movement repetition for (a) developed sensor (b) myoware 

sensor. 

2.3.2 Signal-to-noise ratio (SNR) calculation 

The assessment of the quality of signals produced by the sensor was quantified through the 

signal-to-noise ratio (SNR) of acquired EMG signals (Konrad, 2006). For this, 5 seconds of 

data samples were recorded using both the sensors for two conditions: (i) when there was no 

muscle contraction. Here, the root mean square (RMS) value of the captured signals gave the 

total noise level of the sensor (ii) when maximum voluntary contraction (MVC) was made. 

The RMS value of acquired signals provides the signal strength of the sensor. Figure 2.10 

shows the waveform indicating noise level (baseline noise) and signal strength for a subject 
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using the developed sensor. The SNR values for both the sensors were evaluated using the 

equation (2.3), considering each subject. 

𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10 (
𝑅𝑀𝑆𝑠𝑖𝑔𝑛𝑎𝑙

𝑅𝑀𝑆𝑛𝑜𝑖𝑠𝑒
)  (2.3) 

 
Figure 2.10 Noise level and EMG signal level obtained using (a) developed sensor, (b) 

commercial sensor. 

Table 2.4 shows the average RMS values (with deviations) from contractions and obtained 

values of SNR for sensors. The results in this table indicate the higher SNR values of the 

proposed sensor compared to the commercial sensor. Although the contractile force is the same 

for each subject, the resultant RMS value is different due to variations in muscle strength, 

muscle geometry, tissue filter, and electrode-skin interface (Laferriere, Lemaire, and Chan 

2011). 

Subject Sensor SNR (dB) 

1 developed 33.1 

myoware 23.1 

2 developed 31.5 

myoware 22.5 

3 developed 32.6 

myoware 22.8 
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4 developed 30.8 

myoware 21.1 

5 developed 31.9 

myoware 22.2 

6 developed 32.2 

myoware 23.5 

7 developed 33.6 

myoware 24.1 

8 developed 33.8 

myoware 23.6 

9 developed 33.2 

myoware 23.8 

10 developed 34.1 

myoware 24.3 

Average value developed 32.68 

myoware 23.1 

Table 2.4 Determined SNR by sensor type. 

2.3.3 Sensitivity analysis 

Amplitude sensitivity was determined as the ratio of incremental change in the sensor’s output 

voltage to the variation in the muscular contraction level (i.e., input to the EMG sensor).  Figure 

2.11(a) and 2.11(b) show the difference of EMG output voltage as a function of six specified 

muscular contraction levels with both the sensors for (i) all the subjects (ii) only amputees. The 

slope of the linear curves for both cases was computed to give the sensitivities for the sensors. 

Results indicated the higher sensitivity of the developed sensor (70% higher in the case for 

only amputees and 50% higher in the case for all the subjects) than the myoware sensor. 
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Sensitivities of both the sensors were determined at their fixed gain, at which their SNR is 

maximum. Because as we increase the gain of an EMG system above a certain value, its 

baseline noise increases, which decreases the SNR value of the system (Agostini and Knaflitz 

2012). 

 
Figure 2.11 (a) Sensitivity comparison of sensors for all the subjects, (b) Sensitivity 

comparison of sensors for amputees. 

2.3.4 Response time analysis 

Rise and fall time were determined from all the real-time generated EMG envelopes with both 

the sensors for all the six levels of muscular contractions (defined in Table 2.3) considering 

each subject. Figure 2.12 shows the calculation of rise and fall time from the EMG envelope 

obtained for the medium contraction level of muscles with the developed sensor. In Table 2.5, 

the first six rows indicate the average rise and fall time calculated for each contraction level 

considering all the subjects, while the last row gives the sensors' overall rise and fall time. The 

rise time for the developed sensor was obtained to be 57 % faster (lower) than the myoware 

sensor, whereas fall time for the sensor was observed 53 % higher than the commercial sensor. 

Tuning of RC parameters in the envelope detection stage was mainly responsible for generating 

such an envelope (i.e., lower rise time and higher fall time).  
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Figure 2.12 Rise and fall time calculation from the envelope produced with the developed 

sensor.  

 

Muscular contraction level Rise time, 𝒕𝒓 (ms) Fall time, 𝒕𝒇  (ms) 

Myoware Developed sensor Myoware Developed sensor 

1 260 110 190 360 

2 280 110 220 390 

3 310 130 230 410 

4 340 140 270 450 

5 370 160 310 490 

6 380 170 350 540 

Average 323 136 261 440 

Table 2.5 Rise and fall time for the sensors. 

2.4 Sensor application for controlling a prosthetic hand 

2.4.1 Development of prosthetic hand prototype 

E-NABLE Phoenix Hand v2 was printed using a 3D printer, which is an open-source hand 

model available at Thingiverse website (“E-NABLE Phoenix Hand v2”). An extrinsic 

actuation scheme was implemented for the hand prototype using two servomotors, i.e., 

actuators located outside the hand (Kargov et al. 2004). High-torque metal-geared servomotor 
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(MG-995) was used here as an actuator providing maximum torque up to 10 Kgf.cm at an 

operating voltage of 5 V. Each finger of the hand was equipped with a silicon fingertip for 

enhancing the grasping capability. Figure 2.13 shows the developed 3D printed hand prototype. 

 
Figure 2.13 Prepared 3D printed hand prototype. 

2.4.2 Implementation of a control strategy for the generation of control command using 

the EMG signal from the sensor 

The proportional control strategy was implemented, translating the 0-5 V EMG information 

from the sensor to pulse width modulation (PWM) signal in real-time for driving the 

servomotor actuating the prosthetic hand. A PWM signal is a digital control signal consisting 

of two main components that describe its behaviour, i.e., a duty cycle and a frequency. Here, 

the duty cycle of the PWM signal was varied proportionally with the mean absolute value 

(MAV) of the EMG signal. This strategy was realized on the microcontroller chip (i.e., 

Arduino Nano) using the Arduino software platform. Figure 2.14 shows the schematic for the 

generation of the control command to drive a prosthetic hand. 
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Figure 2.14 Schematic for generating the control command. 

The proportional myoelectric control scheme here allows the grasping force of prosthetic hand 

fingers proportional to the strength of the EMG signal, i.e., the higher the intensity of the EMG 

signal tighter will be the closing of hand fingers. 

2.4.3 Utilization of the sensor on amputees to control the operation of the prosthetic hand 

The sensor was attached to the residual forearm stump of amputees for the real-time operation 

of the prosthetic hand. Amputees with their different levels of muscular contraction (intensity 

of sEMG signal) were able to control the grasping force of the prosthetic hand fingers to grab 

and hold various shaped objects without any prior training. Figure 2.15 shows the various 

grasping operations performed by the prosthetic hand using EMG signals from amputees. 

Response time (i.e., Closing/opening time) of the prosthetic hand with both the sensors were 

determined from the recorded video of hand operation. Table 2.6 provides the closing and 

opening time of prosthetic hand fingers with both sensors. From the observations in Tables 2.5 

and 2.6, it was established that the rise and fall time of the generated envelope, i.e., the response 

time of the EMG sensor, mainly regulates the closing and opening time of the prosthetic hand 

fingers.  
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The prosthetic hand with the designed sensor showed better response time as compared to the 

myoware sensor.  Furthermore, the response time of the prosthetic hand with the designed 

sensor was found to be comparable to the response time of the ottobock sensor hand ( i.e., the 

closing/opening time of 300/300 ms), which is regarded as one of the fastest commercially 

available myoelectric hands (“Myoelectric Speed Hands”). 

 
Figure 2.15 Performed operations by prosthetic hand using sEMG signal from amputees. 

Prosthetic hand Closing time (ms) Opening time (ms) 

With developed sensor 350 650 

With myoware muscle sensor 550 450 

Table 2.6 The response time of hand with both the sensors. 

2.5 Conclusion 

In this chapter, a low-cost and wearable sEMG sensor was designed for upper-limb prosthetic 

application. The presence of a skin interface, pre-processing circuitry, and power supply unit 

within the same structure makes the sensor's construction highly compact and portable.  
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The designed sensor showed better performance characteristics, i.e., very high SNR values, 

higher amplitude sensitivity, and faster response time than the commercial sensor. A detailed 

comparison between both the sensors is provided in Table 2.7.  

 Myoware muscle sensor Developed EMG sensor 

Operating voltage 3.1-5 V 1.5-6 V 

Power supply External Integrated 

Power consumption 9 mA 25 mA 

Mass 9 g 45 g 

Dimension 20×50 mm2 35×70 mm2 

Rise time 323 ms 136 ms 

Fall time 261 ms 440 ms 

Sensitivity 0.18973 V/N 0.3944 V/N 

SNR 23.10 dB 32.68 dB 

Price in the commercial market $37.95 Prototyping cost($13) 

Table 2.7 Comparison table for the sensors. 

Further, the developed sensor was evaluated for prosthetic hand control using EMG signals 

from amputees. The proportional control scheme enables the amputees to control the grasping 

force of prosthetic hand fingers with their EMG signals. The higher sensitivity, along with the 

increased SNR feature for this sensing system, enables reliable detection of EMG signal 

regardless of subject variability and results in the smooth operation of the prosthetic hand. On 

the other hand, the sensor's response time regulates the actuation speed of the prosthetic hand. 

The lower rise time of the sensor provides faster closing of prosthetic hand fingers to grasp the 

objects (when the muscle is contracted), whereas higher fall time offers delay in the opening 

of hand fingers to prevent immediate release (i.e., slippage) of grasped objects(when the 
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muscle is instantly relaxed). The tuning of RC parameters in the envelope detection stage of 

the sensor was mainly responsible for the generation of a smoother envelope with lower rise 

time and higher fall time. The sensor realized with proportional control to deliver smooth and 

faster actuation of the prosthetic hand with control on grasp force. Moreover, the prosthetic 

hand prototype with the designed sensor and implemented control strategy displayed 

comparable response time to the commercial ottobock sensor hand.  

Larger size and mass are issues with the designed sensor, which can be easily resolved using 

miniature-sized SMD components and professional tools for fabrication. However, with 

improved parameters and reduced size, the sensor can make a real clinical difference to be used 

by amputees for controlling prostheses. One more limitation with the designed sensor is that it 

requires disposable Ag/Agcl electrodes whose performance degrades with time. This drawback 

can be settled by redesigning the sensor with high-quality dry electrodes as a skin interface. 

For future work, the EMG signals acquired with the sensor for the different levels of muscular 

contraction can be classified to achieve individual finger movement of the prosthetic hand. 

Also, such an unsophisticated, effective, and low-cost sensor can be utilized to develop an 

affordable myoelectric hand. 
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