Chapter 7

Conclusion and Future Directions

In the previous chapters successful attempts to impart robustness and sparsity to the
SVM were presented. In this chapter, the significant contributions of this thesis are

summarized. The possible directions for future work are also discussed.

7.1 Conclusion

This thesis mainly focused on robust supervised and semi-supervised machine learning
using SVM as the base model. Under supervised machine learning, robust versions of
SVM, TWSVM and TSVR were presented. Under semi-supervised machine learning,
the robust variant of TSVM was under focus.

In the first contribution, reported in Chapter 3, SVM was made robust against label
noise. In that work, a rescaled a-hinge loss function was used in place of the conven-
tional hinge loss in SVM. A non-smooth regularizer was also added with the rescaled
a-hinge loss function. The resultant non-smooth objective function was optimized using
PDProx dual algorithm. The rescaled a-hinge loss function added robustness against
label noise. While, the use of non-smooth regularizer, ||wl|,, added sparsity to the
model which leads to improvement in the generalization capability of the model. The

proposed formulation was tested on various synthetic and real-world data sets. The
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experimental results proved that the proposed formulation is more robust and sparse as
compared to the models reported in the existing literature on robust SVM. The rate of
convergence and the complexity analysis were also provided. The rate of convergence

of RSVM-PDProx is O(1/T) where T' denotes the number of iterations and the time

complexity is O(n®) where n represents the number of instances in a data set.

In the next contribution, reported in Chapter 4, the regression variant of SVM,
TSVR was made robust against the Gaussian and uniform noise in the data sets. In
that work, rescaled hinge loss function was used for the first time in a regression frame-
work. This function was used in the conventional TSVR. To optimize the resultant
objective function, the half-quadratic optimization technique was used. Experiments
were performed in that work to prove the superiority of the proposed approach over
the existing methods. The convergence analysis was also given in this chapter. An in-
teresting relationship between the rescaling parameter and the computational time was
also observed. As the rescaling parameter increases, the computational time decreases.
Although the proposed model enhanced the robustness of TSVR, a limitation was ob-
served with the proposed approach. Since the alternating minimization technique was
used in this work, the iterative algorithm approaches a high accuracy solution slowly.

However, it is excellent for quickly finding a robust approximate solution.

In another contribution, reported in Chapter 5, TWSVM was used for an impor-
tant real-world application. In that work, robust TWSVM was used for the diabetic
retinopathy detection using eye fundus images. For the DR detection, SVM, the con-
ventional TWSVM and the TWSVM with pinball loss function were used. From the
experimental results, it can be concluded that TSVM with pinball loss function per-
formed better DR detection. The computation time corresponding to TWSVM with

pinball loss function was also less as compared to the other approaches.

Although the pinball loss function imparted robustness but the model lost its sparse-

ness. To overcome this limitation, in Chapter 6, truncated pinball loss function was
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proposed [57] in a classification framework. The first two contributions were based on
supervised machine learning. Next, a robust semi-supervised machine learning model
was also introduced in Chapter 6. This time, a truncated pinball loss function was used
with TSVM to impart both the robustness and sparseness in the model. The resul-
tant objective function was optimized in two ways: SGD and the dual problem solver,
mlcv_quadprog. CCCP was used first on the primal objective function and then SGD
was used as the optimization technique. Experiments were performed on both small
and large real-world data sets to prove its applicability to a wide area of applications.
The time complexity for both the optimization techniques is O(n?).

The robust formulation was successfully applied to the detection of COVID-19 in-
fected patients using the chest X-ray images. To extract the features, VGG19 was used
in this work. The proposed model also helped in finding the labels of the unlabeled
samples in the data set.

Next, the possible future scope of the above-discussed work is discussed .

7.2 Future Directions

The above-discussed contributions in the thesis may lead to several future research

directions:

(i) In this thesis, SVM and its variants were made robust against label noise in the
data set. To achieve a robust model, robust loss functions were used. This can be
extended to other machine learning models as well. It will be interesting to add
robustness to other machine learning models by using various robust loss functions

in their formulation and solving the corresponding optimization problems.

(ii) In the above-discussed contributions, supervised and semi-supervised variants of
SVM were considered for adding robustness against noise in the data set. In the

future, it can be extended to the unsupervised variant of SVM as well.
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(iii) Deep learning is an active research field of machine learning that gives promising
results in many of the application areas like image processing, video processing,
speech recognition etc. The proposed loss functions can be applied to the deep

learning models as well.

(iv) The proposed formulations can be applied to other real-world applications like in
the field of medical diagnosis (classification) and statistical arbitrage (regression),

etc.



