
Chapter 6

pin-TSVM: A robust transductive

support vector machine and its

application to the detection of

COVID-19 infected patients

Training a machine learning model on the data sets with missing labels is a challenging

task. Not all models can handle the problem of missing labels. However, if these data

sets are further corrupted with label noise, it becomes even more challenging to train a

machine learning model on such data sets. In this chapter, a semi-supervised learning

framework is discussed in contrast to the previous two chapters which contributed in

supervised machine learning.

6.1 Introduction

In all the above-discussed works, it is assumed that all the class labels are available

during the training of a model, i.e., they come under supervised machine learning. The

assignment of labels during data set creation is one of the costly and error-prone tasks.



116 6.1. Introduction

Therefore, in practice, we often come across data sets with missing labels. Training the

models over such data sets comes under the category of semi-supervised learning. Trans-

ductive support vector machine (TSVM) is a semi-supervised variant of SVM [124]. It

was first proposed in [125] and implemented in [26]. There are various applications in

which TSVM is used for learning purposes when there are some unlabeled data samples.

The survey article [126] best describes the rich literature of TSVM.

Similar to SVM, TSVM is also sensitive to the label noise. This is due to the

presence of a noise-sensitive loss function, e.g., the hinge loss function. The novelty

of the present study lies in the fact that the use of truncated pinball loss function

with TSVM was proposed. The corresponding optimization problem was solved by

implementing both the primal and dual forms.

Next, in Subsection 6.1.1, the conventional TSVM and the existing robust TSVMs

are described. Robust TSVM handles noise sensitivity. In Subsection 6.1.2, the mo-

tivation behind this work are mentioned and the main contributions of this work are

described.

6.1.1 A Brief Introduction of TSVM

For a set L = {(x1, y1), . . . , (xL, yL)}, x ∈ Rd, y ∈ {+1,−1} of L labeled training

instances and U unlabeled instances U = {xL+1, . . . , xL+U}, the task is to find an

optimal separating hyperplane defined by θ = (w, b), where w is the weight vector and

b is the bias term. The decision function of the form

fθ(x) = wTφ(x) + b (6.1)

is used to label new samples, where the kernel function, φ, maps the original data into

a higher dimensional feature space.

SVM is trained using L and the trained SVM provides the best separating hyper-

plane with the largest possible margin. It then assigns the labels to the U unlabeled



6.1. Introduction 117

instances of the set U . TSVM is a combinatorial classifier of SVM and a constraint

that the unlabeled samples should be as far as possible from the margin [125]. The

optimization formulation corresponding to this combinatorial problem is

arg min
w,b

1

2
‖w‖2 + C

L∑
i=1

ξi + C∗
L+U∑
i=L+1

ξi

subject to yi(fθ(xi)) ≥ 1− ξi, i = 1, . . . , L,

|fθ(xi)| ≥ 1− ξi, i = L+ 1, . . . , L+ U, (6.2)

where C and C∗ are the weight controlling parameters corresponding to the labeled

and unlabeled instances. The minimization problem (6.2) can be written as an uncon-

strained optimization problem of the form [26]

J(θ) =
1

2
‖w‖2 + C

L∑
i=1

H1(yifθ(xi)) + C∗
L+U∑
i=L+1

H1(|fθ(xi)|), (6.3)

H1(z) = max{0, 1 − z} is the hinge loss function [1], z = yfθ(x). In TSVM, H1(z) is

used for the labeled samples while H1(|z|) is used for the unlabeled samples. These

are shown in Figure 6.1. The TSVM has the limitation of assigning all the unlabeled

(a) H1(z) for Labeled Samples (b) H1(|z|) for Unlabeled Samples

Figure 6.1: Hinge Loss Function for Labeled and Unlabeled Samples

samples to one of the classes, leading to abysmal accuracy. To solve this problem,



118 6.1. Introduction

Chapelle and Zien [127] used a significant relaxed balancing constraint:

1

U

L+U∑
i=L+1

fθ(xi) =
1

L

L∑
i=1

yi. (6.4)

TSVM is used in many applications, like cancer classifications [128], classification of

mammographic abnormalities [129], glaucoma classification [130], image retrieval [131],

ship category recognition [132], etc.

Li et al. [133] proposed a robust TSVM for multi-view classification. They observed

that the multi-view representation of data from a different perspective could effectively

improve the generalization performance [133]. Training a model on huge data sets is

a tedious task. Training on small labeled sets is also challenging since the model has

insufficient learning instances. Xu et al. [134] proposed an improved version of TSVM

that can learn a small labeled training set well and applied this to the motor imagery

based brain-computer interface.

Besides these, there are also many formulations in which researchers added robust-

ness to the conventional TSVM by changing the loss functions. These methods are

tabulated in Table 6.1. This table mentions the loss function for labeled and unla-

beled samples that are used by various researchers to make the TSVM robust to noise.

These loss functions include the conventional hinge loss function, symmetric sigmoid

loss function [135] and the ramp loss function [47].

Table 6.1: Literature Survey of TSVM robust towards noise

S. No. Reference For labeled samples For unlabeled samples

1 Semi-supervised SVM [125] Hinge Loss Symmetric Hinge Loss
2 Transductive Inference [136] Hinge Loss Symmetric Hinge Loss
3 Semi-supervised Classification by low density separation [127] Hinge Loss Symmetric Sigmoid Loss
4 Large Scale Transductive SVM [137] Hinge Loss Symmetric Ramp Loss
5 Large-scale Robust Transductive SVMs [63] Ramp Loss Symmetric Ramp Loss

A recent work on TSVM proposed to address its problem with Universum data [138].

In that work, Xiao et al. followed two steps: to select informative examples from the



6.1. Introduction 119

Universum data and to use that data for semi-supervised classification [138]. They

used Lagrange method to solve it further. Another recent work on TSVM handled the

problem of lack of sparsity in LapSVM [139]. To do this, Zheng et al. [140] used L1

norm in LapSVM. The method performed well (in terms of accuracy) on UCI data

sets. Recently, SSL is also extended to various applications like fault identification in

electricity distribution networks [141], for intrusion detection system [142] and enhanced

prediction of heart disease [143].

In this work, the following three challenges were focused:

(i) To train the model in the presence of a significant number of unlabeled data.

(ii) To train the model to handle small as well as large data sets effectively.

(iii) To train the model under the varied amount of label noise in the data.

6.1.2 Motivation and Contribution

The robust behavior of the pinball loss function [57] is the primary motivation behind

this work. The use of pinball loss function in other variants of SVM, like TWSVM [65],

also made the model robust towards label noise. Since the use of pinball loss function

affects the sparsity of a classifier [57], the truncated pinball loss function was used in

this work, which leads to less computational time (shown experimentally in Section

6.3). The main contributions of this work are listed below:

(i) The truncated pinball loss function was used in place of the conventional hinge

loss in TSVM. This made the model robust towards the label noise.

(ii) The use of the truncated pinball loss function made the model sparse, hence

required fewer variables to contribute in the decision-making process of the model.

This reduced the computational time of the model.



120
6.2. pin-TSVM: A Robust Transductive Support Vector Machine with Truncated

Pinball Loss Function

(iii) The proposed model was used for the detection of disease caused by the coron-

avirus in a human body. To do this, the model was trained on the chest X-ray

images. The results (shown in Section 6.4) indicated that the model can be used

to predict if a patient is infected by coronavirus or not.

6.1.3 Outline

In the next section, the proposed robust TSVM with a truncated pinball loss function is

described. In Section 6.3, the results of the experiments performed using the proposed

approach are reported and compared with the existing approaches. Further, in Section

6.4, it is shown that the proposed approach can be used to predict the COVID-19

infected patients. Finally, the work is concluded in Section 6.5.

6.2 pin-TSVM: A Robust Transductive Support Vector

Machine with Truncated Pinball Loss Function

In this section, the robust TSVM formulation using truncated pinball loss function is

described. The truncated pinball loss function is

Pτ,s(z) = H1+τ (z)− (Hτ (z + s)− τs) =


τs, if z ≥ 1 + s

−τ(1− z), if 1 < z < 1 + s

1− z, if z ≤ 1

(6.5)

where 0 ≤ τ ≤ 1. It is shown in Figure 6.2. Please note that s > 0 is the hinge

point [57].

In (6.3), the hinge loss function was replaced by the truncated pinball loss function.



6.2. pin-TSVM: A Robust Transductive Support Vector Machine with Truncated
Pinball Loss Function 121

Figure 6.2: Truncated Pinball Loss Function with τ = s = 0.5

Accordingly, J(θ) in (6.3) became

J(θ) =
1

2
‖w‖2 + C

L∑
i=1

Pτ,s(z) + C∗
L+U∑
i=L+1

Pτ,s(z). (6.6)

To avoid the poor classification of the unlabeled samples, the same constraint as de-

scribed earlier in (6.4) was used. On putting in (6.6), we get

J(θ) =
1

2
‖w‖2 + C

L∑
i=1

(H1+τ (yifθ(xi))−Hτ (yifθ(xi) + s)− τs)

+ C∗
L+U∑
i=L+1

(H1+τ (yifθ(xi))−Hτ (yifθ(xi) + s)− τs) . (6.7)

Now, each unlabeled sample is represented as two instances labeled with both positive

and negative classes. This leads to the creation of new samples [63]

yi = +1, i ∈ [L+ 1, . . . , L+ U ],

yi = −1, i ∈ [L+ U + 1, . . . , L+ 2U ],

xi = xi−U , i ∈ [L+ U + 1, . . . , L+ 2U ]. (6.8)



122
6.2. pin-TSVM: A Robust Transductive Support Vector Machine with Truncated

Pinball Loss Function

This function was split into convex (Jconvex(θ)) and concave (Jconcave(θ)) parts [57]:

Jconvex(θ) =
1

2
‖w‖2 + C

L∑
i=1

H1+τ (yifθ(xi)) + C∗
L+2U∑
i=L+1

H1+τ (yifθ(xi)) (6.9)

and Jconcave(θ) = −C
L∑
i=1

Hτ (yifθ(xi)+s)+CLτs−C∗
L+2U∑
i=L+1

Hτ (yifθ(xi)+s)+C
∗(2U)τs.

(6.10)

To perform the minimization of J(θ) with respect to θ = (w, b), the CCCP [144],

as given by Algorithm 3, was used. CCCP decomposes the non-convex function into

a concave and a convex part. It uses an iterative procedure where in each iteration,

concave part is approximated by its tangent [63]. In Algorithm 3, J
′
(θ) represents ∂J(θ)

∂θ
.

The convergence of CCCP algorithm is given in [144].

Algorithm 3 The Concave-Convex Procedure (CCCP) [144]

Input: Jconcave(θ) and Jconvex(θ)

1: Initialize θ0.

2: repeat

3: θt+1 = arg min
θ

(
Jconvex(θ) + J

′
concave(θ

t)θ
)

4: until the convergence of θt.

Next, the gradient of Jconcave(θ) with respect to θ was computed

∆θJconcave(θ) =
∂

∂θ
Jconcave(θ) = −C

L∑
i=1

(
∂Hτ (θ)

∂fθ(xi)

)(
∂fθ(xi)

∂θ

)
− C∗

L+2U∑
i=L+1

(
∂Hτ (θ)

∂fθ(xi)

)(
∂fθ(xi)

∂θ

)
.

Now,
∂Hτ (θ)

∂θ
= τ · ∂fθ(xi)

∂θ
· (−yi).

Therefore,
∂

∂θ
Jconcave(θ) = −C

L∑
i=1

τyi
∂fθ(xi)

∂θ
− C∗

L+2U∑
i=L+1

τyi
∂fθ(xi)

∂θ

=
L+2U∑
i=1

βiyi
∂fθ(xi)

∂θ
, (6.11)



6.2. pin-TSVM: A Robust Transductive Support Vector Machine with Truncated
Pinball Loss Function 123

where

−βi =


Cτ, if 1 ≤ i ≤ L

C∗τ, if L+ 1 ≤ i ≤ L+ 2U.

(6.12)

Therefore, the problem (6.7) can now be stated [144] as the minimization of

Jconvex(θ) +
∂Jconcave(θ)

∂θ

= Jconvex(θ) +

(
L+2U∑
i=1

βiyi
∂fθ(xi)

∂θ

)
θ

=
1

2
‖w‖2 + C

L∑
i=1

H1+τ (yifθ(xi)) + C∗
L+2U∑
i=L+1

H1+τ (yifθ(xi)) +
L+2U∑
i=1

βiyifθ(xi). (6.13)

By introducing the slack variable, ξ in (6.13), the final minimization problem [57]

obtained is

min
θ,ξ

1

2
‖w‖2 + C

L∑
i=1

ξi + C∗
L+2U∑
i=L+1

ξi +
L+2U∑
i=1

βiyifθ(xi)

subject to yifθ(xi) ≥ 1− 1

1 + τ
ξi, ξi ≥ 0, i = 1, 2, . . . , L,

1

U

L+U∑
i=L+1

fθ(xi) =
1

L

L∑
i=1

yi. (6.14)

The final optimization problem (6.14) was solved by using SGD method [145] given

in Algorithm 4. To implement (6.14) using SGD, data set, D = {xi, yi}L+U
i=1 was required

from which we get the value of L and U . Another inputs like λ, the learning rate of

SGD and ε, the tolerance value were also required in the convergence of Algorithm 4.

Since the CCCP algorithm converged fast [63] in maximum five iterations in the

experiments, wtherefore, T = 5 was considered in all the algorithms. However, the

convergence conditions are also mentioned in the algorithms (Step 12 in Algorithm 4,

Step 13 in Algorithm 5 and Algorithm 6).

The time complexity of Algorithm 4 is mainly due to the Step 2 and the conventional



124
6.2. pin-TSVM: A Robust Transductive Support Vector Machine with Truncated

Pinball Loss Function

steps of SGD (Step 8 and Step 9). Step 2 was executed using the svmtrain() (LIBSVM)

which has a time complexity of O(n3) [146]. However, the time complexity of SGD is

O(d̄/λε) [63], where d̄ is used for the non-zero attributes of the data set, λ is the learning

rate of SGD and ε is the tolerance value. Therefore, the overall time complexity of

Algorithm 4 is O(n3) + O(d̄/λε), i.e. O(n3). The proposed approach, pin-TSVM, was

also implemented using the dual form of (6.14).

Algorithm 4 pin-TSVM with Stochastic Gradient Method to Get Optimal Weight
Vector and Bias Term
Input: D = {xi, yi}

L+U
i=1 ;

T is the maximum number of iterations;

ε is the tolerance value;

L is the number of labeled instances in the data set D;

U is the number of unlabeled instances in the data set D;

λ0 > 0 is the learning rate of SGD;

Output: Optimal weight vector and bias term, wt and bt respectively.

1: Split the data set D into training set and test set.

2: Train SVM on training set and get w0 and b0.

3: Initialize t = 0 and ε > 0.

4: Compute β0
i for i = 1, 2, . . . , (L + 2U) using (6.12).

5: while t ≤ T do

6: λt ←
λ0
t

.

7: for i ∈ randperm(L + 2U) do

8: Compute the sub-gradient of (6.13) w.r.t w and b

gt =


−yi(1 + τ)C(C∗)xi + βiyixi, if yi(w

T xi + b) ≤ 1,

βiyixi, if yi(w
T xi + b) > 1

and

ht =


−yi(1 + τ)C(C∗) + βiyi, if yi(w

T xi + b) ≤ 1,

βiyi, if yi(w
T xi + b) > 1.

9: Update parameters

ŵt ← wt −
λt

L + 2U
(wt + gt)

and

b̂t ← bt −
λt

L + 2U
ht.

10: Set wt ← ŵt and bt ← b̂t

11: end for

12: if (t ≥ 2) &
∥∥wt − wt−1

∥∥ ≤ ε, break

13: Compute βt+1
i using (6.12).

14: Set t = t + 1.

15: end while

To get the dual form of (6.14), the Lagrangian function was obtained



6.2. pin-TSVM: A Robust Transductive Support Vector Machine with Truncated
Pinball Loss Function 125

L(w, b, ξ, α, ν) =
1

2
‖w‖2 + C

L∑
i=1

ξi + C∗
L+2U∑
i=L+1

ξi

+
L+2U∑
i=1

βiyifθ(xi)− α0

(
1

U

L+U∑
i=L+1

fθ(xi)−
1

L

L∑
i=1

yi

)

−
L+2U∑
i=1

αi

(
yi(w

Txi + b)− 1 +
1

1 + τ
ξi

)
−

L+2U∑
i=1

νiξi, (6.15)

where αi, νi ≥ 0, for i = 1, 2, . . . , (L+ 2U). The necessary Karush-Kuhn Tucker (KKT)

optimality conditions for (6.15) are

∂L

∂w
= w +

L+2U∑
i=1

βiyiφ(xi)−
α0

U

L+U∑
i=L+1

φ(xi)−
L+2U∑
i=1

αiyiφ(xi) = 0, (6.16)

∂L

∂b
= −

L+2U∑
i=1

βiyi + α0 +
L+2U∑
i=1

αiyi = 0 (6.17)

∂L

∂ξ
= C − αi

1 + τ
− νi = 0, 1 ≤ i ≤ L, (6.18)

∂L

∂ξ
= C∗ − αi

1 + τ
− νi = 0, L+ 1 ≤ i ≤ L+ 2U. (6.19)

For simplification, a new sample was defined as

φ(x0) =
1

U

L+U∑
i=L+1

φ(xi), y0 = 1. (6.20)

From (6.16), we get

w =
α0

U

L+U∑
i=L+1

φ(xi) +
L+2U∑
i=1

αiyiφ(xi)−
L+2U∑
i=1

βiyiφ(xi)

= α0φ(x0) +
L+2U∑
i=1

yiφ(xi)(αi − βi)

=
L+2U∑
i=0

yiφ(xi)(αi − βi), (6.21)



126
6.2. pin-TSVM: A Robust Transductive Support Vector Machine with Truncated

Pinball Loss Function

where β0 = 0 and y0 = 1. On putting the value of (6.21) in (6.15), we get

L(b, ξ, α, ν) =
1

2

(
L+2U∑
i=0

yiφ(xi)(αi − βi)

)T (L+2U∑
j=0

yjφ(xj)(αj − βj)

)

+C
L∑
i=1

ξi + C∗
L+2U∑
i=L+1

ξi +
L+2U∑
i=1

βiyi

(L+2U∑
j=0

yjφ(xj)(αj − βj)

)T

φ(xi) + b


−α0

 1

U

L+U∑
i=L+1

(L+2U∑
j=0

yjφ(xj)(αj − βj)

)T

φ(xi) + b

− 1

L

L∑
i=1

yi


−

L+2U∑
i=1

αi

yi
[L+2U∑

j=0

yjφ(xj)(αj − βj)

]T
φ(xi) + b

− 1 +
1

1 + τ
ξi

− L+2U∑
i=1

νiξi.

On simplification,

L(b, ξ, α, ν) =
1

2

L+2U∑
i,j=0

yiyj(αi − βi)(αj − βj)φ(xi)
Tφ(xj) +

L+2U∑
i=1

βiyi

(
L+2U∑
j=0

yj(αj − βj)φ(xj)

)
φ(xi)

+b
L+2U∑
i=1

βiyi −
α0

U

L+U∑
i=L+1

(
L+2U∑
j=0

yj(αj − βj)φ(xj)

)
φ(xi)−

α0

U
b

+
α0

L

L∑
i=1

yi −
L+2U∑
i=1

αiyi

(
L+2U∑
j=0

yjφ(xj)(αj − βj)

)
φ(xi)

−b
L+2U∑
i=1

αiyi +
L+2U∑
i=1

αi −
L+2U∑
i=1

αi
1 + τ

ξi −
L+2U∑
i=1

νiξi

+C
L∑
i=1

ξi + C∗
L+2U∑
i=L+1

ξi. (6.22)

Now, adding and subtracting α0y0

(∑L+2U
j=0 yjφ(xj)(αj − βj)

)
φ(x0) from (6.22), we get

L(b, ξ, α, ν) =− 1

2

L+2U∑
i,j=0

yiyj(αi − βi)(αj − βj)φ(xi)
Tφ(xj)

+
L+2U∑
i=1

βiyi

(
L+2U∑
j=0

yj(αj − βj)φ(xj)φ(xi)

)
+ b

L+2U∑
i=1

βiyi



6.2. pin-TSVM: A Robust Transductive Support Vector Machine with Truncated
Pinball Loss Function 127

−α0

U

L+U∑
i=L+1

(
L+2U∑
j=0

yj(αj − βj)φ(xj)

)
φ(xi)−

α0

U
b

+
α0

L

L∑
i=1

yi − b
L+2U∑
i=1

αiyi +
L+2U∑
i=1

αi

+α0y0

(
L+2U∑
j=0

yj(αj − βj)φ(xj)

)
φ(x0). (6.23)

Simplifying (6.23) using (6.18) and (6.20), we get

min
α

1

2

L+2U∑
i,j=0

yiyj(αi − βi)(αj − βj)φ(xi)
T/φ(xj)

− α0

L

L∑
i=1

yi −
L+2U∑
i=1

αi

subject to
L+2U∑
i=0

yi(αi − βi) = 0,

0 ≤ αi ≤ (1 + τ)C, 1 ≤ i ≤ L,

0 ≤ αi ≤ (1 + τ)C∗, L+ 1 ≤ i ≤ L+ 2U. (6.24)

Considering the kernel matrix, K such that Kij = φ(xi)
T/φ(xj) and α̂i = yi(αi − βi),

we get the final dual problem as

min
α̂

1

2
α̂Kα̂− γT α̂

subject to 0 ≤ yiα̂i ≤ (1 + τ)C, i = 1, 2, . . . , L

−βi ≤ yiα̂i ≤ (1 + τ)C∗ − βi, i = L+ 1, L+ 2, . . . L+ 2U,

L+2U∑
i=0

α̂i = 0, (6.25)

where γ = yi for 1 ≤ i ≤ L+ 2U and γ0 = 1
L

∑L
i=1 yi. To solve (6.25), Algorithm 5 was

followed to find the optimal weight vector and bias term. Next, the weight vector and

the bias term were used to find the sign(wTx+ b) in case of linear vector. In Algorithm



128
6.2. pin-TSVM: A Robust Transductive Support Vector Machine with Truncated

Pinball Loss Function

5, the SVM was first trained using svmtrain() function using LIBSVM whose time

complexity is O(n3), where n represents the number of instances in a data set [146],

and then mlcv quadprog() [63] was used to implement Step 7 in Algorithm 5, whose

time complexity is again O(n3) [147]. Therefore, the overall time complexity of the

Algorithm 5 is O(n3).

Similarly, the dual optimization problem given in (6.25) can also be solved using

the non-linear kernels. The Algorithm 6 shows the steps to be followed for non-linear

kernels.

Algorithm 5 pin-TSVM to get optimal weight vector and bias term (Linear Kernel)

Input: D = {xi, yi}
L+U
i=1 ;

T is the maximum number of iterations;

ε1 and ε2 are the tolerance values;

L is the number of labeled instances of data set D;

U is the number of unlabeled instances of data set D;

Output: Optimal weight vector and bias term, wt and bt respectively.

1: Split the data set D into training set and test set .

2: Train SVM on training set and get w0 and b0.

3: Initialize t = 0 and ε1, ε2 > 0.

4: Compute β0
i using (6.12).

5: Set γi = yi for 1 ≤ i ≤ L + 2U and γ0 = 1
L

∑L
i=1 yi.

6: while t ≤ T do

7: Solve the convex optimization problem given by (6.25).

8: Compute w using

w =

L+2U∑
i=0

yi(αi − βi)xi.

9: Set wt+1 = w.

10: Compute b using the following constraints;

∀i ∈ {1, . . . , L}, 0 ≤ αi ≤ Cτ =⇒ yi(w
T
xi + b) = 1,

or

∀i ∈ {L + 1, . . . , L + 2U}, 0 ≤ αi ≤ C
∗
τ =⇒ yi(w

T
xi + b) = 1,

11: Set bt+1 = b.

12: Compute βt+1
i using (6.12).

13: if
(
(t ≥ 2) & (

∥∥wt+1 − wt
∥∥ ≤ ε1 or

∥∥∥βt+1 − βt
∥∥∥ ≤ ε2)

)
, break

14: Set t = t + 1.

15: end while

It is noteworthy that the time complexity of both the algorithms, Algorithm 5

and Algorithm 6 is same as mlcv quadprog() [63] was used to implement both the



6.3. Numerical Experiments 129

Algorithm 6 pin-TSVM to get Accuracy using Non-linear Kernel
Input: D = {xi, yi}

L+U
i=1 ;

T is the maximum number of iterations;
ε1 and ε2 are the tolerance values;
L is the number of labeled instances of data set D;
U is the number of unlabeled instances of data set D;

Output: Accuracy

1: Split the data set D into training set and test set.

2: Choose a non-linear kernel.
3: Compute kernel matrix, K using the training features.

4: Train SVM on training set and get α0, b0 and support vectors, SVinitial.

5: Initialize t = 0.
6: Compute β0

i using (6.12).

7: Set γi = yi for 1 ≤ i ≤ L + 2U and γ0 = 1
L

∑L
i=1 yi.

8: while t ≤ T do

9: Solve the convex optimization problem (6.25) using α0, b0 and SVinitial. Find α̂ and support vectors, S.

10: Compute b using the following constraints

∀i ∈ {1, . . . , L}, 0 ≤ α̂i ≤ Cτ =⇒ yi(K ∗ α̂i + b) = 1,

or
∀i ∈ {L + 1, . . . , L + 2U}, 0 ≤ α̂i ≤ C

∗
τ =⇒ yi(K ∗ α̂i + b) = 1,

11: Set bt+1 = b and α̂t+1 = α̂
12: Compute βt+1

i using (6.12).

13: if
(
(t ≥ 2) &

(∥∥∥α̂t+1 − α̂t
∥∥∥ ≤ ε1 or

∥∥∥βt+1 − βt
∥∥∥ ≤ ε2)), break

14: Set t = t + 1.

15: end while

16: Construct kernel matrix, K
′

using test features and support vectors, S.

17: Evaluate ypred = sign(α̂K
′

+ b).

18: Compute Accuracy by length(find(ypred == test label))/length(test label)

algorithms.

6.3 Numerical Experiments

In this section, the results obtained by pin-TSVM on various data sets are reported.

The proposed model was compared with the standard SVM, TSVM and TSVM with

ramp loss function (Ramp-TSVM). Firstly, the model performance was evaluated on

synthetic data sets. Towards this direction, a two-dimensional synthetic data set of

100 samples was generated with 50 samples for both positive and negative classes. In

this data set, a different amount of label noise was added to test the performance of

the proposed method against the existing TSVM methods. To add k% noise to the

data set, the k% labels of the labeled training data were switched from −1 to +1 and

vice-versa. In this work, k = 10, 15, 20 and 25 were considered to add label noise in the

synthetic data set. These results are reported in Table 6.2.

In Table 6.2, the best accuracies are marked in bold. Note that the labeled set



130 6.3. Numerical Experiments

Table 6.2: Comparison of Various Techniques on Synthetic Data Set Using Linear
Kernel

Methods Noise-free Data 10% Noise 15% Noise 20% Noise 25% Noise

SVM 94 88 83 85 49
TSVM 93 86 85 88 44
Ramp-TSVM 93 93 90 91 67
pin-TSVM-SG 93 93 91 92 67
pin-TSVM-dual 94 87 84 88 45

Table 6.3: Small Data Sets Used for Experimentation Purposes

S. No. Data Sets Instances Features No. of Classes Class Ratio

1 Sonar 208 61 2 3.00:1
2 Cleveland Heart 303 14 2 0.83:1
3 Haberman 306 4 2 0.36:1
4 WDBC 568 32 2 0.59:1
5 Australian 690 15 2 0.80:1
6 Pima Indians 738 9 2 0.74:1
7 CMC 1443 10 3 1.34:1
8 Spambase 4601 58 2 0.65:1

was used to train SVM since it is a supervised learning model. For the rest of the

techniques, unlabeled test data was also used for training. It is noteworthy that for all

the experiments, the weight adjusting parameters C and C∗ from the set {1, 2, 3, 4, 5}

and {0.1, 0.2, 0.3, 0.4, 0.5}, respectively, were used. The cross-validation was performed

on 10% of the training data to optimally select the value of C and C∗. It is observed that

the proposed method, pin-TSVM-SG, shows better accuracy for most cases; however,

the dual form of the proposed method lacks in terms of accuracy on this small synthetic

data set. These experiments were performed on linear kernel. However, the algorithms

for both linear and non-linear kernels (see Algorithm 4, 5 and 6) were provided. Similar

trends were observed with other kernels as well.



6.3. Numerical Experiments 131

6.3.1 Experiments on Real-world Data Sets

In this subsection, the performance of the existing TSVM techniques are compared

with the proposed technique on real-world data sets. First, the experimental results on

small real-world data sets are reported and then the techniques were evaluated on large

real-world data sets. Small real-world data sets are listed in Table 6.3.

Table 6.4: Comparison of Various Techniques with 0% Noise in the Real-World Data
Sets

Data Sets Results SVM TSVM Ramp-TSVM pin-TSVM-SG pin-TSVM-dual

Sonar

Accuracy 71.28±2.92 76.75±3.61 73.40±3.50 74.47±4.21 78.72±3.14
Precision 0.8481 0.8842 0.8241 0.8335 0.8706
Recall 0.8561 0.8893 0.8734 0.8861 0.8916
Time 1.36 1.84 41.61 7.12 2.13

Cleveland

Accuracy 81.39±2.74 82.11±2.17 83.01±3.72 82.35±2.95 83.09±2.14
Precision 0.8760 0.8828 0.8760 0.8795 0.8829
Recall 0.9117 0.9239 0.9317 0.9333 0.9339
Time 0.45 1.29 37.09 8.71 1.06

Haberman

Accuracy 72.46±2.01 75.36±9.61 72.46±2.24 73.46±2.14 76.09±4.34
Precision 0.7246 0.8320 0.7246 0.7291 0.8333
Recall 1 0.8889 1 1 1
Time 0.9837 0.7631 12.216 1.26 0.8609

WDBC

Accuracy 96.05±1.34 96.88±1.36 93.75±1.14 94.92±1.31 97.27±1.44
Precision 0.9760 0.9802 0.9836 0.9878 0.9881
Recall 0.9643 0.9880 0.9524 0.9605 0.9842
Time 0.0050 0.0861 109.71 18.285 1.326

Australian

Accuracy 85.91±1.94 84.84±1.57 84.52±1.72 86.13±1.56 84.84±0.88
Precision 0.8926 0.9007 0.9112 0.9082 0.9007
Recall 0.9568 0.9359 0.9193 0.9435 0.9359
Time 0.0210 3.5915 72.052 19.958 2.068

Pima
Indians

Accuracy 77.90±1.36 77.18±1.76 76.59±2.28 78.61±2.05 78.32±1.83
Precision 0.9017 0.9100 0.9332 0.9351 0.9400
Recall 0.8317 0.8588 0.7958 0.8344 0.8576
Time 0.0113 1.109 141.874 22.357 1.292

CMC
Accuracy 66.16±2.78 66.38±1.63 65.95±1.98 64.87±1.39 67.67±2.06
Precision 0.8016 0.8021 0.8407 0.8269 0.8845
Recall 0.7912 0.7918 0.7537 0.7506 0.7923
Time 0.5967 2.591 148.16 29.481 3.029

Spambase
Accuracy 89.76±1.03 90.40±1.12 89.54±0.53 89.69±0.26 91.16±0.36
Precision 0.9712 0.9663 0.9696 0.9766 0.9762
Recall 0.9221 0.8469 0.8601 0.8618 0.9430
Time 0.7151 21.18 182.71 119.56 41.33

• Description of the Data Sets



132 6.3. Numerical Experiments

In Table 6.3, the data sets are arranged in the increasing order of instances. A short

description of each data set is given as follows:

Table 6.5: Comparison of Various Techniques with 15% Noise in the Real-World Data
Sets

Data Sets Results SVM TSVM Ramp-TSVM pin-TSVM-SG pin-TSVM-dual

Sonar

Accuracy 62.77±3.48 69.15±2.61 59.67±8.23 63.24±4.11 71.24±4.11
Precision 0.8551 0.8442 0.8235 0.8587 0.8571
Recall 0.7024 0.7927 0.6829 0.7189 0.7952
Time 0.0058 1.6075 38.22 7.74 1.42

Cleveland

Accuracy 80.62±3.61 80.15±2.66 77.49±1.50 78.68±3.14 80.88±2.19
Precision 0.8505 0.8662 0.8346 0.8492 0.8871
Recall 0.9307 0.8934 0.9011 0.9145 0.9016
Time 0.0411 1.0062 39.83 8.998 1.311

Haberman

Accuracy 70.29±1.46 65.23±2.91 70.29±2.50 71.21±1.55 73.91±1.62
Precision 0.7029 0.8182 0.7027 0.7313 0.8361
Recall 0.8991 0.7627 0.8982 0.9011 0.9264
Time 0.0027 0.7228 1.273 1.218 0.805

WDBC

Accuracy 92.97±1.02 94.53±1.13 91.02±1.34 91.80±1.20 95.70±1.11
Precision 0.9123 0.9837 0.9957 1 0.9879
Recall 0.9297 0.9603 0.9137 0.9180 0.9684
Time 0.144 1.716 88.163 17.504 1.99

Australian
Accuracy 82.58±1.17 82.57±1.57 82.90±0.72 82.58±0.15 83.61±0.17
Precision 0.8533 0.8534 0.8567 0.8633 0.8717
Recall 0.9624 0.9642 0.9625 0.9624 0.9732
Time 0.0226 2.0554 55.704 20.258 2.261

Pima
Indians

Accuracy 71.25±3.64 73.12±1.53 71.54±1.53 72.83±3.12 73.41±1.79
Precision 0.9214 0.8405 0.8729 0.9265 0.8469
Recall 0.7645 0.7254 0.7404 0.7736 0.8467
Time 0.0144 1.1704 132.14 22.274 1.506

CMC
Accuracy 65.73±2.16 65.19±2.67 66.81±2.17 67.46±1.52 66.16±2.21
Precision 0.8356 0.8010 0.8517 0.8537 0.8588
Recall 0.7550 0.7887 0.7961 0.7709 0.7963
Time 0.0315 2.524 126.54 28.52 3.135

Spambase
Accuracy 87.10±1.16 89.08±1.32 60.95±1.05 89.30±0.89 89.90±1.61
Precision 0.9609 0.9588 0.8106 0.9808 0.9568
Recall 0.8943 0.9162 0.7842 0.8962 0.9371
Time 1.0635 46.344 930.795 117.944 71.02

� Sonar [148]: To classify two types of sonar signals: one bounced off a roughly

cylindrical rock and those sonar signals which bounced off a metal cylinder.



6.3. Numerical Experiments 133

� Cleveland Heart [148]: To classify patients based on presence or absence of

heart disease.

� Haberman [149]: Classification based on the survival status of patients (who died

within 5 years or patients who survived 5 years or longer) who had undergone

surgery for breast cancer.

� WDBC [148]: Features describe the characteristics of the nuclei of the cell present

in the images. It classifies if the case is benign or malignant.

� Australian [148]: The task is to classify the applications approved for credit

card.

� Pima Indians: Based on the women living in Arizona and the task is to classify

them as diabetic or non-diabetic.

� CMC [148]: The task is to predict the contraceptive method choice of a woman

based on her socio-economic and demographic characteristics.

� Spambase [148]: To classify an email as spam or non-spam.

To perform the experiments over these data sets, the data sets were divided into the

ratio of 55:45, where 55% of data was used for training while the rest 45% of data was

used for testing purposes. Only 55% labeled data was used to train the model. In this

way, the performance of all the methods was tested with greater complexity. Therefore,

45% unlabeled data was used for training.

The SVM model was trained over the labeled training set (similar to the synthetic

data set) using svmtrain() from LIBSVM [146]. The weight vector and the bias term

obtained from training the SVM were then used to train other models. To check the

robustness of the proposed model, noise was added to the labeled training data. In this

part of the work, model’s performance was evaluated by adding 0%, 15%, and 30% noise

in the data sets. To add k% noise to the data set, the k% labels of the labeled training



134 6.3. Numerical Experiments

Table 6.6: Comparison of Various Techniques with 30% Noise in the Real-World Data
Sets

Data Sets Results SVM TSVM Ramp-TSVM pin-TSVM-SG pin-TSVM-dual

Sonar

Accuracy 61.70±3.31 62.06±4.57 57.45±6.98 58.51±6.77 62.77±3.14
Precision 0.6988 0.7754 0.6207 0.6595 0.7708
Recall 0.8406 0.7500 0.6471 0.7112 0.8429
Time 0.0252 2.113 42.21 7.97 1.193

Cleveland

Accuracy 73.77±2.15 77.94±3.81 80.15±5.72 78.35±5.11 79.41±3.32
Precision 0.8337 0.8669 0.8761 0.9106 0.8926
Recall 0.8121 0.8619 0.8651 0.8960 0.8780
Time 0.0868 1.562 41.346 9.408 1.343

Haberman

Accuracy 70.46±2.11 61.59±3.12 71.46±3.62 72.47±1.72 73.19±1.72
Precision 0.7046 0.8333 0.7246 0.7249 0.8050
Recall 0.8913 0.7246 0.7246 1 0.8947
Time 0.0026 0.6961 2.167 2.289 0.8330

WDBC

Accuracy 92.19±2.91 92.58±1.69 91.80±0.61 91.80±0.51 94.14±1.65
Precision 0.9958 0.9595 0.9476 0.9476 0.9640
Recall 0.9256 0.9634 0.9671 0.9674 0.9757
Time 0.0164 1.861 77.81 17.431 2.85

Australian

Accuracy 83.18±4.48 83.58±4.18 84.74±2.85 87.74±3.22 87.82±2.83
Precision 0.8944 0.8947 0.8977 0.8978 0.9064
Recall 0.8742 0.9748 0.9749 0.9841 0.9861
Time 0.0211 2.278 62.214 20.701 20.58

Pima
Indians

Accuracy 72.54±3.64 73.99±4.25 73.57±4.16 75.14±3.53 74.57±2.83
Precision 0.8961 0.8366 0.8721 0.8814 0.9350
Recall 0.7771 0.8439 0.8113 0.8660 0.8746
Time 0.0159 1.194 125.98 22.342 1.532

CMC

Accuracy 64.09±2.20 65.30±2.41 64.44±2.57 64.87±1.47 65.37±2.19
Precision 0.8216 0.8102 0.8399 0.8361 0.8090
Recall 0.6991 0.7710 0.7346 0.7462 0.7791
Time 0.088 2.934 110.924 29.31 4.057

Spambase

Accuracy 83.48±0.98 88.26±1.16 62.38±1.45 83.14±0.91 88.41±1.11
Pecision 0.9686 0.9447 0.8243 0.9690 0.9443
Recall 0.8580 0.9304 0.7918 0.8514 0.9327
Time 1.462 109.073 849.58 118.602 190.886

data were changed from −1 to +1 and vice-versa. For experimentation, k = 0, 15 and

30 were considered for real-world small and large data sets. The performance of all

these models were compared based on accuracy, precision [150] and recall [150]. The

computational time (in seconds) of all the methods was also computed.

It is noteworthy that these experiments on small data sets were performed on a

Lenovo laptop with Windows 10 operating system having 4GB RAM and RADEON



6.3. Numerical Experiments 135

graphics.

First, the results over data sets with 0% noise are reported in Table 6.4. The

boldfaced accuracies, precision and recall values represent the best values corresponding

to the data sets. It is observed that the dual form of pin-TSVM perform better than rest

of the techniques on most data sets. Note that for SVM and TSVM, the dual forms of

these techniques were implemented for small data sets only as the computational time

depends on the number of examples [147], so it was not used for large-scale data sets.

The primal form using SGD (Algorithm 3) was used for large real-world data sets.

Next, 15% label noise was added to the data sets and the results are reported in

Table 6.5. The pin-TSVM-dual outperforms the other techniques in most cases. It was

also observed that the decrease in the accuracy after adding 15% noise in the data sets

was also less for pin-TSVM-dual than the other techniques.

Next, the training data sets’ label noise was further increased to 30% and the results

are reported in Table 6.6. Fom Table 6.6, it was observed that the pin-TSVM-dual

still outperforms the rest of the methods in terms of accuracy, precision and recall for

majority of the data sets. The method was also in close comparison to the TSVM in

terms of computational time.

In all the above tables, Table 6.4, 6.5 and 6.6, the computational time for SVM was

significantly less since only the labeled training set was used to train the model while

in the rest of the techniques, labeled as well as the unlabeled set were used for training.

Next, the experiments were performed on large scale real-world data sets to compare

the results of the proposed technique with the existing models. The data sets that were

used are listed in Table 6.7. The CCCP form of TSVM, Ramp-TSVM, and the proposed

approach were used to perform these experiments. pin-TSVM was implemented using

Algorithm 4.

Please note that the models were implemented on the master node of the IIT (BHU),

Varanasi server with 96GB RAM to perform these experiments. These results are



136 6.3. Numerical Experiments

reported in Table 6.8. For image data sets like CIFAR-10, MNIST and Cat vs Dog,

similar steps were performed as in [63]. The feature set was obtained from these images.

The number of instances and the number of attributes of this feature set are listed in

Table 6.7.

Table 6.7: Used Large Data Sets for Experimentation Purposes

S. No. Data Sets Instances Features No. of Classes

1 Banana 5300 3 2
2 Page Blocks 5473 11 5
3 Musk(version 2) 6568 168 2
4 Cat vs Dog 25000 1001 2
5 CIFAR-10 60000 16384 10
6 MNIST 70000 1570 10
7 Cover Type 581012 54 7

• Description of the Data Sets listed in Table 6.7

� Banana [151]: This data set is based on the two types of banana classification

based on its shape.

� Page Blocks [148]: The task is to classify those page blocks of a document that

has been detected by a segmentation process.

� Musk (version2) [148]: To classify whether the new molecules are musk or not.

� Cat vs Dog [152]: To classify the new image as cat image or dog image.

� CIFAR-10 [153]: CIFAR-10 data set has 60,000 color images of size 32 × 32

pixels. These images belong to ten classes. To use this data set, we extract

features from the image data set.

� MNIST [148]: MNIST database comprise of images of handwritten digits. The

task is to identify the new digit based on the image.



6.3. Numerical Experiments 137

� Cover Type [148]: The task is to predict the forest cover type based on the

cartographic variables [148]. It includes a total of seven classes marked as integer

1 to 7 in the data set.

Similar to the experiments performed on small data sets, different levels of noise

were addedd in these experiments also. For multi-class classification, the one versus

rest approach was followed. From Table 6.8, it is observed that the proposed approach

is close to the rest of the approaches for the noise-free data set. However, when noise

was added to the data, the proposed approach outperformed significantly. Please note

that the methods with empty values in Table 6.8 indicate that these methods have not

produced any results in one month. The above-discussed techniques were also compared

with convolutional neural network (CNN) on image data sets.

To compare the above-discussed techniques over the computational time, a data

set with the maximum number of instances, Forest cover type, was chosen. The com-

putational time of SVM is 6.67 × 103 minutes, TSVM is 6.81 × 105, Ramp-TSVM is

2.82× 104 and the proposed method is 4.51× 103 minutes. In the training time of the

proposed method, pin-TSVM is less than the others.

Table 6.8: Comparison of Various Techniques over Large Real-World Data Sets using
Linear Kernel

Data

Sets

Noise Results SVM TSVM Ramp-TSVM pin-TSVM CNN

Banana

0% Noise

Accuracy 54.84 50.40 58.70 58.91

–

Precision 0.5484 0.6952 0.5980 0.6893

Recall 0.6630 0.6469 0.9701 0.9716

15% Noise

Accuracy 54.68 50.07 57.19 57.06

Precision 0.5448 0.7028 0.5723 0.6926

Recall 0.9890 0.6513 0.9981 0.9985



138 6.3. Numerical Experiments

30% Noise

Accuracy 55.22 48.97 58.41 58.96

Precision 0.5522 0.6775 0.5860 0.7054

Recall 0.9770 0.6381 0.9943 0.9946

Page

Blocks

0% Noise

Accuracy 92.11 94.78 89.21 95.09

-

Precision 0.9238 0.9697 0.8921 0.9788

Recall 0.9631 0.9767 0.9535 1

15% Noise

Accuracy 91.47 94.84 89.21 94.92

Precision 0.9153 0.9652 0.8921 0.9661

recall 0.9994 0.9820 0.9414 1

30% Noise

Accuracy 92.05 93.84 90.55 94.61

Precision 0.9211 0.9615 0.9055 0.9714

Recall 0.9994 0.9635 0.9433 0.9996

Musk

0% Noise

Accuracy 94.71 94.27 84.99 94.90

-

Precision 0.9914 0.9717 0.9966 0.9791

Recall 0.9549 0.9623 0.8523 0.9681

15% Noise

Accuracy 89.17 91.24 87.92 91.76

Precision 0.9812 0.9770 0.9845 0.9790

Recall 0.9445 0.9512 0.8512 0.9578

30% Noise

Accuracy 80.63 83.83 86.09 91.24

Precision 0.9891 0.9576 0.9783 0.9791

Recall 0.9499 0.9688 0.8465 0.9581

Cat vs

Dog

0% Noise

Accuracy 50.10 96.25 96.59 97.25 95.71

Precision 1 0.9797 0.9869 0.9881 0.9771

Recall 0.5010 0.9725 0.9784 0.9841 9810

15% Noise

Accuracy 50.09 96.02 93.81 96.18 93.78

Precision 1 0.9680 0.9548 0.9858 0.9615

Recall 0.5009 0.9736 0.9427 0.9743 0.9558



6.3. Numerical Experiments 139

30% Noise

Accuracy 48.48 95.50 89.79 95.80 76.20

Precision 1 0.9856 0.9844 0.9870 0.8712

Recall 0.4841 0.9686 0.9020 0.9732 0.8711

CIFAR-

10

0% Noise

Accuracy 52.17 53.44 53.11 54.25 0.6508

Precision 0.5684 0.6687 0.5995 0.6993 0.6991

Recall 0.6783 0.6523 0.9712 0.9778 0.9872

15% Noise

Accuracy 48.67 49.65 51.41 52.78 0.4513

Precision 0.5432 0.6792 0.5980 0.7123 0.5810

Recall 0.9771 0.6498 0.9956 0.9956 0.9762

30% Noise

Accuracy 44.39 47.55 46.54 50.21 0.3767

Precision 0.5211 0.5348 0.5312 0.6235 0.5210

Recall 0.8965 0.6894 0.9873 0.9881 0.9621

MNIST

0% Noise

Accuracy 91.92 91.03 94.26 97.25 97.25

Precision 0.9634 0.9601 0.9869 0.9891 1

Recall 0.9775 0.9725 0.9784 0.9851 0.9812

15% Noise

Accuracy 87.87 90.01 92.26 95.01 95.05

Precision 0.9032 0.9227 0.9453 0.9721 0.9812

Recall 0.9071 0.9436 0.9631 0.9878 0.8005

30% Noise

Accuracy 82.21 89.98 91.56 94.34 94.01

Precision 0.7898 0.9166 0.9229 0.9721 0.9651

Recall 0.8445 0.9175 0.9246 0.9278 0.7927

Forest

0% Noise

Accuracy 63.57 76.14 69.18 77.47

-

Precision 0.8226 0.8977 0.8451 0.9092

Recall 0.9776 0.9712 0.9613 0.9842

15% Noise

Accuracy 58.22 - 67.99 76.34

Precision 0.8002 - 0.8271 0.8956



140
6.4. Application to the Detection of Novel Coronavirus (COVID-19) Infected

Patients using Chest X-ray Images

Recall 0.9471 - 0.9606 0.9781

30% Noise

Accuracy 51.21 - 65.46 73.21

Precision 0.7911 - 0.8034 0.8676

Recall 0.9251 - 0.9571 0.9661

As the proposed approach performed well on real-world data sets, this approach was

also applied to the detection of disease due to the presence of novel coronavirus in the

human body. Based on chest X-ray images, it was predicted that whether a person is

infected or not. Since assigning these labels manually is time-consuming and difficult,

especially during this pandemic, the labels using our proposed robust semi-supervised

learning framework, pin-TSVM.

6.4 Application to the Detection of Novel Coronavirus

(COVID-19) Infected Patients using Chest X-ray Images

In this section, the use of the pin-TSVM model to predict if a person is infected by

COVID-19 is discussed. To do this, the model was trained using the chest X-ray images

of humans.

It has been observed that the early detection of the disease with mild symptoms

can help the patient in recovering from the disease. Therefore, it is required to detect

the disease in its early stage. In this work, a semi-supervised machine learning model,

TSVM, was used to detect the disease in humans using their chest X-ray images. Since

labels come from human experts, and they do make mistakes, particularly in a pandemic

like the situation where they are under considerable stress due to a large number of

severe cases. The robust TSVM, pin-TSVM, was used to detect the presence of COVID-

19 in a human body. First, a data set was created using chest X-ray images of COVID

patients, normal humans, and patients with bacterial infection. These images are shown

in Figure 6.3. The pre-trained VGG19 model was used to extract features from the



6.4. Application to the Detection of Novel Coronavirus (COVID-19) Infected
Patients using Chest X-ray Images 141

(a) Patient having Bacterial
Infection

(b) Patient having Coron-
avirus

(c) Normal X-ray

Figure 6.3: Chest X-ray Images of Humans with a) Bacterial Infection b) Coronavirus
c) Normal X-ray

images [154]. In VGG19, the feature extraction part is from the first input layer to the

max-pooling layer. The rest of the part of VGG19 is used for classification purposes.

VGG19 uses multi-channel array signals to generate images and hence, it is superior

than other machine learning models in terms of classification [155]. Therefore, VGG19

was used for feature extraction. To perform the experiments on the COVID-19 data

set, the steps shown in Figure 6.4 were followed.

In these experiments, some of the labels of the training data (as described earlier

in Section 6.3) were switched to test the robustness of pin-TSVM on the COVID-

19 data set. Therefore, when a few labels in the training set were wrong, the task

was to formulate a model that is robust enough such that it maintains its accuracy

to some extent, i.e., degrades gracefully rather than catastrophically. pin-TSVM had

proved its robustness through its performance on real-world data sets as discussed in

the previous Section 6.3. This model was used on the COVID-19 data set (having

chest X-ray images of humans). The results were computed in two ways: directly

using the features obtained by applying the VGG19 model and extracting the essential

features from this step using principal component analysis (PCA) [156]. The results are

reported in Table 6.9. The accuracies and the computational time (in parenthesis) of

the various techniques are also mentioned. Other performance metrics like sensitivity

and specificity are also mentioned in Appendix E (Table 7.3). The last column of Table



142 6.5. Summary

Figure 6.4: Steps to Extract Features From the COVID-19 Data Set and Training
pin-TSVM

6.9 represents the value of C used in these experiments. Note that the same value of

C and C∗ were used in these experiments.

From Table 6.9, it is observed that the proposed model has outperformed the existing

techniques even after increasing noise in the data set. This method can also be used to

assign labels to the unlabeled samples efficiently.

6.5 Summary

In this paper, an improved and robust TSVM was proposed towards label noise in the

data set. The truncated pinball loss function was used instead of the conventional hinge

loss function to introduce robustness in this framework (Section 6.2). In this work, both

the primal form and the dual form of the proposed technique were implemented. The



6.5. Summary 143

Table 6.9: Comparison of Various Techniques over COVID-19 Data Set

Dats Sets Results SVM TSVM ramp-TSVM pin-TSVM C

COVID-
19 Data
Set

0% Noise 93.63(0.2524) 94.62(5.70) 93.80(7.11) 96.45(10.1) (1,1,2,1)
10% Noise 92.15(0.2619) 93.10(7.10) 91.74(7.66) 94.63(10.6) (1,1,2,3)
15% Noise 89.67(0.3974) 92.17(14.73) 93.80(16.41) 94.21(14.66) (2,2,1,1)
30% Noise 68.77(0.3490) 91.74(18.18) 92.18(14.66) 93.15(17.82) (2,2,2,2)
40% Noise 68.18(0.3880) 90.32(13.97) 90.08(14.21) 92.15(20.75) (2,2,2,3)

COVID-
19 Data
Set with
PCA

0% Noise 92.89(0.0086) 92.15(0.9896) 91.74(1.6392) 95.21(2.0552) (2,3,1,4)
10% Noise 92.56(0.0079) 91.80(0.9192) 92.56(1.8664) 93.89(1.8642) (2,3,1,1)
15% Noise 91.95(0.0113) 92.98(1.7626) 92.28(1.6320) 94.12(2.0590) (2,3,1,1)
30% Noise 91.56(0.0124) 90.08(1.2117) 85.95(2.1602) 92.15(2.6186) (2,2,1,3)
40% Noise 70.25(0.0137) 86.78(1.7512) 86.36(2.4502) 88.02(3.2693) (2,2,1,4)

CCCP was used on the primal form and implemented it using SGD (see Algorithm 4).

The dual form was implemented using the mlcv quadprog() function [63] in MATLAB

(see Algorithms 5 and 6). In this work, algorithms for both linear and kernelized pin-

TSVM were provided. The proposed technique was also compared with the existing

techniques on both the synthetic and real-world data sets. The proposed technique

outperformed other techniques on the majority of the data sets.

The use of pin-TSVM was also extended to the detection of coronavirus infected

patients using their chest X-ray images. The proposed technique resulted in better

accuracy, precision and recall even under the noisy environment. It is observed that

the method can be efficiently used to detect the coronavirus infected patients using

their chest X-ray images.


