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Appendix A

LS-SVM

The optimization problem of LS-SVM solves linear equations using equality constraints.

This variant was proposed to ease the implementation of conventional SVM. This ex-

tension made use of the square loss function. The optimization problem for LS-SVM is

given by [18]

min
w,b,ξ

F (w, b, ξ)
1

2
‖w‖2 +

λ

2

m∑
i=1

ξ2
i

s.t. yi(w
Txi + b) = 1− ξi, i = 1, . . . ,m. (A.1)

Langrangian function for this equation is

L(w, b, ξ;α) = F (w, b, ξ)−
m∑
i=1

αi{yi(wTxi + b)− 1 + ξi}, (A.2)

where αi is the Lagrangian multiplier.

The KKT optimality conditions for L(w, b, ξ;α) are

∂L

∂w
= 0→ w =

m∑
i=1

αiyixi

∂L

∂b
= 0→

m∑
i=1

αiyi = 0

∂L

∂ξi
= 0→ αi = λξi, i = 1, . . . ,m

∂L

∂αi
= 0→ yi(w

Txi + b)− 1 + ξi = 0, i = 1, . . . ,m. (A.3)
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These can be written as the solution to the following linear equations [18]
I 0 0 −ZT

0 0 0 −Y T

0 0 λI −I
Z Y I 0



w

b

ξ

α

 =


0

0

0

~1

 (A.4)

where Z = [xT1 y1, x
T
2 y2, . . . , x

T
mym], Y = [y1, y2, . . . , ym], ~1 = [1, 1, . . . , 1], ξ = [ξ1, ξ2, . . . , ξm]

and α = [α1, α2, . . . , αm]. The solution can be written as[
0 −Y T

Y ZZT + λ−1I

] [
b

α

]
=

[
0

~1

]
(A.5)

Therefore, the solution of LS-SVM is found by solving the linear set of equation

(A.5) instead of quadratic programming [18].



Appendix B

Behaviour of RSVM-PDProx on Synthetic Data Set

In this part of the thesis, the results shown in Subsection 3.5.1 are mentioned in

tabular form.

Table B.1: Results of RSVM-PDProx and the Existing Methods on Synthetic Data
Sets

Instances Results SVM RSVM-RHHQ (η-val) RSVM-PDProx

η=0.2 η=0.5 η=1 η=2 η=3 Parameter

100
Accuracy
(0%
Noise)

92.00±4.01 93.00±2.76 95.33±3.39 96.63±3.34 96.66±1.63 94.66±1.63 96.00±2.49 10−2

500 96.53±1.29 95.66±0.68 96.93±1.55 96.26±0.90 97.00±1.23 97.28±1.22 96.80±0.88 10−2

1000 94.26±1.21 95.33±0.93 95.53±0.45 95.60±0.70 95.39±1.16 95.26±0.77 96.06±0.67 10−3

5000 96.61±0.28 96.70±0.54 97.85±0.46 97.26±1.26 97.00±0.42 97.33±0.16 96.66±0.22 10−2

10000 96.04±0.30 96.15±0.35 96.18±0.17 97.26±0.31 96.13±0.36 96.66±1.22 96.43±0.72 10−2

100
Accuracy
(15%
Noise)

91.33±8.58 91.33±5.99 93.33±2.98 96.00±1.33 96.10±4.80 94.06±3.39 94.16±3.88 10−4

500 95.60±1.08 96.00±1.42 96.73±0.90 97.06±1.43 96.96±0.59 96.80±1.48 96.53±1.65 10−2

1000 94.16±0.53 95.10±1.16 95.53±1.34 95.46±0.80 95.00±0.96 95.16±0.82 95.06±1.54 10−4

5000 96.56±0.43 96.65±0.35 96.77±0.31 96.66±0.56 96.73±0.81 97.23±0.24 96.20±0.31 10−4

10000 96.04±0.10 96.17±0.32 96.20±0.23 95.90±0.25 96.40±0.37 95.56±1.34 96.33±1.56 10−2

100
Accuracy
(30%
Noise)

89.33±4.42 92.00±3.95 92.00±3.39 95.66±2.66 95.34±1.63 94.00±2.49 94.00±1.33 10−4

500 94.93±1.32 95.00±1.68 95.20±1.14 96.40±0.90 96.93±0.90 96.40±1.61 95.20±2.77 10−4

1000 94.73±1.62 94.56±0.59 95.60±0.57 95.33±0.61 95.00±1.01 95.46±0.54 95.26±0.94 10−4

5000 96.36±0.33 96.48±0.28 96.69±0.51 96.40±0.16 95.93±0.86 96.31±0.32 95.96±0.85 10−4

10000 96.16±0.31 95.24±0.30 96.19±0.48 95.76±0.32 96.13±0.37 96.33±0.42 96.00±0.82 10−2

From Table B.1, it is observed that for majority of the cases, accuracy increases with

the increase in number of instances. As training data increases, model gets adequate

amount of instances to train itself, ultimately leads to the increase in accuracy.

However, when the number of features increase, accuracies almost remains same.

For the synthetic data set with 1000 instances, accuracies with features 2, 5, 10, 100

and 100 are computed. Accuracies for all these cases are nearly same, i.e. 96%.



Appendix C

Analytical Proof showing Rescaled α-hinge loss is Superior than
Rescaled Hinge Loss Function

Rescaled hinge loss function is given by

lC(z) = β

[
1− e

(
−
lhinge(z)

2σ2

)]
. (C.1)

and rescaled α-hinge loss function is given by

lα-rhinge(z) = β
[
1− e(−ηlα-hinge(z))

]
, (C.2)

where η = 1
2σ2 ≥ 0 is a scaling constant and β =

(
1− e(−η)

)−1
.

Note that

lhinge(z) = max{0, 1− y(wTx+ b)} (C.3)

≥ α(1− y(wTx+ b)) for any α ∈ [0, 1]

Therefore, max{0, 1− y(wTx+ b)} ≥ max
α∈[0,1]

α(1− y(wTx+ b))

i.e. lhinge(z) ≥ lα-hinge(z)

=⇒ −ηlα-hinge(z) ≥ −ηlhinge(z) (∵ η > 0)

=⇒ e−ηlα-hinge(z) ≥ e−ηlhinge(z)

=⇒ β[1− e−ηlα-hinge(z)] ≤ β[1− e−ηlhinge(z)]

=⇒ lα-rhinge(z) ≤ lC(z)



Appendix D

Results of Different Variants of SVM on DIARETDB1 Data Set

In Table D.1, different SVM variants discussed in Chapter 5 are compared on the

basis of accuracy, sensitivity and specificity. From the table, it is observed that TWSVM

with pinball loss is performing better than the rest of the techniques. The trade-off

between sensitivity and specificity is also less in TWSVM with pinball loss function.

Table D.1: Comparison of Different SVM Variants On DIARETDB1 Data Set

Results Linear SVM TWSVM with Hinge Loss TWSVM with Pinball Loss

DIARETDB1
with noise

Accuracy (in %) 92.57±2.52 77.37±6.42 94.72±4.61
Sensitivity 83.96±0.05 65.29±7.11 99.99±0.01
Specificity 88.23±0.02 75.98±0.02 96.62±0.17
Time (in seconds) 6.48 1.98 0.78

DIARETDB1
without noise

Accuracy (in %) 97.25±2.42 94.27±2.21 98.32±1.29
Sensitivity 89.92±0.01 95.78±0.15 99.99±0.01
Specificity 88.23±0.02 88.47±0.02 84.31±0.32
Time (in seconds) 4.46 1.73 1.09

These methods were also compared on Messidor data set. Results are shown in

Table D.2.

Table D.2: Comparison of Different SVM Variants On Messidor Data Set

Results Linear SVM TWSVM with Hinge Loss TWSVM with Pinball Loss

Messidor
with noise

Accuracy (in %) 68.78±1.91 56.86±0.07 69.47±1.82
Sensitivity 77.40±0.03 55.04±0.02 82.47±1.21
Specificity 60.78±0.03 68.71±0.11 72.41±0.03
Time (in seconds) 0.76 0.20 0.22

Messidor
without noise

Accuracy (in %) 69.97±1.89 67.31±1.24 71.56±2.61
Sensitivity 75.63±0.03 98.16±1.26 90.42±2.31
Specificity 64.78±0.03 42.62±2.67 69.63±0.01
Time (in seconds) 0.72 0.19 0.14

From Table D.2, it can be observed that TWSVM with pinball loss yields better

accuracy, sensitivity and specificity as compared to the rest of the techniques. Please

note that the training time corressponding to TWSVM with pinball loss function is also
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less when the data set was noise-free. However, on addition of noise, the training time

of TWSVM with pinball loss function is comparable with the conventional TWSVM.



Appendix E

Comparison of the proposed Method and the Existing methods
on COVID-19 data set

Table E.1 shows that the proposed approach, pin-TSVM has performed better than

SVM, TSVM and ramp-TSVM in terms of accuracy, sensitivity and specificity except

two cases where specificity of TSVM is more than the rest of the techniques.

Table E.1: Comparison of pin-TSVM and the Existing Methods over COVID-19 Data
Set

Dats Sets Noise Level Results SVM TSVM ramp-TSVM pin-TSVM C

COVID-
19 Data
Set with
PCA

0% Noise
Accuracy 93.78 94.69 93.12 96.57

(2,3,1,4)Sensitivity 96.84 96.89 96.08 98.82
Specificity 97.12 97.11 95.52 97.80

10%
Noise

Accuracy 92.15 92.97 91.64 94.75
(2,3,1,1)Sensitivity 95.21 95.62 94.04 96.91

Specificity 89.12 92.10 88.23 89.96

15%
Noise

Accuracy 88.47 92.97 91.79 94.28
(2,3,1,1)Sensitivity 92.62 95.61 94.08 96.78

Specificity 90.01 91.82 87.82 94.23

30%
Noise

Accuracy 68.74 90.72 92.81 93.51
(2,3,1,3)Sensitivity 80.54 93.01 95.55 96.18

Specificity 82.43 90.89 86.86 90.14

40%
Noise

Accuracy 68.18 90.32 90.07 92.05
(2,2,1,4)Sensitivity 80.01 92.01 89.99 95.00

Specificity 80.47 90.04 84.72 89.09
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