
Chapter 4

Res-TSVR: Robust Twin Support

Vector Regression based on

Rescaled Hinge Loss Function

In this chapter, robust twin support vector regression (TSVR) is proposed using rescaled

hinge loss function. A rigorous analysis is provided along with several experimental

results to show the efficacy of the model.

4.1 Introduction

In this chapter, a regression variant of SVM is discussed. In 2007, Khemchandani and

Chandra [32] came up with an idea of splitting the SVM formulation into two simpler

formulations that generate two non-parallel hyperplanes. This model was called Twin

SVM (TWSVM). This variant of SVM was analytically and experimentally proved to be

four times faster than SVM [32]. Peng [86] also tried to enhance its properties by adding

sparseness to it. In 2012, Peng and Xu [87] proposed to generate two hyperspheres, each

of them being smaller than the standard SVM hyperplane. As compared with TWSVM,

that work avoided matrix inversions in its two dual quadratic formulations [87]. Such
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non-parallel hyperplanes were also generated using the clustering mechanism. In that

method, the similarity between the training points was considered to form clusters [88].

That technique was also different from the TWSVM in a manner that it solved a

single quadratic problem in contrast to TWSVM, which solves two quadratic problems.

As this variant also used hinge loss, the problem of sensitivity towards noise was still

there. Similarly, various approaches were proposed to make it robust, e.g., the weighted

version of TWSVM [89], TWSVM with ramp loss function [90], TWSVM with pinball

loss function [65], TWSVM with rescaled hinge loss [91] and TWSVM with general

pinball loss [92], etc. Recent research in the field of TWSVM for classification includes

the use of stochastic gradient descent for TWSVM, which is useful to solve large-

scale problems [93]. Using the concept of TWSVM in neural networks, the problem of

imbalance in the data sets was solved [94].

The above-discussed formulations were proposed for the classification problems. Re-

searchers also proposed similar formulations for regression. Like the TWSVM, twin

support vector regression (TSVR), a variant of SVR, was also proposed in [33]. After

its proposal, it was observed that the model suffers from the problem of overfitting.

To solve this problem, a weighted version of TSVR was proposed [95]. Similarly, the

least-square variant of TSVR was also proposed [96]. It was observed that although

the TSVR is four times faster than the SVR method [96], it suffers from the following

limitations (see [96]):

(i) It is highly sensitive to noise and outliers.

(ii) It has the problem of overfitting.

(iii) It is not sparse.

Because of these facts, Chen et al. [97] proposed an improved TSVR, which was robust

to noise and had sparseness. The authors used the L1 norm instead of L2 norm to make

the model robust. Also, to avoid the problem of overfitting, they added a regularization
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term in the objective function. Furthermore, their proposed approach was sparse, which

was missing in TSVR. The critical point of their work was that they derived the linear

programming (LP) model, which was comparatively easier to solve than TSVR. They

used the Newton-Armjio method to solve these LP problems [97].

Other approaches that are robust towards noise include the one proposed by [98],

in which a weighted ε-TSVR (W-ETSVR) was introduced using a quadratic loss func-

tion. The experimental results [98] demonstrated that their algorithm could reduce

the impact of outliers to a certain extent. That work was inspired by the work of [99]

in which an unconstrained Lagrangian TSVR was proposed so that the computational

speed can be further improved. Furthermore, the pinball loss function was also used for

the regression problems (pin-TSVR) to make the TSVR robust to outliers [100]. That

work is amongst the most recent contribution in making the TSVR robust. Anagha et

al. [100] used the squared pinball loss function and solved the primal problem itself. The

pinball loss function makes the problem strongly convex, which can be solved through

an iterative algorithm [100].

4.1.1 Motivation Behind This Work

Several machine learning researchers have focused their attention on imparting robust-

ness to the models. Since machine learning is essentially a data-driven approach, the

resulting model should be robust against noisy data. Specifically, concerning SVMs,

it is observed that many robust variants [25, 36, 37] of SVM are proposed to make the

model robust to noise and outliers. A recently proposed approach [78] of using corren-

tropy with hinge loss, i.e., rescaled hinge loss, has made the SVM model robust for a

classification problem. However, the question of using it for regression problems not

been addressed.

The contribution of correntropy in making the loss functions of a classification prob-

lem robust motivated us to try it for regression problems. The correntropy-based loss
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functions are not only exploited in machine learning but also in deep learning [101].

Furthermore, the hinge loss is an unbounded and non-smooth function. However, it

was observed that the composition of the correntropy-based loss function (C-loss [81])

with hinge loss makes the overall function bounded which is desirable to deal with

the outliers. This function is monotonic, smooth, and non-convex [78]. Inspired by

these properties and the results obtained over the classification tasks, its application is

extended to regression, using the TSVR model.

4.1.2 Contribution of This Work

Inspired by the above-discussed research and the identified gaps, the rescaled hinge loss

function was proposed for the regression problem of TSVR. The following contributions

had added novelty and quality to work.

(i) In this work, rescaled hinge loss was proposed for TSVR, which had not been

proposed earlier.

(ii) The performance metrics were compared before and after adding noise to the data

sets. Synthetic data sets were used in some experiments. This facilitates a clear

visual understanding of changes in the performance of various approaches.

(iii) In this work, the dual of the resultant non-convex problem was formulated rigor-

ously after incorporating rescaled hinge loss into the conventional TSVR. Through

this approach, the robustness of the standard TSVR was improved. It also re-

duced the problem of overfitting.

4.1.3 Outline

This chapter is organized as follows. In Section 4.2, a brief introduction is proposed to

the approaches with which our method is being compared. Section 4.3 presents the new

approach in detail, followed by the analysis of Res-TSVR in Section 4.4. In Section 4.5,
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numerical experiments are performed on the proposed approach Res-TSVR. Section 4.6

discusses the effect of rescaling parameter, η̂ on the performance of Res-TSVR. Section

4.7 concludes this work by highlighting the main contributions and advantages of the

proposed work.

4.2 Brief Introduction to ε-SVR and TSVR

In what follows, a brief introduction of the methods which are closely related to our

work is provided.

4.2.1 Support Vector Regression

SVR [10] follows the same principle as SVM does with some differences. In this case, a

level of tolerance, ε is predefined as this model uses ε-loss function, which is in Figure

4.1. In Figure 4.1, −ε and +ε define the error bounds. SVR finds a regression function
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Figure 4.1: ε-Insensitive Loss Function

at the end which is defined as

f(x) = wTx+ b, (4.1)

where w ∈ Rn and b ∈ R. Through this regression function, the model predicts the

target values corresponding to each instance of the test set. Using the regularization
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term 1
2
‖w‖2 and the slack variables ξ = (ξ1, ξ2, · · · , ξm)T and ξ̂ = (ξ̂1, ξ̂2, · · · , ξ̂m)T

corresponding to upper and lower bound functions, the primal form of SVR is defined

as follows:

min
w,b,ξ,ξ̂

1
2
‖w‖2 + C

m∑
i=1

(ξi + ξ̂i)

subject to yi − (Xiw + b) ≤ ε+ ξi, ξi ≥ 0, i = 1, 2, · · · ,m,

(Xiw + b)− yi ≤ ε+ ξ̂i, ξ̂i ≥ 0, i = 1, 2, · · · ,m, (4.2)

where C ≥ 0 is a regularization parameter that signifies the trade-off between the

loss function and the regularization term. Note that the objective function in (4.2)

corresponds to the linear SVR. It can be adapted easily for a non-linear kernel. Although

SVR has been proved to be an efficient regressor compared to many other regressors,

the main challenge for using this SVR is the high computational complexity, which

raises to O(m3).

4.2.2 Twin Support Vector Regression

A limitation of ε-SVR is that it takes high computational time to make the predictions

[33]. This limitation is handled by TSVR, in which the complex quadratic function of

SVR is divided into two simpler quadratic equations. As the name indicates, TSVR

provides two hyperplanes which are given by

f1(x) = wT1 x+ b1 and f2(x) = wT2 x+ b2, (4.3)

where w1, w2 ∈ Rn and b1, b2 ∈ R, and these are obtained by solving the following

optimization problems (see [33]):

min
w1,b1,ξ

1
2
‖Y − ε1e− (Xw1 + b1e)‖2 + C1e

T ξ
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subject to Y − (Xw1 + b1e) ≥ ε1e− ξ, ξ ≥ 0, (4.4)

and

min
w2,b2,η

1
2
‖Y + ε2e− (Xw2 + b2e)‖2 + C2e

Tη

subject to (Xw2 + b2e)− Y ≥ ε2e− η, η ≥ 0, (4.5)

where C1, C2, ε1 and ε2 are the positive parameters, and e is the m-tuple column

vector (1, 1, · · · , 1)T . The two regressors in (4.3) find the ε-insensitive lower and upper

bound regressors, respectively. The final regressor is computed by the mean of these

two regressors. It can be observed that the first terms in (4.4) and (4.5) represent

the sum of squared distances from y = wT1 x + b1 + ε1 or y = wT2 x + b2 − ε2 to the

training points [33]. The final loss function (which is the combination of ε-insensitive

loss function and squared error loss function) is shown in Figure 4.2 (represented by

‘Total Error’).
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Figure 4.2: Loss Functions used in TSVR

To solve (4.4) and (4.5), their dual formulations can be derived as follows (see [33]):

max
α∈Rm

− 1
2
αTG(GTG)−1GTα + fTG(GTG)−1α− fTα
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subject to 0 ≤ α ≤ C1e, (4.6)

where G = [X e] and f = Y − ε1e. Similarly, for the second TSVR, the dual form is

max
γ∈Rm

− 1
2
γTG(GTG)−1GTγ − hTG(GTG)−1γ + hTγ

subject to 0 ≤ γ ≤ C2e, (4.7)

where h = Y +ε2e. From the solutions of (4.6) and (4.7), we can obtain the augmented

vectors µ1 =

w1

b1

 and µ2 =

w2

b2

 by computing

µ1 = (GTG+σI)−1GT (f−α) and µ2 = (GTG+σI)−1GT (h+γ), respectively, (4.8)

where σ > 0 is a constant so that GTG + σI is invertible. After obtaining w1, w2 and

b1, b2, the final regressor can be expressed as follows

f(x) = 1
2
(f1(x) + f2(x)) = 1

2
(w1 + w2)Tx+ 1

2
(b1 + b2). (4.9)

In (4.4), if the loss function is replaced by the pinball loss function, one can obtain

the pin-TSVR [100]. If the weight vector is assigned to every training data point, which

is multiplied by the hinge loss function, W-ETSVR can be obtained [98].

4.3 Res-TSVR

In this section, the formulation of the proposed approach, Res-TSVR, is described.

This technique extended the use of rescaled hinge loss from classification to a regression

problem. This method aimed to formulate a robust TSVR, which is less sensitive to

noise than the existing approaches.

Like TSVR, the proposed regressor, TSVR, using rescaled hinge loss (Res-TSVR),
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generates a pair of non-parallel lines for the training samples. In TSVR, the use of a

square loss function with a hinge loss function is already explained in Subsection 4.2.1.

In the proposed scheme, the hinge loss function is replaced with the rescaled hinge loss

function, and a regularizer term is added to the TSVR problem. This regularizer term

is added to address the overfitting problem with the conventional TSVR problem [97].

4.3.1 Problem Formulation

The optimization problem of the conventional TSVR (4.4) can be rewritten as

min
w1,b1

1
2
‖Y − (Xiw1 + b1e)‖2 + C1

m∑
i=1

PHinge(yi − (Xiw1 + b1)), (4.10)

for TSVR1 and

min
w2,b2

1
2
‖(Xw2 + b2e)− Y ‖2 + C2

m∑
i=1

PHinge((Xiw2 + b2)− yi) (4.11)

for TSVR2, where PHinge(·) represents the penalty function. From Figure 4.3, it can be

easily observed that the hinge loss function is not bounded, and the value of this loss

function is very substantial in the case of outliers. In [68], it is shown that the use of

correntropy with hinge loss function (rescaled hinge loss function) can make the revised

loss function bounded, monotonic, and non-convex. The rescaled hinge loss function is

given by

Prhinge(ξ) = β [1− exp(−η̂PHinge(ξ))] , (4.12)

where β = 1
1−exp(−η̂)

is a normalization parameter and η̂ > 0 is a constant.

The rescaled hinge loss function is shown in Figure 4.3 with different values of

η̂. This figure indicates that the rescaling has changed the properties of hinge loss

function from unbounded to bounded and convex to non-convex. One can observe

the behavior of the graph with the variation in the degree of rescaling. Also, it is
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noteworthy that as η̂ → 0, the rescaled hinge loss behaves like the conventional hinge

loss, i.e., Prhinge(ξ)→ PHinge(ξ).
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Figure 4.3: Hinge Loss and Rescaled Hinge Loss Function with Different η̂ Values

The hinge loss function in (4.10) and (4.11) is replaced by the rescaled hinge loss

function to make the objective function robust to noise. Introducing rescaled hinge loss

in (4.10) and (4.11) leads to

min
w1,b1

1
2
‖Y − (Xw1 + b1e)‖2 +

1

2

∥∥∥∥∥∥∥
w1

b1


∥∥∥∥∥∥∥

2

+ C1

m∑
i=1

Prhinge(yi − (Xiw1 + b1)) (4.13)

for TSVR1 and

min
w2,b2

1
2
‖(Xw2 + b2e)− Y ‖2 +

1

2

∥∥∥∥∥∥∥
w2

b2


∥∥∥∥∥∥∥

2

+ C2

m∑
i=1

Prhinge((Xiw2 + b2)− yi) (4.14)

for TSVR2. It is to be noted that a regularizer term added in the above equations

prevented the model from overfitting. Next, this problem was converted to its dual

form to implement it efficiently. The conversion of the primal form of TSVR1 to its

dual form is shown in Section 4.3.2. The same steps were followed for TSVR2.
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By conjugate function theory,

Prhinge(z) = β(1− exp(−η̂PHinge(z))) = inf
t<0

β(1 + ψ(t)− η̂PHinge(z)t), (4.15)

where ψ(t) = t(1− log(−t)), t < 0.

Thus, TSVR1 was recasted as

min
w1,b1,t

1
2
‖Y − (Xw1 + b1e)‖2+

1

2

∥∥∥∥∥∥∥
w1

b1


∥∥∥∥∥∥∥

2

−C1βη̂

2

m∑
i=1

PHinge(yi−(Xiw1+b1))ti, (4.16)

where t = (t1, t2, · · · , tm). Defining pi = C1βη̂(−ti) > 0, (6.17) can be written as

min
w1,b1

1
2
‖Y − (Xw1 + b1e)‖2 +

1

2

∥∥∥∥∥∥∥
w1

b1


∥∥∥∥∥∥∥

2

+
m∑
i=1

piξi, (4.17)

where ξi = PHinge(yi − (Xiw1 + b1)). So, the final primal form (4.13) can be rewritten

as

min
w1,b1

1
2
‖Y − (Xw1 + b1e)‖2 +

1

2

∥∥∥∥∥∥∥
w1

b1


∥∥∥∥∥∥∥

2

+
m∑
i=1

piξi

subject to Y − (Xw1 + b1e) ≥ ε1e− ξi, ξi ≥ 0, i = 1, 2, · · · ,m. (4.18)

• Explanation of the Objective Function of (4.18)

In (4.18), the first term represents the squared error loss function. It tries to minimize

the squared distance from the function Y = Xw1 + b1− ε1. This term fits the function

to the ε-insensitive upbound regressor. The same is the case with TSVR2, whose first

term fits the function to the ε-insensitive lower bound regressor.

The second term of the objective function in (4.18) represents the regularization

term. The minimization of this term attempts to avoid overfitting the training samples.
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The third term of the objective is the rescaled hinge loss function, which keeps the

loss bounded and makes the overall objective function robust. However, it makes the

corresponding optimization problem non-convex. It was therefore decided to convert

the optimization problem to its dual form which is convex and can be solved efficiently.

4.3.2 Linear Res-TSVR

In this subsection, the dual of (4.18) is formulated. To derive the dual form of (4.18),

first the Lagrangian for (4.18) was introduced as follows:

L(w1, b1, ξ, α, µ) = 1
2
‖Y − (Xw1 + b1e)‖2 + 1

2

∥∥∥∥∥∥∥
w1

b1


∥∥∥∥∥∥∥

2

+ pT ξ − αT ((Y − (Xw1 + b1e)) + ξ)− µT ξ (4.19)

where α and µ are Lagrange multiplier vectors.

The Karush-Kuhn-Tucker (KKT) necessary optimality conditions [102] for (4.19) are

∂L

∂w1

= −XT (Y − (Xw1 + b1e)) + w1 +XTα = 0, (4.20)

∂L

∂b1

= −eT (Y − (Xw1 + b1e)) + b1 + eTα = 0, (4.21)

∂L

∂ξ
= p− α− µ = 0, (4.22)

Y − (Xw1 + b1e) ≥ −ε1e− ξ, ξ ≥ 0, (4.23)

αT (Y − (Xw1 + b1e) + ξ) = 0, α ≥ 0, µ ≥ 0. (4.24)

The dual objective function for (4.18) is

D(α, µ) = inf{L(w1, b1, ξ, α, µ) : Y − (Xw1 + b1e) ≥ −ε1e− ξ}. (4.25)

From (4.20) and (4.21), we get
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−

XT

eT

(Y − [X e]

w1

b1

)+

w1

b1

+

XT

eT

α =

0

0

 . (4.26)

This can be written as

−GT (Y −Gu1) + u1 +GTα = 0, (4.27)

where G = [X e] and u1 =

w1

b1

 . Equation (4.27) implies

u1 = (GTG+ I)−1GT (Y − α). (4.28)

Therefore,

D(α, µ) = 1
2
(Y −Gu1)T (Y −Gu1) + 1

2
uT1 u1 + (p− µ)T ξ

= 1
2
(Y −Gu1)T (Y −Gu1) + 1

2
uT1 u1 + αT ξ, by (4.22)

= 1
2
(Y −Gu1)T (Y −Gu1) + 1

2
uT1 u1 − αT (Y −Gu1 + ε1e)ξ

= 1
2
(Y −Gu1)T (Y −Gu1) + 1

2
uT1 u1 + αTGu1 − (ε1e

T + Y T )α. (4.29)

From (4.27), we further get (u1 +GTα) = GT (Y −Gu1). Thus,

(u1 +GTα)Tu1 = (Y −Gu1)TGu1

= 1
2
(Y −Gu1)T (Y −Gu1)− 1

2
uT1 u1 + (u1 +GTα)Tu1 − (ε1e

T + Y T )α

= 1
2
(Y −Gu1)T (Y −Gu1)− 1

2
(Y −Gu1)TGu1 − 1

2
uT1 u1

+ C1(Y −Gu1)TGu1 − (ε1e
T + Y T )α

= 1
2
(Y −Gu1)T (Y +Gu1)− 1

2
uT1 u1 − (ε1e

T + Y T )α
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= 1
2
(Y −Gu1)TY + 1

2
(Y −Gu1)TGu1 − 1

2
uT1 u1 − (ε1e

T + Y T )α.

(4.30)

Since, from (4.27), after taking transpose, we obtained

(Y −Gu1)TG = αTG+ uT1 , (4.31)

and the expression in (4.30) leads to

1
2
(Y −Gu1)TY + 1

2
(αTG+ uT1 )u1 − 1

2
uT1 u1 − (ε1e

T + Y T )α

= 1
2
(Y −Gu1)TY + 1

2
αTGu1 − (ε1e

T + Y T )α

= 1
2
Y TY − 1

2
((Gu1)TY − (Gu1)Tα)− (ε1e

T + Y T )α

= 1
2
Y TY − 1

2
(Gu1)T (Y − α)− (ε1e

T + Y T )α

= 1
2
Y TY − 1

2
uT1G

T (Y − α)− (ε1e
T + Y T )α. (4.32)

From (4.27), again we have GT (Y − α) = GTGu1 + u1. Thus, (4.32) is

1
2
Y TY − 1

2
uT1 (GTGu1 + u1)− (ε1e

T + Y T )α. (4.33)

As the first term in (4.33) is constant with respect to α and µ, the dual function can

be taken as

D(α, µ) = −1
2
uT1G

TGu1 − 1
2
uT1 u1 − (ε1e

T + Y T )α

= −1
2
(Gu1)T (Gu1)− 1

2
uT1 u1 − (ε1e

T + Y T )α

= −1
2

(
G(GTG+ I)−1GT (Y − α)

)T(
G(GTG+ I)−1GT (Y − α)

)
− 1

2

(
(GTG+ I)−1GT (C1Y − α)

)T(
(GTG+ I)−1GT (Y − α)

)
− (ε1e

T + Y T )α.

(4.34)
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On simplification, (4.33) leads to the dual formulation of (4.18) as below:

max
α

− 1

2
αTG(GTG+ I)−1GTα + Y TG(GTG+ I)−1GTα− (ε1e

T + Y T )α

subject to 0 ≤ αi ≤ −C1βη̂ti, i = 1, 2, · · · ,m. (4.35)

Similarly, the dual formulation for Res-TSVR2 is given by

max
γ
− 1

2
γTG(GTG+ I)−1GTγ − Y TG(GTG+ I)−1GTγ(Y T − ε2e

T )γ

subject to 0 ≤ γi ≤ −C2βη̂ti, i = 1, 2, · · · ,m. (4.36)

It should be noted for Res-TSVR2 that

u2 = (GTG+ I)−1GT (Y + γ). (4.37)

4.3.3 Non-Linear Res-TSVR

In this subsection, the formulation for non-linear Res-TSVR is proposed. After careful

selection of the kernel, K(X,XT ), the primal forms of the TSVR optimization problem

became

min
w1,b1,ξ

1
2

∥∥Y − (K(X,XT )w1 + b1e)
∥∥2

+
1

2

∥∥∥∥∥∥∥
w1

b1


∥∥∥∥∥∥∥

2

+
m∑
i=1

piξi

subject to Y − (K(X,XT )w1 + b1e) ≥ ε1e− ξ, ξ ≥ 0. (4.38)

For TSVR2, the primal form is

min
w2,b2,η

1
2

∥∥Y − (K(X,XT )w2 + b2e)
∥∥2

+
1

2

∥∥∥∥∥∥∥
w2

b2


∥∥∥∥∥∥∥

2

+
m∑
i=1

giηi
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subject to (K(X,XT )w2 + b2e)− Y ≥ ε2e− η, η ≥ 0, (4.39)

where pi = C1βη̂(−ti) > 0 for TSVR1 and gi = C2βη̂(−ti) > 0 for TSVR2.

Following the same steps as described earlier for the linear case, the dual formula-

tions for the non-linear TSVRs are given by

max
α

− 1

2
αTH(HTH + I)−1HTα + Y TH(HTH + I)−1HTα− (ε1e

T + Y T )α

subject to 0 ≤ αi ≤ −C1βη̂ti, i = 1, 2, · · · ,m (4.40)

and

max
γ
− 1

2
γTH(HTH + I)−1HTγ − Y TH(HTH + I)−1HTγ + (Y T − ε1e

T )γ

subject to 0 ≤ γi ≤ −C2βη̂ti, i = 1, 2, . . . ,m. (4.41)

where H = [K(X,XT ) e]. For computing the vectors of w1, b1 and w2, b2,

u1 =

w1

b1

 = (HTH + I)−1HT (Y − α) for TSVR1 (4.42)

and

u2 =

w2

b2

 = (HTH + I)−1HT (Y + γ) for TSVR2. (4.43)

are computed.

4.3.4 Algorithm Res-TSVR

The complete training procedure is described in this subsection. Algorithm 2 gives the

pseudo code for Res-TSVR. The weight vectors and the bias term of the two hyperplanes

were obtained by Algorithm 2. The final prediction function for linear Res-TSVR is
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Algorithm 2 Training Procedure of Res-TSVR

Input: Training set {Xi, yi}mi=1;

η̂: a rescaled hinge loss constant;

C1, C2: the regularization parameters;

kmax: number of iterations;

ε1, ε2: error bounds;

tol: the tolerance value;

Output: ŵ1, b̂1 and ŵ2, b̂2, the solutions of Res-TSVR1 (4.18) and Res-TSVR2.

1: Initialization : k = 1, t1 = [−1,−1, . . . ,−1]T ∈ Rm, t2 = [−1,−1, . . . ,−1]T ∈ Rm,

G = [X e].

2: Compute β = 1
1−exp(−η̂)

.

3: Compute α and γ using (4.35) and (4.36), respectively for Linear Res-TSVR or

(4.40) and (4.41) for Non-Linear Res-TSVR.

4: while k < kmax do

5: αold = α and γold = γ.

6: Compute w1, b1 and w2, b2 using (4.28) and (4.37), respectively (or (4.42) and

(4.43), if considering Non-Linear Res-TSVR).

7: Compute z1i = yi− (Xiw1 + b1e) and z2i = yi− (Xiw2 + b2e), i = 1, 2, · · · ,m.

8: Compute t1 and t2 by t1 = − exp{−η̂PHinge(z1i)}, t2 = − exp{−η̂PHinge(z2i)},
i = 1, 2 . . . ,m.

9: Compute α and γ as described in Step 2.

10: k = k + 1.

11: end while

12: Return ŵ1 = w1, b̂1 = b1 and ŵ2 = w2, b̂2 = b2.

given by

f(x) = 1
2
(f1(x) + f2(x)) =

1

2

[(
ŵ1

Tx+ b̂1

)
+
(
ŵ2

Tx+ b̂2

)]
. (4.44)

For non-linear Res-TSVR, the final prediction is:

f(x) = 1
2
(f1(x) + f2(x)) =

1

2

[ (
(K(x, xT )ŵ1 + b̂1

)
+
(

(K(x, xT )ŵ2 + b̂2)
) ]
. (4.45)

Note 1 In Algorithm 2, if an appropriate guess of kmax is difficult, one can use the

stopping criteria as ‖αold − α‖ > tol and ‖γold − γ‖ > tol instead of k < kmax. The
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stopping criteria ‖αold − α‖ > tol and ‖γold − γ‖ > tol along with k < kmax can be

used to avoid unnecessary computations if there is no significant improvement of γ and

α values in consecutive iterations. In Subsection 4.4.2, an estimate on the number of

iterations is given to obtain an ε-precision optimum solution to (4.18).

4.4 Analysis of Res-TSVR

Optimization Process for Res-TSVR

For each iteration, i.e., for a value of k, in Res-TSVR, it is observed that the updation

of t1, t2 as well as α and γ is required. As the conjugate function theory (see equations

(4.15) and (4.16)) applied to the formulation of TSVR1 (4.13) and TSVR2 (4.14),

Alternating Optimization Technique [103] was applied on the Step 6 of Res-TSVR. The

main advantages of using this technique are that

(i) for the proposed TSVR1 and TSVR2, the technique can never diverge (see Sub-

section 4.4.1),

(ii) the maximum number of steps required to reach at an ε-precision solution can be

estimated (see Subsection 4.4.2), and

(iii) this technique makes a parallel computation possible because one dimensional

searches across different dimensions are independent of each other.

However, the proposed method have user-dependent regularizers C1 and C2. An incor-

rect selection of these regularizers may lead to poorer accuracy on the test set.

At the k-th iteration, for a given tk1 and tk2, (4.35) and (4.36) are solved to obtain αk

and γk for linear Res-TSVR and similarly (4.40) and (4.41) for non-linear Res-TSVR.

Consequently, uk1 and uk2 are obtained to calculate

wk1
bk1

 and

wk2
bk2

, respectively.
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Using the obtained αk and γk, t1 and t2 are updated by solving (see (4.15))

max
tk1<0

m∑
i=1

{
η̂PHinge(z

k
1i)t

k
1i − g(tk1i)} (4.46)

and

max
tk2<0

m∑
i=1

{
η̂PHinge(z

k
2i)t

k
2i − g(tk2i)}, (4.47)

respectively, where zk1i = yi−(Xiw
k
1 +bk1e) and zk2i = yi−(Xiw

k
2 +bk2e), i = 1, 2, · · · ,m.

The analytic solutions of (4.46) and (4.47) give

tk+1
1i = − exp(−η̂PHinge(z

k
1i)) (4.48)

and tk+1
2i = − exp(−η̂PHinge(z

k
2i)). (4.49)

Updating the iteration number from k to k+ 1, again the calculations of u1 and u2 are

followed to calculate

w1

b1

 and

w2

b2

, respectively, for the (k + 1)-th iteration.

4.4.1 Convergence Proof of Algorithm 2

In this subsection, the convergence proof of Algorithm 2 is given for the problem (4.18).

Let the objective function of (4.18) be P1(w1, b1, t), i.e.,

P1(w1, b1, t) = 1
2
‖Y − (Xw1 + b1e)‖2 + 1

2

∥∥∥∥∥∥∥
w1

b1


∥∥∥∥∥∥∥

2

− C1β
2

m∑
i=1

(ψ(ti)− η̂PHinge(zi)ti).

Suppose

Q1(w1, b1) = inf
t<0
P1(w1, b1, t).
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Then, by conjugate function theory,

Q1(w1, b1) = 1
2
‖Y − (Xw1 + b1e)‖2 + 1

2

∥∥∥∥∥∥∥
w1

b1


∥∥∥∥∥∥∥

2

− C1β

2

m∑
i=1

exp (−η̂PHinge(zi))

≥ −C1β

2

m∑
i=1

exp (−η̂PHinge(zi))

≥ −C1βm

2

since

1

m

m∑
i=1

exp (−η̂PHinge(zi)) ≤
1

m

m∑
i=1

1 = 1.

Hence,

P1(w1, b1, t) ≥ Q1(w1, b1) ≥ −C1βη̂

2
.

Thus, the sequence {P1(wk1 , b
k
1, t

k)} is bounded below. Also, for a given (wk1 , b
k
1),

P1(wk1 , b
k
1, t

k) ≤ P1(wk1 , b
k
1, t

k−1).

Hence,

P1(wk1 , b
k
1, t

k) ≥ P1(wk+1
1 , bk+1

1 , tk) ≥ P1(wk+1
1 , bk+1

1 , tk+1).

Therefore, the sequence {P1(wk1 , b
k
1, t

k)} is convergent and it converges to the greatest

lower bound.

So, the Algorithm 2 converges to a point (w1, b1, t) which is an optimum solution to

(4.18).

4.4.2 An Estimate of kmax in Algorithm 2 for an ε-Precision Solution

Let

Pmin
1 = lim

k→∞

{
P1(wk1 , b

k
1, t

k) : Y − (Xwk1 + bk1e) ≥ ε1e− ξk, ξk ≥ 0
}
.
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We say a point (wk1 , b
k
1, t

k) is an ε-precision solution to (4.18) if
∥∥P1(wk1 , b

k
1, t

k
1)− Pmin

1

∥∥ <
ε. In this subsection, we endeavour to estimate k̄ = kmax so that

∥∥∥P1

(
wk̄1 , b

k̄
1, t

k̄
1

)
− Pmin

1

∥∥∥ <
ε.

Theorem 4.1 If the Newton’s method with inexact line search is applied in the Al-

ternating Optimization for Res-TSVR, then to find ε-precision solution to (4.18), the

maximum number of iterations kmax is O(log(1
ε
)).

Proof: We note that

P1(wk+1
1 , bk+1

1 , tk+1)− P1(wk1 , b
k
1, t

k)

=
{
P1(wk+1

1 , bk+1
1 , tk+1)− P1(wk+1

1 , bk+1
1 , tk)

}
+
{
P1(wk+1

1 , bk+1
1 , tk)− P1(wk1 , b

k
1, t

k)
}

=

{
C1β

2

m∑
i=1

[(
ψ(tk+1

1 )− ψ(tk1)
)
− η̂PHinge(z

k
i )(tk+1

i − tki )
]}

+ 1
2

(∥∥Y − (Xwk+1
1 + bk+1

1 e)
∥∥2 −

∥∥Y − (Xwk1 + bk1e)
∥∥2
)

+ 1
2

{∥∥wk+1
1

∥∥2
+ bk+1

1

2 −
∥∥wk1∥∥2 − bk1

2
}
.

Out of the three terms in the last expression, for the last two terms, a computational

cost of O(log log(1
ε
)) is required to update wk1 , w

k
2 , b

k
1 and bk2 to the ε-precision point.

The expression in the first term for the update of t1 and t2 shows that one requires

a computational cost of O(log(1
ε
)) to reach an ε-precision t1 and t2.

Therefore, the total computational cost to achieve an ε-precision solution to (4.18)

a computational cost of O(log log(1
ε
)) +O(log(1

ε
)) ' O(log 1

ε
) is required. �

4.5 Numerical Experiments and Results

This section presents the experiments and their results to illustrate the superiority (in

terms of robustness towards different types of noises) of the proposed method over
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existing methods, SVR, TSVR, W-ETSVR, and pin-TSVR. Towards this direction, ten

data sets were used which included three synthetic data sets and seven real-world data

sets. All these experiments were performed over MATLAB 2013a on a system with

an Intel i7 processor with 10GB RAM. To make the process a bit simpler, the same

regularization parameter and error bounds were used for both the TSVRs. The error

bound was given a value of 0.05, which was fixed for all the experiments. This value

can be changed. The values of optimal η̂ and C1, C2 were obtained by using 10-fold

cross-validation. All the data sets were normalized in the range of [0, 1].

4.5.1 Performance Criteria

In the experiments, the proposed method is compared with the existing methods based

on three performance criteria: normalized mean square error (NMSE), root mean square

error (RMSE), and R2. In addition to these, the computational time is also reported

for all the methods. The performance metrics used are the sum of a squared estimate

of error (SSE), total sum squares (TSS), the sum of squares of residuals (SSR), RMSE,

NMSE, and coefficient of determination (R2). These are defined in Table 4.1. In this

table, the actual target value is represented by Y , and the predicted target value is

represented by Ŷ . Also, Ȳ represents the mean of Y values.

Table 4.1: Performance Metrics

SSE =
∑m

i=1(Yi − Ŷi)2 SST =
∑m

i=1(Yi − Ȳi)2

SSR = SSE RMSE =
√

mean(SSE)

NMSE = SSE/SST R2 = 1-SSR/SST
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4.5.2 Performance on Synthetic Data Sets

In this subsection, the performance of the proposed Res-TSVR is demonstrated on three

synthetic data sets that have been used in [98] and [100]. These synthetic data sets are

defined in Table 4.2.

Table 4.2: Synthetic Data Sets Used For Experimentation Purposes

Synthetic Data Set 1 y = sin(x)
x
, x ∈ [−4π, 4π]

Synthetic Data Set 2 y = 0.2 sin(2πx) + 0.2x3 + 0.3, x ∈ [0, 2]

Synthetic Data Set 3 yi = xi + 2(exp(−16x2
i )), xi = 0.01(i− 1)

In all the data sets, 500 samples were generated and divided into a 70:30 ratio

for training and testing samples. First, the performance of the proposed method was

compared with the existing techniques over clean data (results are shown in Table 4.3).

After that, the randomly selected 10% of the training data was corrupted by two types

of noises, Gaussian noise, and uniform noise. The Gaussian noise was added with mean

= 0 and a standard deviation of 0.2. The results are shown in Table 4.4. Similarly,

uniform noise was added in the training set, and the results are tabulated in Table 4.5.

It should be noted here that all the experiments were performed using the radial basis

function (RBF) kernel. In Tables 4.4 and 4.5, one more column (last column) is added

which consists of the optimal parameters used in these algorithms. The parameters

which are not used in the respective algorithms are marked by a dash ‘-’. Note that

p used in the last column is the parameter of squared pinball loss function such that

0 ≤ p ≤ 1 [100]. The table entries with the least RMSE and NMSE while the highest

R2 are marked in bold.



82 4.5. Numerical Experiments and Results

Table 4.3: Comparison of Various Techniques over Synthetic Data Sets using RBF
Kernel (Without Noise)

Data Sets Techniques RMSE NMSE R2 Time (in sec) (C, γ, η̂, p)

Synthetic
Data Set 1

SVR 0.0428 0.5245 0.9790 0.00624 (1, 1, - , -)
TSVR 0.0071 0.0005 0.9744 0.6459 (10−5, 5, -, -)
W-ETSVR 0.0044 0.0002 0.9815 0.0038 (10, 1, -, -)
pin-TSVR 0.0206 0.0047 0.8948 3.5714 (10−2, 3, -, 0.4)
Res-TSVR 0.0027 0.00002 0.9999 2.6659 (1, 0.125, 11, -)

Synthetic
Data Set 2

SVR 0.0370 0.7911 0.9911 0.0027 (4, 3, -, -)
TSVR 0.0292 0.0049 0.9837 0.8269 (10−5, 3, -, -)
W-ETSVR 0.0450 0.0115 0.9711 1.6723 (10, 3, -, -)
pin-TSVR 0.0537 0.0250 0.9513 1.9162 (10−1, 3, -, 0.2)
Res-TSVR 0.0084 0.00004 0.9996 2.9290 (16, 16, 16, -)

Synthetic
Data Set 3

SVR 0.0358 0.0023 0.9616 0.0539 (5, 5, -, -)
TSVR 0.0111 0.0007 0.9896 1.2110 (10−1, 16, -, -)
W-ETSVR 0.0269 0.0045 0.9736 1.4264 (10, 16, -, -)
pin-TSVR 0.0452 0.0127 0.9245 1.8280 (10−1, 16, -, 0.2)
Res-TSVR 0.0078 0.00003 0.9996 2.0003 (2, 16, 16, -)

Table 4.4: Comparison of Various Techniques over Synthetic Data Sets using RBF
Kernel (With Gaussian Noise N (0, 0.2))

Data Sets Techniques RMSE NMSE R2 Time (in sec) (C, γ, η̂, p)

Synthetic
Data Set 1

SVR 0.0381 0.0135 0.9864 0.00157 (4, 3, -, -)
TSVR 0.0082 0.000629 0.9994 4.3318 (101, 0.125, -, -)
W-ETSVR 0.0102 0.000957 0.9990 2.5862 (10, 1, -, -)
pin-TSVR 0.0104 0.0010 0.9990 3.6212 (10−1, 0.125, -, 0.4)
Res-TSVR 0.0082 0.000628 0.9994 4.9137 (1, 0.125, 11, -)

Synthetic
Data Set 2

SVR 0.0358 0.6987 0.9920 0.0051 (5, 3, -, -)
TSVR 0.0214 0.0028 0.9972 0.8283 (10−10, 16, -, -)
W-ETSVR 0.0429 0.0113 0.9887 1.5140 (10, 16, -, -)
pin-TSVR 0.0435 0.0116 0.9884 2.8339 (10−3, 16, -, 0.4)
Res-TSVR 0.0160 0.0016 0.9984 2.5745 (16, 16, 16, -)

Synthetic
Data Set 3

SVR 0.2422 0.3179 0.6820 0.0043 (1, 5, -, -)
TSVR 0.3708 0.7453 0.2547 1.1886 (10−1, 12, -, -)
W-ETSVR 0.2458 0.3275 0.6725 1.4564 (1, 12, -, -)
pin-TSVR 0.2467 0.3297 0.6703 2.6995 (10−1, 12, -, 0.2)
Res-TSVR 0.2234 0.2704 0.7296 2.7006 (1, 8, 1, -)

4.5.2.1 Discussion and Comparison

In this part of the study, the results of the approaches mentioned above are discussed

over synthetic data sets. First, the performance over uncorrupted data sets (without

any noise) is discussed. Table 4.3 shows that the proposed approach performed better

than the rest of the techniques considering all the performance metrics. For synthetic

data set 1, Res-TSVR showed its best performance at the least γ value of 0.125, while
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Table 4.5: Comparison of Various Techniques over Synthetic Data Sets using RBF
Kernel (With Uniform Noise U(0, 0.2))

Dats Sets Techniques RMSE NMSE R2 Time(in sec) (C, γ, η̂, p)

Synthetic
Data Set 1

SVR 0.0369 0.0147 0.9852 0.015 (1, 1, -, -)
TSVR 0.0163 0.0028 0.9972 2.6488 (10−5, 5, -, -)
W-ETSVR 0.0216 0.0050 0.9950 1.3397 (10, 1, -, -)
pin-TSVR 0.0207 0.0046 0.9954 4.26254 (10−2, 3, -, 0.4)
Res-TSVR 0.0160 0.0027 0.9973 3.1227 (1, 3, 5, -)

Synthetic
Data Set 2

SVR 0.0304 0.0070 0.9929 0.0149 (5, 3.5, -, -)
TSVR 0.0294 0.0065 0.9935 3.4252 (10−5, 3.5, -, -)
W-ETSVR 0.0331 0.0083 0.9917 1.8191 (10, 5, -, -)
pin-TSVR 0.0559 0.0237 0.9763 2.9633 (10−1, 4, -, 0.4)
Res-TSVR 0.0278 0.0058 0.9942 7.995 (1, 5, 10, -)

Synthetic
Data Set 3

SVR 0.1060 0.0700 0.9299 0.00107 (2, 3, -, -)
TSVR 0.1039 0.0673 0.9327 3.5778 (10−1, 2, -, -)
W-ETSVR 0.11127 0.0791 0.9209 1.9630 (1, 3, -, -)
pin-TSVR 0.1206 0.0906 0.9094 2.9646 (10−1, 12, -, 0.4)
Res-TSVR 0.1043 0.0677 0.9323 7.9283 (1, 8, 1, -)

for the rest two data sets, it was best for the highest value of the kernel parameter, γ.

After adding Gaussian noise in the data set, the proposed technique handled the noisy

data better than the rest. Although the performance of Res-TSVR was pretty much

similar to TSVR in the case of synthetic data set 1, but in the rest of the two data

sets, Res-TSVR outperformed. In Table 4.5, it can be observed that the Res-TSVR

performed better than the earlier proposed approaches, but it is very close to TSVR in

the case of synthetic data set 3 (the difference in RMSE was 0.0004).

In Figure 4.4, a comparison of all the methods on synthetic data sets is shown.

This figure indicates the models’ performance when the data set was noise-free. In

the case of noisy data, the models were compared over Gaussian noise. Some outliers

were also added in the data set to test the performance of all the methods. Arrows in

Figures 4.4 (b), (d) and (f) indicate the outliers. From these figures, it was observed

that the proposed technique (diamonds in blue) predicted much closer to the actual

data points (diamonds in orange) than the rest of the techniques. Although, after the

addition of noise, its performance degraded (much distortion in plots on the right side

in Figure 4.4, but this degradation is much lesser than the rest. Blue diamonds are
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(a) Synthetic data set 1 (without noise)
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(b) Synthetic data set 1 (with noise)
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(c) Synthetic data set 2 (without noise)
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(d) Synthetic Datset 2 (with noise)
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(e) Synthetic data set 3 (without noise)
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(f) Synthetic data set 3 (with noise)

Figure 4.4: Comparison of the Proposed Technique with Other Methods in the Ab-
sence and Presence of Noise (Outliers are Indicated by Arrows in Case of Noisy Data)
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either overlapping the orange diamonds (see Figures 4.4 (a), (c) and (e)) or these are

much closer to the orange diamonds. Hence, the Res-TSVR method is more robust

than existing techniques.

4.5.3 Performance on Real-world Data Sets

To further investigate the robustness of our proposed scheme, the experiments were

performed over publicly available real-world data sets [104–106]. The data sets are

mentioned in Table 4.6. Like synthetic data sets, all the data sets were divided in

the ratio of 70 : 30, where 70% of the data set was used as the training set while the

remaining 30% was the test set. These were selected randomly from the data set. It

should be noted here that all the data sets were normalized in the range of [0, 1] before

training.

Table 4.6: Real-world Data Sets Used for Experimentation Purposes

Data Sets No. of Instances No. of Features Source
Pollution 60 15 [104]
Servo 167 4 [105]
Head Brain 237 3 [106]
Body Fat 252 14 [106]
Boston Housing 506 13 [104]
Concrete CS 1030 8 [105]
Wine-Red 1599 11 [104]
Abalone 4177 8 [105]

The source from where these data sets were obtained are also mentioned in Table

4.6 to show that the data sets were selected from various sources like UCI, Kaggle, and

STATLIB.

The proposed method was then compared with the existing techniques over noisy

real-world data sets. Like synthetic data sets, Gaussian noise was first added with mean

= 0 and a standard deviation of 0.25 in the randomly selected 10% data set. The results

are reported in Table 4.7. Furthermore, results were computed by adding uniform noise

in the data sets, and the results are reported in Table 4.8. In Tables 4.7 and 4.8, the
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Table 4.7: Comparison of Various Techniques over Real-World Data Sets using RBF
Kernel (With Gaussian Noise N (0, 0.25))

Data Sets Techniques RMSE NMSE R2 Time(in sec) (C, γ, η, p)

Pollution

SVR 0.1408±0.018 0.5364±0.2250 0.4057±0.2250 0.0050 (1, 1, -, -)
TSVR 0.1403±0.0423 0.5534±0.1995 0.3953±0.0649 0.0405 (10−3, 3, -, -)
W-ETSVR 0.1275±0.0396 0.6724±0.1290 0.4259±0.1113 0.0323 (8, 3.5, -, -)
pin-TSVR 0.1549±0.0244 0.7275±0.0701 0.4001±0.2321 0.0626 (10−1, 3.5, -, 0.4)
Res-TSVR 0.1272±0.0239 0.5260±0.0568 0.5392±0.0657 0.0509 (1, 1, 10, -)

Servo

SVR 0.1172±0.0060 0.1848±0.0172 0.8150±0.0172 0.0030 (1, 1, -, -)
TSVR 0.1226±0.0040 0.1826±0.0273 0.6155±0.0132 0.1320 (10−1, 3, -, -)
W-ETSVR 0.1302±0.0259 0.2221±0.0850 0.7044±0.0273 0.2061 (16, 3, -, -)
pin-TSVR 0.1521±0.0167 0.3265±0.0588 0.4625±0.0407 0.3114 (10−1, 3, -, 0.4)
Res-TSVR 0.1184±0.0273 0.1825±0.0744 0.8165±0.0586 0.1928 (1, 3.5, 8, -)

Head
Brain6

SVR 0.1060±0.0048 0.3840±0.0457 0.6190±0.0360 0.0029 (1, 5, -, -)
TSVR 0.0981±0.0205 0.4102±0.0805 0.5736±0.0699 0.2162 (10−6, 1, -, -)
W-ETSVR 0.1020±0.0130 0.3623±0.0522 0.6765±0.1134 0.3438 (4, 1.5, -, -)
pin-TSVR 0.1142±0.0189 0.4285±0.0601 0.4531±0.0730 0.4339 (10, 1.5, -, 0.4)
Res-TSVR 0.0915±0.0070 0.3724±0.0305 0.6192±0.0537 0.3846 (1, 0.5, 6, -)

Body
Fat

SVR 0.1038±0.0139 0.3873±0.0553 0.5920±0.1380 0.0057 (1, 1, -, -)
TSVR 0.0968±0.0103 0.4130±0.0598 0.6805±0.1972 0.2454 (10−6, 1.5, -, -)
W-ETSVR 0.1044±0.0315 0.3883±0.1230 0.6618±0.0862 0.3936 (16, 1.5, -, -)
pin-TSVR 0.1098±0.0612 0.4948±0.2015 0.6671±0.1541 0.4982 (10−1, 1.5, -, 0.4)
Res-TSVR 0.0838±0.0123 0.3682±0.0764 0.6845±0.1190 0.4137 (1, 0.5, 6, -)

Boston
Housing

SVR 0.0867±0.0042 0.1821±0.0050 0.7080±0.0436 0.0143 (1, 1, -, -)
TSVR 0.0916±0.0177 0.1522±0.0439 0.8733±0.0518 0.8779 (10−4, 1, -, -)
W-ETSVR 0.0956±0.0201 0.1640±0.0166 0.7903±0.0627 1.0935 (16, 2, -, -)
pin-TSVR 0.1259±0.0180 0.3132±0.0218 0.5407±0.0552 1.8518 (10−1, 4, -, 0.2)
Res-TSVR 0.0941±0.0210 0.1587±0.0237 0.8397±0.0674 1.6897 (4, 3.5, 8, -)

Concrete
CS

SVR 0.0935±0.0010 0.2070±0.0102 0.7742±0.0230 0.0565 (1, 1, -, -)
TSVR 0.1020±0.0172 0.2105±0.0177 0.7099±0.0186 3.6774 (10−8, 1, -, -)
W-ETSVR 0.0998±0.0136 0.2089±0.0164 0.8830±0.0611 5.8145 (4, 1.5, -, -)
pin-TSVR 0.1132±0.0184 0.2818±0.0141 0.5985±0.0462 12.0539 (10−1, 5, -, 0.4)
Res-TSVR 0.0935±0.0017 0.1942±0.0089 0.7446±0.0300 7.5288 (1, 5.5, 8, -)

Wine-
Red

SVR 0.1310±0.0046 0.6250±0.0259 0.3714±0.0303 0.1083 (1, 1, -, -)
TSVR 0.1307±0.0168 0.6315±0.0132 0.3772±0.0513 10.92776 (10−6, 3, -, -)
W-ETSVR 0.1301±0.0109 0.6433±0.0262 0.4607±0.0453 21.361 (4, 1, -, -)
pin-TSVR 0.1310±0.0174 0.6606±0.0251 0.3772±0.0386 45.175 (10−1, 1, -, 0.4)
Res-TSVR 0.1252±0.0291 0.6208±0.0183 0.4660±0.0365 21.6608 (1, 3.5, 8, -)

proposed method is compared with the previously discussed methods based on NMSE,

RMSE, R2 and CPU time. All the experiments were performed using the RBF kernel.

In Tables 4.7 and 4.8, the optimal parameters used for the computation (last column)

are also shown. All the methods, including the proposed one, equal regularization

parameters of the two TSVRs, and the error bound ε = 0.05, were considered.

For SVR [9], the regularization parameter C was chosen from {1, 2, · · · , 16} and the

kernel parameter, γ was taken from

{
2−i + s 2j : i ∈ {−2,−1, 0, 1, 2, 3, 4}, j ∈ {0, 1, 2}, s ∈ {0, 1}

}
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Table 4.8: Comparison of Various Techniques over Real-World Data Sets using RBF
Kernel (With Uniform Noise U(0, 0.25))

Data Sets Techniques RMSE NMSE R2 Time(in sec) (C, γ, η, p)

Pollution

SVR 0.1497±0.034 0.6321±0.1323 0.3678±0.1323 0.00156 (1, 3, -, -)
TSVR 0.1425±0.0012 0.7839±0.0876 0.2161±0.0120 0.0262 (1, 3, -, -)
W-ETSVR 0.1619±0.0021 0.7658±0.2887 0.2342±0.023 0.1379 (10−3, 3, -, -)
pin-TSVR 0.1701±0.0001 0.8569±0.1350 0.1431±0.0001 0.0332 (10−1, 3.5, -, 0.2)
Res-TSVR 0.1394±0.0020 0.6079±0.1038 0.3921±0.0001 0.0365 (1, 1, 10, -)

Servo

SVR 0.1106±0.0162 0.1756±0.0664 0.8243±0.0664 0.00309 (3, 3, -, -)
TSVR 0.1233±0.0140 0.2139±0.0466 0.7861±0.0466 0.05221 (10−1, 3, -, -)
W-ETSVR 0.1476±0.0076 0.2793±0.0603 0.7207±0.0603 0.1377 (16, 3, -, -)
pin-TSVR 0.1584±0.0142 0.3192±0.0297 0.6808±0.0297 0.1825 (10−1, 3, -, 0.4)
Res-TSVR 0.1099±0.0130 0.1640±0.0380 0.8360±0.0380 0.1941 (3, 3, 7, -)

Head
Brain6

SVR 0.1120±0.0008 0.4106±0.0810 0.589±0.081 0.0039 (3, 3, -, -)
TSVR 0.1058±0.0098 0.3982±0.0658 0.6018±0.0648 0.8439 (10−5, 0.5, -, -)
W-ETSVR 0.1040±0.0068 0.3958±0.0773 0.6042±0.0773 0.2584 (16, 1.5, -, -)
pin-TSVR 0.1219±0.0092 0.4621±0.0520 0.5379±0.0520 0.3197 (10−1, 1.5, -, 0.4)
Res-TSVR 0.1026±0.0093 0.3777±0.0697 0.6223±0.0697 0.4921 (1, 0.5, 3, -)

Body
Fat

SVR 0.1139±0.0158 0.5141±0.1135 0.4858±0.1135 0.00549 (3, 3, -, -)
TSVR 0.1024±0.0207 0.4064±0.1245 0.5936±0.1245 0.9244 (10−6, 1.5, -, -)
W-ETSVR 0.1025±0.0135 0.4130±0.0879 0.5870±0.0879 0.3584 (16, 1.5, -, -)
pin-TSVR 0.1085±0.0144 0.4385±0.0629 0.5615±0.0629 0.3825 (10−1, 1.5, -, 0.4)
Res-TSVR 0.0991±0.0135 0.3834±0.1165 0.6166±0.1165 0.4580 (1, 1.5, 7, -)

Boston
Housing

SVR 0.1010±0.01762 0.2456±0.083 0.7544±0.083 0.1079 (5, 5, -, -)
TSVR 0.0976±0.00095 0.2285±0.0369 0.7715±0.0369 3.5566 (10−4, 1, -, -)
W-ETSVR 0.1040±0.0179 0.2367±0.0587 0.7633±0.0587 1.0862 (16, 2, -, -)
pin-TSVR 0.1180±0.0178 0.3517±0.0569 0.6483±0.0569 1.6892 (10−1, 4, -, 0.2)
Res-TSVR 0.0959±0.0114 0.2271±0.0583 0.7729±0.0583 1.6865 (1, 1.5, 8, -)

Concrete
CS

SVR 0.0942±0.0056 0.2030±0.0452 0.7969±0.0230 0.04527 (5, 5, -, -)
TSVR 0.1015±0.0037 0.2391±0.0196 0.7609±0.0196 12.8890 (10−6, 1.5, -, -)
W-ETSVR 0.1069±0.0048 0.2852±0.0297 0.7148±0.0297 6.1521 (4, 1.5, -, -)
pin-TSVR 0.1129±0.043 0.2917±0.0141 0.7083±0.0283 11.1798 (10−1, 5, -, 0.4)
Res-TSVR 0.0921±0.0046 0.1964±0.0269 0.8036±0.0270 14.9959 (3, 3, 7, -)

Wine-
Red

SVR 0.1299±0.0039 0.6307±0.0148 0.3692±0.0148 0.7145 (1, 1, -, -)
TSVR 0.1269±0.0036 0.6480±0.0317 0.3520±0.0317 32.851 (10−6, 3, -, -)
W-ETSVR 0.1272±0.0040 0.6284±0.0302 0.3716±0.0302 32.5663 (4, 1.5, -, -)
pin-TSVR 0.1262±0.0028 0.6319±0.0186 0.3681±0.0186 35.333 (10−1, 1, -, 0.4)
Res-TSVR 0.1259±0.0056 0.6232±0.0390 0.3768±0.0390 21.0669 (1, 3.5, 7, -)

Table 4.9: Ranks of Various Techniques over All the Data Sets with Gaussian Noise

Techniques Metrics Syn Data 1 Syn Data 2 Syn data 3 Pollution Servo Head Brain 6 Body Fat Boston Housing Concrete CS Wine-Red

SVR

RMSE 5 3 2 4 1 4 3 1 1 4
NMSE 5 3 2 2 3 3 2 4 3 2
R2 5 3 2 3 2 3 5 4 2 4
Average 5 3 2 3 2 3.33 3.33 3 2 3.33

TSVR

RMSE 1 2 5 3 3 2 2 2 3 3
NMSE 2 2 5 3 1 4 4 1 4 3
R2 1 2 5 5 4 4 2 1 4 3
Average 1.33 2 5 3.66 2.66 3.33 2.33 1.33 3.66 3

W-
ETSVR

RMSE 3 4 3 2 4 3 4 4 2 2
NMSE 3 3 3 4 4 1 3 3 3 4
R2 2 2 3 2 3 1 3 3 1 2
Average 2.66 3 3 2.66 3.66 1.66 3.33 3.66 2 2.66

pin-
TSVR

RMSE 3 5 4 5 5 5 5 5 4 3
NMSE 4 4 4 5 5 5 5 5 5 5
R2 2 5 4 4 5 5 4 5 5 3
Average 3 4.66 4 4.66 5 5 4.66 5 4.66 3.66

Res-
TSVR

RMSE 1 1 1 1 2 1 1 3 1 1
NMSE 1 1 1 1 2 2 1 2 1 1
R2 1 1 1 1 1 2 1 2 3 1
Average 1 1 1 1 1.66 1.66 1 2.33 1.66 1
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for synthetic data sets and {a + b : a ∈ {0, 1, · · · , 15}, b ∈ {0, 0.5}} for real-world

data sets. The same set of γ’s was used for all the regressors. For TSVR [33], the

regularization parameters was taken as

C1 = C2 ∈
{

10−i : i ∈ {−10,−9,−8, · · · ,−1, 0}
}
.

Similarly, for W-ETSVR [98],

C1 = C2 ∈
{

2−i : i ∈ {0, 1, 2, 3, 4, 5}
}

and v1 = v2 = 2−8.

The pin-TSVR [100] had the regularization parameters in the range of
{

10i : i ∈

{−5,−4, · · · , 5}
}

and the value of p lied in
{

0.1, 0.2, 0.3, 0.4, 0.5
}

. Lastly, for Res-

TSVR, the regularization parameters C1 and C2, were picked from{
2−i : i ∈ {−3,−2,−1, · · · , 3, 4}

}
with C1 = C2 and η̂ from {1, 2, . . . , 16}. These

sets of parameters were used for both synthetic and real-world data sets.

As the training points were randomly selected, the value of the performance metrics

changed with every run. Therefore, the mean of all the various performance metrics

was computed over ten runs with the standard deviation.

The proposed model was evaluated and compared with existing approaches based on

the standard performance metrics like RMSE, NMSE, and R2. Ranks are also assigned

to the models based on all three performance metrics to make a fair comparison. For

RMSE and NMSE, the lowest rank is assigned to the lowest RMSE and NMSE values.

For R2, a low rank is assigned to the model with the highest R2 value. The ranks are

presented in Table 4.9. These ranks are assigned based only on the Gaussian noise

in synthetic (Table 4.4) and real-world data sets (Table 4.7) as with uniform noise,

Res-TSVR outperformed.

Combining the performance of the methods over all the data sets leads to the final

average ranks tabulated in Table 4.10, where ‘Syn Data’ refers to Synthetic Data Set.
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This table shows that the proposed method has the lowest rank as compared to the

existing techniques. Therefore, it can be concluded that the proposed technique handles

the noise better than the other techniques and hence is more robust towards the noise.

4.5.3.1 Discussion and Comparison

Table 4.9 shows that the Res-TSVR achieves the lowest rank for all the synthetic

data sets. It was discovered that increasing the number of iteration may improve the

performance in some data sets. In the case of Servo and Boston housing data sets,

although the proposed method is not outperforming the rest of the methods in terms of

RMSE, overall, the average rank of the proposed method over these data sets is better

than the rank of the state of the art methods (Please see Table 4.9).

Further, computing the final average rank of all the regressors (Table 4.10), Res-

TSVR gets the lowest rank of 1.33. The second-lowest rank is 2.82, which W-ETSVR

achieved. This shows that the proposed method is more accurate and robust in terms

of noise than the state of art methods.

Table 4.10: Average Ranks of all the Techniques

Techniques Syn Data 1 Syn Data 2 Syn Data 3 Pollution Servo Head Brain Body Fat Boston Housing Concrete CS Wine-Red Rank
SVR 5 3 2 3 2 3.33 3.33 3 2 3.33 2.99
TSVR 1.33 2 5 3.66 2.66 3.33 2.33 1.33 3.66 3 2.83
W-ETSVR 2.66 3 3 2.66 3.66 1.66 3.33 3.66 2 2.66 2.82
pin-TSVR 3 4.66 4 4.66 5 5 4.66 5 4.66 3.66 4.43
Res-TSVR 1 1 1 1 1.66 1.66 1 2.33 1.66 1 1.33

The statistical significance test was also performed using the paired t-test. The null

hypothesis is that there is no significant improvement with the proposed algorithm, Res-

TSVR. Table 4.11 lists the p-values [107] considering the performance criterion RMSE.

The proposed method is compared with the previously described techniques at 1% sig-

nificance level in this table. It is evident from Table 4.11 that the null hypothesis is

rejected at 1% significance level for majority of the cases. Hence, the proposed method

is superior in terms of various metrics and is also more robust to Gaussian and uniform

noise. For experimentation, all the results are presented according to the increased
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Table 4.11: Results of p-Significance Test Comparing Res-TSVR with Existing Meth-
ods at 1% Significance Level

Data Set SVR TSVR W-ETSVR pin-TSVR
Pollution 0.0686 0.0160 0.0051 0.0030
Servo 0.0089 0.4863 0.8299 0.0004
Head Brain 0.0067 0.3659 0.0464 0.0011
Body fat 0.0056 0.0034 0.0026 0.0048
Boston housing 0.0744 0.0091 0.0053 0.0000
Concrete CS 0.0000 0.3493 0.0059 0.0000
Wine-red 0.6092 0.3955 0.0068 0.0011

number of instances. Also, one data set, Abalone [105], was used for identifying the

effects of η̂ and other parameters on the performance of the proposed algorithms. As

in the proposed algorithms, the number of iterations was not fixed in our experiments;

the time taken was reported by a single iteration corresponding to different data sets.

4.6 Discussion About the Rescaling Parameter, η̂

This part discusses the effects of η̂ on the performance of our proposed method. Abalone

data set [105] was used with the already used wine-red and concrete CS data sets in this

subsection. Figure 4.5(a) describes the effect of η̂ (X-axis) on RMSE values (Y -axis).

It can be observed that the values of the RMSE increased initially, and then it

decreased when η̂ reaches the value of 10. Sometimes, a minimum value of RMSE can

be obtained at η̂ = 7. Please note that the values of R2 and NMSE also changed

accordingly. In these experiments, N (0, 0.2), γ = 5.5 and regularization parameter as

1 were considered.

Till now, we considered the value of η̂ up to 10; but how will the computational

time get affected if the value of η̂ goes beyond 10? This part discusses the variation of

computational time with η̂ values. Figure 4.5(b) shows that the computational time (in

sec) decreases with increasing η̂ values. In this figure, three data sets were used with

the highest number of instances (to explicitly show the variation of computation time

with η̂). From Figure 4.5(a) and (b), it is observed that
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Figure 4.5: Effect of Increasing η̂ Values on RMSE and Computational Time

(i) the minimum RMSE is generally achieved at η̂ = 3, 7 or 10, and

(ii) CPU time decreases with increasing η̂ values.

From the presented work, it can be concluded that Res-TSVR achieves better ro-

bustness considering RMSE, NMSE, and R2 for both synthetic and artificial data sets.

A noticeable change in performance metrics is also shown by evaluating various models

before and after adding noise (synthetic data sets). The experiments were performed

on a diverse range of noises to cover the maximum possibilities of variation. Before

concluding, the performance (based on RMSE) of all the techniques is compared over
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different SNR. Towards this direction, synthetic data set 1 was used for this experi-

mentation. Figure 4.6 shows that as the value of SNR increases, the RMSE decreases

for all the techniques, but the proposed technique consists of the least RMSE for these

SNRs (red curve is at the bottom). Gaussian noise was added in the Synthetic data set

1 to obtain different SNRs. Next, a summary of the work is given.
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Figure 4.6: The RMSE of Different Regressors Against SNR

4.7 Summary

In this chapter, a novel TSVR model was proposed with rescaled hinge loss. Since

the corresponding optimization problem was non-convex, it was transformed into a

dual form for easy implementation. To implement the dual form, an algorithm named

Res-TSVR was proposed. In this work, robustness was achieved against Gaussian and

non-Gaussian noise in the data set. A rigorous comparison of the proposed approach

was shown with SVR, TSVR, W-ETSVR, and pin-TSVR based on RMSE, NMSE,

and R2. Ten standard data sets were used for the comparison, of which three were

synthetic data sets, and seven were real-world data sets. Also, Abalone data set was

used to study the effects of parameters on the performance metrics. It was observed

that the minimum RMSE value was generally achieved at η̂ = 3, 7, and 10. The
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proposed method had either better or the same performance as its competitors in all

the studied data sets. Further, in terms of all the performance measures, Res-TSVR

ranked among the top three except Boston Housing and Servo data sets. However,

overall the average rank (across various measures) of the proposed method was better

than the rest of the methods. Thus, experimental results over synthetic and real-world

data sets demonstrated the efficiency and robustness of Res-TSVR over the existing

methods. Statistical hypothesis testing (p-test) showed that Res-TSVR outperformed

others at a 1% significance level. Also, the performance of all the techniques was

compared over different SNRs. This also has revealed that Res-TSVR gave the least

value of RMSE for different SNRs.

Besides the advantages mentioned above, there are some limitations to the proposed

approach. From (4.35), (4.36), (4.40) and (4.41), it was observed that one requires to

optimally select the value of η̂. In this work, 10-fold cross-validation was used to select

this value, but this selection was very time-consuming in the case of large data sets.

The method may fail to find the optimal solution for large data sets if the training time

is limited. The solution could be the use of a heuristic method to obtain the optimal

value of η̂.

Also, to compute the dual formulation of the problem statement, an alternating

minimization technique was used, which also affected the performance of the model

because of the following reasons:

(i) It involved a higher level of abstraction in each iteration. It solved a small opti-

mization problem in each iteration, unlike standard methods—Newton methods

and gradient descent—which involved multiplications, gradient finding, and Hes-

sians as base operations. This increased the time consumption of the model.

(ii) Although, this technique can find an approximate solution quickly, it may take

considerable time to converge to a high accuracy solution. Therefore, it is prefer-

able where a modest accuracy model is sufficient.


