
Chapter 3

RSVM-PDProx: Adding

Robustness to SVM Using Rescaled

α-hinge Loss Function

3.1 Introduction

SVM is a popular supervised ML algorithm. Besides its several advantages, there are

some limitations of SVM too. Sensitivity to label noise is one of them. In Chapter

2, an extensive literature survey is presented on robust statistics based SVM. It is

also described how different authors have tried to use robust loss functions in their

formulation. From the survey in Chapter 2, it can be concluded that a rich literature

is there to tackle the issue of sensitivity towards noise but the sparsity is sacrificed

at the same time [37]. However, the proposal of truncated pinball loss function with

SVM [57] tried to mitigate this problem, and demonstrated for the first time that both

the robustness and the sparsity can be improved.

In this chapter, a robust SVM with enhanced sparseness is proposed. As SVM

is used extensively in machine learning applications, it becomes essential to obtain a

sparse model robust to noise in the data set. Although many researchers have presented

32 3.1. Introduction

different approaches to get a robust SVM, the work on robust SVM based on rescaled

hinge loss function (RSVM-RHHQ) [78] has attracted a great deal of attention. Using

correntropy with hinge loss function has added a noticeable amount of robustness to the

model. However, it was noticed that the sparsity of the model can be further increased

with improved robustness towards label noise. In this chapter, correntropy [78] is

applied to the α-hinge loss function, which results in a better loss function than the

rescaled hinge loss function. Correntropy is the term which is mostly used in robust

learning. It is a metric used to measure local similarity. Towards this direction, rescaled

α-hinge loss has been proposed, which is bilinear in the dual variable α and the weight

vector w. A non-smooth regularizer with a non-convex and non-smooth loss function

is used in the proposed formulation. This non-smooth and non-convex problem is

solved using the primal-dual proximal method [79]. It is observed that this combination

not only adds sparsity to the model, but is also better than the existing robust SVM

methods in terms of robustness towards label noise. Thus, this chapter discusses a

proposed approach in which the SVM is made sparse and, at the same time, robust

to label noise. The optimization problem which is used frequently in machine learning

problems is

min
w∈Rd

F (w) =
1

n

n∑
i=1

l(w;xi, yi) + λR(w). (3.1)

Here, d denotes the number of features. l(w;xi, yi) is the loss function with w as the

weight vector, xi and yi are the ith input and target values, respectively, of the input

vector, X and the target vector, y. R(w) is the regularization term used with λ as a

regularization parameter. Equation (3.1) is converted into a non-smooth optimization

problem of the form given by (see [79])

min
w∈Qw

[
F (w) = max

α∈Qα
L(w, α;X, y) + λR(w)

]
. (3.2)

In (3.2), the loss function of (3.1) changes after incorporating the dual variable into it,

3.1. Introduction 33

and this changed loss function is denoted by L(w, α;X, y). In this equation, parameters

w in domain Qw and α in domain Qα are referred to as primal and dual variables,

respectively [79]. Now, the equivalent min-max formulation of (3.2) is (see [79])

min
w∈Qw

max
α∈Qα

F (w, α) = L(w, α) + λR(w). (3.3)

In the proposed method, the loss function is the rescaled α-hinge loss, and this function

is obtained by applying correntropy to the α-hinge loss function [79]. In the proposed

formulation, ‖·‖2 norm of w is used as the regularizer. Both the loss function and the

regularizer used here are non-smooth. Both the loss function and the regularizer used

here are non-smooth and are discussed in detail in Section 3.3.

3.1.1 Motivation and Contribution

The bilinear nature of α-hinge loss is the primary motivation behind this work. Also,

applying correntropy to this loss function makes the C-loss bounded, ultimately leading

to a lower impact of outliers on the model training.It is observed that the use of ‖·‖2

regularization makes the standard models label noise-robust [80], so ‖·‖2 regularization

is used in the problem formulation. It improved the robustness and the sparseness of

the model, which is shown experimentally in Section 3.5. Next, the main contributions

of this work are listed below:

(i) Correntropy is applied to α-hinge loss (named it as a rescaled α-hinge loss), which

made the C-loss function bounded, monotonic, and non-convex. This rescaled α-

hinge loss function is robust to outliers (shown experimentally in Section 3.5). In

this chapter, the hinge loss function is not rescaled directly. The bilinear hinge

loss function with dual variable α is rescaled, which made the proposed algorithm

different from existing techniques.

(ii) A non-smooth regularizer, ‖·‖2, is also added with rescaled α-hinge loss func-

34 3.2. Related Concepts

tion, which made the overall function non-smooth. This non-smooth optimization

problem is solved using the PDProx algorithm (Algorithm 1 [79]).

(iii) The experiments are performed on synthetic as well as real-world data sets. For

experimentation purposes, twelve real-world data sets are used. Various levels of

data noise are added to the training set to test the robustness of the model.

(iv) The proposed approach added more robustness and sparseness to SVM (shown

experimentally in Section 3.5).

(v) The convergence of the PDProx method is theoretically proved for the optimiza-

tion problem under consideration.

3.1.2 Outline

The rest of the chapter is organized as follows. The next section, Section 3.2 mentions

the related concepts to this work. Section 3.3 discusses the rescaled form of α-hinge loss

function. In this section, the detailed formulation of the proposed approach, RSVM-

PDProx, is given. In the next section, Section 3.4, the detailed analysis of RSVM-

PDProx is given. Section 3.4 analyzes the convergence rate and the time complexity

of the PDProx dual algorithm. Section 3.5 presents the experimental results demon-

strating the superiority of the proposed approach over the existing methods in terms

of robustness and sparsity. In Section 3.6, the dual variable and the regularization

parameter effect are discussed. The work is concluded in Section 3.7.

3.2 Related Concepts

For ‘maximum-margin’ classification, traditionally, the hinge loss function is used which

is given by

lhinge(w, b) = max(0, 1− y(wTx+ b)). (3.4)

3.2. Related Concepts 35

In the above expression, y is the target variable whose value corresponding to every

instance (with input vector x) is either +1 or −1. Here wTx + b is the equation

of the separating hyperplane, where w and b are the weight vector and bias term,

respectively. This loss function is convex and is not differentiable, but its subgradient

can be computed. Yang et al. in [79] proposed to change the non-smooth loss function

of the form (3.1) into the form given by

l(w;xi, yi) = max
αi∈∆α

f(w, αi;xi, yi), (3.5)

where ∆α is the domain of the variable vector α. Also, f(w, α; , x, y) is a bilinear

function in w and α. Using (3.5), problem (3.1) can be converted into (3.2) with

L(w, α;X, y) as below (see [79]):

L(w, α;X, y) =
1

n

n∑
i=1

f(w, αi;xi, yi), (3.6)

where α = (α1, α2, . . . , αn)T being defined in the domain

Qα =
{
α = (α1, α2, . . . , αn)T

∣∣ αi ∈ ∆α

}
.

By (3.5), the α-hinge loss can be re-written as

lα-hinge(w, α) = max
α∈[0,1]

α
(
1− y(wTx)

)
. (3.7)

α is the dual variable. Note that both (3.4) and (3.7) represent the classical hinge loss

function, but in (3.7), only the weight vector, w, is considered, and the bias term, b, is

neglected.

As discussed in [78], correntropy is a term used in robust learning. It was used

for classification for the first time in [81], and the expression for the correntropy loss

36 3.2. Related Concepts

function (C-loss) is

lC(z) = β

[
1− e

(
− (1−z)2

2σ2

)]
, (3.8)

where σ is a window width [81] and β = [1 − e(−1/(2σ2))]−1 is a normalizing constant;

here, z is the margin variable, and this is equal to y(wTx). Interestingly, this function

looks similar to the Welsch loss function [82]. The C-loss function is unbounded and

non-monotonic [78]. Xu et al. [78] combined the C-loss function and the hinge loss

function (3.4) to get the rescaled hinge loss function (see Figure 3.1) and this is given

by

lC(z) = β

[
1− e

(
−
lhinge(z)

2σ2

)]
. (3.9)

In this work, we considered η = 1/2σ2 ≥ 0. This formulation is used for the proposed

approach as well. In Figure 3.1, z is plotted on the x-axis which is equal to y(wTx+ b)

Figure 3.1: Rescaled Hinge Loss Function with Different η Values

and the ‘Loss’ corressponding to z values is plotted on the y-axis. From Figure 3.1, it

can be observed that as η value increases, the value of ‘Loss’ (on y- axis) decreases.

3.3. RSVM-PDProx 37

3.3 RSVM-PDProx

In this section, the proposed formulation is described. This formulation consists of

the non-smooth loss function and the non-smooth regularizer. The non-smooth loss

function is rescaled α-hinge loss function.

3.3.1 Rescaled α-hinge Loss Function

Correntropy (3.8) is applied to α-hinge loss that is given in (3.7) to obtain the rescaled

α-hinge loss function. After applying correntropy, the rescaled α-hinge loss is obtained

as

lα-rhinge(z) = β
[
1− e(−ηlα-hinge(z))

]
, (3.10)

where η = 1
2σ2 ≥ 0 is a scaling constant and β =

(
1− e(−η)

)−1
. After applying the

C-loss function to α-hinge loss, it makes the overall function bounded, monotonic, and

non-convex (see Figure 3.2). A separate plot of both the loss functions at η = 4 is

Figure 3.2: Rescaled α-hinge Loss Function with Different η Values

shown in Figure 3.3. Figure 3.3 shows that the proposed loss function is either equal or

less than the rescaled hinge loss function. The red curve in the plot is lower than the

blue curve for various marginal parameters z. Hence, corresponding to the different z,

the value of ‘Loss’ is less for the proposed function. It improved the accuracy of the

38 3.3. RSVM-PDProx

Figure 3.3: Comparsion of Rescaled α-hinge Loss Function and Rescaled Hinge Loss
Function at η=4

proposed classifier. The analytical proof showing rescaled α-hinge loss is better than

rescaled hinge loss is given in Appendix C.

3.3.2 Non-smooth Regularizer, ‖.‖2

The proposed loss function is combined with a non-smooth ‖·‖2 regularizer and thereby

obtained altogether a new optimization problem:

min
w∈Rd

F(w), where F(w) =
n∑
i=1

β
(

1− e(−η(lα-hinge(w,xi,yi)))
)

+ λ ‖w‖2 , (3.11)

where λ is a regularization parameter. With the help of (3.7), the objective function in

(3.11) can be expressed as follows:

F(w) = max
α∈[0,1]n

L(w, α;X, y) + λR(w),

where

L(w, α;X, y) =
1

n

n∑
i=1

f(w, αi;xi, yi), R(w) = ‖w‖2,

3.3. RSVM-PDProx 39

and

f(w, αi;xi, yi) =
1

1− e−η
[
1− e−ηαi(1−yiwT xi)

]
, i = 1, 2, . . . , n.

Note that

L(w, α;X, y) = β

[
n−

n∑
i=1

e−ηαi(1−yiw
T xi)

]
,

where

β =
1

1− e−η
≥ 0.

Thus, the optimization problem (3.11) becomes

min
w∈Rd

F(w) = β max
α∈[0,1]n

[
1− 1

n

n∑
i=1

e−ηαi(1−yiw
T xi)

]
+ λ ‖w‖2 (3.12)

= max
α∈[0,1]n

l(w, α;X, y) + λ ‖w‖2 ,

where

l(w, α;X, y) = β

[
1− 1

n

n∑
i=1

e−ηαi(1−yiw
T xi)

]
.

Therefore, the problem (3.11) is equivalent to the following min-max problem:

min
w∈Rd

max
α∈[0,1]n

F (w, α), where F (w, α) = l(w, α;X, y) + λ ‖w‖2 . (3.13)

This is the final optimization problem of the proposed approach. In (3.13), l(w, α;X, y)

represents the proposed loss function, the rescaled α-hinge loss function. Note that the

loss function and the regularizer in (3.13) are non-smooth functions. Due to this, a

non-smooth optimization technique, PDProx dual [79], is used to solve this problem.

The steps that are followed to solve (3.13) are mentioned in Algorithm 1. The approach

40 3.3. RSVM-PDProx

is named as RSVM-PDProx.

Algorithm 1 PDProx-Dual algorithm for (3.13) to get ŵ and α̂

Input: {xi, yi}ni=1;

λ is the regularization parameter;

η is the rescaling parameter;

α is the dual variable;

T is the total number of iterations

Output: ŵT is the final weight vector and α̂T is the final α vector.

1: γ ←
√

1
2c

where c can be computed from (3.14)

2: w0 ← 0, β0 ← 0, t ← 0 . Initializations required before entering the loop

3: for t = 1 to T do

4: αt=
∏

Qα=∆α
[βt−1 + γ Gα(wt−1, βt−1)]

5: wt = argmin
w∈{Qw=Rd}

1
2
‖w − (wt−1 − γGw(wt−1, αt))‖2

2 + γλ ‖w‖2 . FISTA (backtracking) [83].

6: βt=
∏

Qα
[βt−1+ γGα(wt, αt)]

7: end for

8: return ŵT =
∑T

t=1
wt
T

and α̂T =
∑T

t=1
αt
T

. ŵ is used in the equation of

separating hyperplane and also in the convergence proof along with α̂

In Step 1 of Algorithm 1, to estimate a value of c, the following inequality is used

(see [79]):

‖Gα(w1, α1)−Gα(w2, α2)‖2 ≤ c ‖w1 − w2‖2 (3.14)

where Gα and Gw represents the gradients of the objective function F w.r.t. α and w,

respectively.

After implementing this algorithm, new data points, x are categorized into ‘+1’ and

‘−1’ classes based on the sign of ŵTx (wTx + b can also be considered. This would

amplify the convergence rate [79] by a constant of
√

2).

3.4. Analysis of RSVM-PDProx 41

Since the proposed approach is the improved version of RSVM-RHHQ [78], the dif-

ference between the proposed method, RSVM-PDProx, and RSVM-RHHQ, is presented

before proceeding to the next section. The mathematical differences in the proposed

approach and RSVM-RHHQ [78] are:

(i) (Difference in the loss functions). The loss function used in RSVM-RHHQ [78]

is (refer to Figure 3.1)

β
[
1− e(−ηlhinge(z))

]
,

while the loss function in the proposed approach is (refer to Figure 3.2)

β
[
1− e(−ηlα-hinge(z))

]
.

The incorporation of dual variable α limits the loss that is less than the rescaled

hinge loss. This is clearly depicted in Figure 3.3.

(ii) (Difference in the regularizers). RSVM-RHHQ [78] used a smooth regularizer,

‖w‖2
2. In contrast, the proposed approach uses a non-smooth regularizer, ‖w‖2.

Therefore, the number of support vectors are amplified in RSVM-RHHQ than the

proposed approach.

(iii) (Difference in the used optimization techniques). The optimization technique

used in RSVM-RHHQ is the half-quadratic optimization technique [78]. In the

proposed approach, since both the loss function and regularizer are non-smooth,

the proximal dual optimization technique, PDProx dual [79] is used, given in

Algorithm 1.

3.4 Analysis of RSVM-PDProx

In this section, the rate of convergence and the time complexity analysis of RSVM-

PDProx are discussed.

42 3.4. Analysis of RSVM-PDProx

3.4.1 Rate of Convergence of RSVM-PDProx

Before the convergence analysis of PDProx method for the optimization problem (3.11),

the following two lemmas are presented that are useful to arrive at the convergence

proof.

Lemma 3.1 (See [79]). The updates of αt, wt and βt in Algorithm 1 are equivalent to

the below mentioned gradient mappings:

αt
wt

 =
∏

[0,1]n, Rd

 βt−1 + γGα(ut−1, βt−1)

ut−1 − γ(Gw(ut−1, αt) + λvt)


and βt

ut

 =
∏

[0,1]n, Rd

 βt−1 + γGα(wt, αt)

ut−1 − γ(Gw(wt, αt) + λvt)

 ,

with the initialization u0 = w0, where vt ∈ ∂R(wt), the subgradient of R(wt).

Lemma 3.2 (See [79]).

γ

Gw(wt, αt) + λvt

−Gα(wt, αt)


T wt − w

αt − α

 ≤ 1

2

∥∥∥∥∥∥∥
w − ut−1

α− βt−1


∥∥∥∥∥∥∥

2

2

− 1

2

∥∥∥∥∥∥∥
w − ut
α− βt


∥∥∥∥∥∥∥

2

2

+ γ2 ‖Gα(wt, αt)−Gα(ut−1, βt−1)‖2
2 −

1
2
‖wt − ut−1‖2

2 .

Theorem 3.1 The output α̂T and ŵT of Algorithm 1 satisfies

F (ŵT , α)− F (w, α̂T) ≤
ηeη(1 +

√
η)
√

2c

T

for T number of iterations.

Proof: Let F1(w, αi) = l1(w, αi;X, y) + λ ‖w‖2 , where l1(w, αi;X, y) = 1
n

∑n
i=1 αi(1−

yiw
Txi). Then,

F (wt, α)− F (w, α)

F1(wt, α)− F1(w, α)
=

l(wt, α;X, y)− l(w, α;X, y)

l1(wt, α;X, y)− l1(w, α;X, y)

3.4. Analysis of RSVM-PDProx 43

=
β
[
1− 1

n

∑n
i=1 e

−ηαi(1−yiwTt xi)
]
− β

[
1− 1

n

∑n
i=1 e

−ηαi(1−yiwT xi)
]

1
n

∑n
i=1 αi(1− yiwTt xi)−

1
n

∑n
i=1 αi(1− yiwTxi)

=

∑n
i=1

[
e−ηαi(1−yiw

T xi) − e−ηαi(1−yiwTt xi)
]

∑n
i=1 αi(yiw

Txi − yiwTt xi)

=

∑n
i=1

(
− ηαi(yiwTxi − yiwTt xi) +

η2α2
i

2

(
(yiw

Txi)
2 − (yiw

T
t xi)

2
)
− . . .

)
∑n

i=1 αi(yiw
Txi − yiwTt xi)

=

∑n
i=1

{
− ηαi(yiwTxi − yiwTt xi)

}[
1− ηαi

2
(yiw

Txi + yiw
T
t xi) + . . .

]
∑n

i=1 αi(yiw
Txi − yiwTt xi)

≤

{
− η

∑n
i=1 αi(yiw

Txi − yiwTt xi)
}{

1 + n
2
(2R) ‖w‖+ n2

3!
(3R2) ‖w‖+ . . .

}
∑n

i=1 αi(yiw
Txi − yiwTt xi)

.

As for all i ∈ {1, . . . , n}, we have ‖xi‖ ≤ R, thus

F (wt, α)− F (w, α)

F1(wt, α)− F1(w, α)
= −η

{
1 + ηR ‖w‖+

η2R2

2!
‖w‖+ . . .

}
= −ηeηR‖w‖.

Therefore,

|F (wt, α)− F (w, α)| ≤ η|F1(wt, α)− F1(w, α)|

Next,

F (w, αt)− F (w, α)

F1(w, αt)− F1(w, α)
=

l(w, αt;X, y)− l(w, α;X, y)

l1(w, αt;X, y)− l1(w, α;X, y)

=
β
[
1− 1

n

∑n
i=1 e

−ηαit(1−yiwT xi)
]
− β

[
1− 1

n

∑n
i=1 e

−ηαi(1−yiwT xi)
]

1
n

∑n
i=1 αit(1− yiwTxi)−

1
n

∑n
i=1 αi(1− yiwTxi)

=

∑n
i=1

[
e−ηαit(1−yiw

T xi) − e−ηαi(1−yiwT xi)
]

∑n
i=1(αit − αi)(1− yiwTxi)

≤
−η
∑n

i=1

[
− η(αit − αi)(1− yiwTxi)

][
1 + n

2
2(1 +R) ‖w‖+ n2

3!
3(1 +R)2 ‖w‖+ . . .

]
∑n

i=1(αit − αi)(1− yiwTxi)

44 3.4. Analysis of RSVM-PDProx

= η
{

1 + η(1 +R) ‖w‖+
η2

2!
(1 +R2) ‖w‖+ . . .

}
= − ηeη(1+R‖w‖) ≤ −ηeη.

Therefore,

|F (w, αt)− F (w, α)| ≤ ηeη|F1(w, αt)− F1(w, α)|.

Hence,

|F (ŵT , α)− F (w, α̂T)| ≤ |F (ŵT , α)− F (ŵT , α̂T)|+ F (ŵT , α̂T)− F (w, α̂T)|, where ŵT =
1

T

T∑
t=1

wt and α̂t =
1

T

T∑
t=1

αt

≤ ηeη|F1(ŵT , α̂T)− F1(ŵT , α)|+ η|F1(ŵT , α̂T)− F1(w, α̂T)|

≤ ηeη
{
|F1(ŵT , α̂T)− F1(ŵT , α)|+ |F1(ŵT , α̂T)− F1(w, α̂T)|

}
≤ ηeη

‖ŵT‖+ ‖α‖+ ‖α̂T‖+ ‖w‖√
2/c T

.

As ‖w‖2
2 and ‖ŵT‖2

2 are in O(1/λ), ‖α‖2
2 ≤ n, and ‖α̂T‖2

2 ≤ n (see [79]), we get

|F (ŵT , α)− F (w, α̂T)| ≤ ηeη
1 +
√
n+
√
n+ 1√

2/c T

=
ηeη(1 +

√
n)
√

2c

T
.

Therefore,

F (ŵT , α)− F (w, α̂T) ≤ ηeη(1 +
√
n)
√

2c

T
.

�

Note 1 By Theorem 3.1, it can be observed that the convergence rate of RSVM-

PDProx is O(1/T).

Note 2 Theorem 3.1 shows that as the number of iterations T → ∞, |F (ŵT , α) −

F (w, α̂T)| → 0; and hence, the strong duality holds. Therefore, (α̂T , ŵT) is an optimum

solution to the problem (3.11) with O(1/T) duality gap; the larger the number of itera-

3.4. Analysis of RSVM-PDProx 45

tions, the smaller the duality gap. Importantly, Theorem 3.1 reports that to reach at a

solution of (3.11) with ε-duality-gap, Algorithm 1 requires at least 1
ε

(
ηeη(1 +

√
n)
√

2c
)

number of iterations. This estimate explicitly reveals the robustness of the algorithm

with respect to the choice of T . If fewer iterations are chosen, the duality gap will be

higher, and hence the solution will show a low performance.

3.4.2 Time Complexity of RSVM-PDProx

To find the time complexity of Algorithm 1, the time complexity of each step of Al-

gorithm 1 is executed for each iteration. In Algorithm 1, Steps 4 to 6 significantly

contribute to the time complexity.

In Step 1, γ =
√

1/2c is to be calculated with the help of an estimated value of c.

To estimate a value of c, one can use the inequality (3.14). Here, c = R2/n for the given

loss function (see appendix of [79]), where ‖x‖2 ≤ R. Therefore, there are n operations

to square all the elements, n − 1 sums, and 2 square roots are required. Therefore,

the overall complexity corresponding to Step 1 is O(n) where n denotes the number of

instances in a data set.

Step 2 in Algorithm 1 is the initialization step with two assignments, which lead to

constant asymptotic time complexity [84].

In the next step, the loop begins. In Step 4, the projection operation is performed.

Towards this direction, the gradient Gα(wt−1, βt−1), is computed first. After that, the

gradient is multiplied with γ, computed in Step 1. Now, γ Gα(wt−1, βt−1) is added with

βt−1. Now, the projection operationis performed on the obtained result. Therefore, the

time complexity is (O(1) +O(n2d))×O(n).

The next step, Step 5, is the calculation of wt for which the Fast Iterative Shrinkage

Thresholding Algorithm (FISTA) [83] is used. The time complexity of Step 5 is O(n3)

(see appendix/supplementary material of [85]).

In Step 6, the time complexity is similar to Step 4, (O(1) +O(n2d))×O(n). In the

46 3.5. Numerical Experiments and Results

next step of Algorithm 1, the loop ends. Finally, the optimal weight and α vectors, ŵT

and α̂T respectively, are calculated with constant time complexity in Step 8.

After considering the time complexity of each step of Algorithm 1, it is observed

that the final time complexity of the algorithm is O(n3).

3.5 Numerical Experiments and Results

In this section, the superiority of our method over existing techniques is proved ex-

perimentally. The experiments are performed over synthetic and real-world data sets.

To perform the experiments, the data set is divided into the ratio of 70:30, where the

significant part is for training the model (Training set), and the rest is for testing the

model (Test set). All the experiments are performed on Spyder UI under Anaconda3-

2019.07. These experiments are conducted on a Windows operating system with 16 GB

RAM.

In a training set, some of the labels are randomly switched to test the robustness of

the proposed approach. For example, for experiments with 10% noise in the data set,

10% labels of the training set [78] are switched (from positive class to negative class

and vice-versa). Please note that a linear kernel is used to perform these experiments,

but the technique can be easily used with the non-linear kernels.

To test the sparseness of all the methods, the ratio of a number of support vectors

to the total number of instances (defined as support vector ratio) is computed. The

model with a smaller support vector ratio is more sparse than the others.

3.5.1 Experiments on Synthetic Data Sets

For experiments, 100 instances were generated in the synthetic data set (usingmake blobs()

function in python) with two features (x1, x2) and this data set is divided into the ratio

of 70:30. Figures 3.4, 3.5 and 3.6 shows this comparison. Experiments with increased

number of instances were also performed. Results are also reported in tabular form

3.5. Numerical Experiments and Results 47

on page 167, Appendix B. For generating accuracies and the corresponding standard

deviations, all the experiments were performed ten times.

Figure 3.4: Comparison of SVM, RSVM-RHHQ and RSVM-PDProx over Synthetic
Data Set with 0% Noise

Figure 3.5: Comparison of SVM, RSVM-RHHQ and RSVM-PDProx over Synthetic
Data Set with 15% Noise

In Figures 3.4, 3.5 and 3.6 experiments were performed on data with no noise, data

with 15% noise, and data with 30% noise respectively. When the data is noise-free,

all the methods performed almost similar to each other and hence classifying the blue

class instances (left side) and the red class instances (right side) correctly.

48 3.5. Numerical Experiments and Results

Figure 3.6: Comparison of SVM, RSVM-RHHQ and RSVM-PDProx over Synthetic
Data Set with 30% Noise

When 15% label noise is added to the training set, the proposed method classifies

both the classes more accurately, while this is not so with the conventional SVM and

RSVM-RHHQ (see Figure 3.5).

When 30% label noise is added to the training set, the proposed approach again

classifies better than the rest of the methods. It is evident from Figure 3.6 where

the existing techniques are classifying the red instances wrong while RSVM-PDProx

correctly classifies these instances.

3.5.2 Experiments on Real-world Data Sets

In this section, the proposed method is compared with the conventional SVM [9], SVM

using PDProx optimization technique [79], SVM with the truncated pinball loss function

[57] and the SVM with a rescaled hinge loss function [78]. The method is compared

with these techniques based on both robustness towards label noise and sparsity. To

perform the experiments, twelve real-world data sets were used. These data sets were

obtained from diverse sources to test the method over a wide variety of applications.

Also, data sets with a small number of instances, a large number of instances, and data

sets with a large number of features were used for experimentation purposes. Table 3.1

3.5. Numerical Experiments and Results 49

enlists these data sets. The number of instances, features, and the number of classes

corresponding to each data set is mentioned in this table. There is one more column

in this table, ‘Class Ratio.’ Since the proposed approach is for two-class classification

problems, this column specifies the positive class ratio to the negative class in the data

set. Please note that the entries of Table 3.1 are arranged according to the increasing

number of instances. Similarly, all the results reported following the same order of the

data sets. For

Table 3.1: Data Sets Used for Experimentation Purposes

S. No. Data Sets Instances Features No. of Classes Class Ratio

1 SCADI 70 206 7 3.37:1
2 Sonar 208 61 2 3.00:1
3 Cleveland Heart 303 14 2 0.83:1
4 Haberman 306 4 2 0.36:1
5 Australian 690 15 2 0.80:1
6 Pima Indians 738 9 2 0.74:1
7 CMC 1443 10 3 1.34:1
8 Spambase 4601 58 2 0.65:1
9 Banana 5300 3 2 1.23:1
10 Page Blocks 5473 11 5 8.77:1
11 Musk(version 2) 6568 168 2 0.18:1
12 Mushrooms 8124 22 2 0.93:1

3.5.2.1 Robustness

The term robustness is used as the property by which the performance of the classifier

is least affected even in the presence of label noise. Therefore, if a model is robust

than the others, it shows better accuracy than the others. Hence, accuracy is used as

a parameter to check the robustness of different methods.

First, the experiments were performed on the data sets with no noise. These results

are reported in Table 3.2. For RSVM-RHHQ and RSVM-PDProx, the results were

computed for different values of η (0.2, 0.5, 1, 2 and 3). Please note that in Tables

50 3.5. Numerical Experiments and Results

Table 3.2: Results of RSVM-PDProx and the Existing Methods with 0% Noise in the
Real-World Data Sets

Data Sets Results SVM SVM-PDProx pin-SVM RSVM-RHHQ (η-val) RSVM-PDProx

η=0.2 η=0.5 η=1 η=2 η=3 Parameter

SCADI
Accuracy 90.00±3.95 90.00±6.54 90.47±4.34 89.04±6.75 (0.5) 89.04±5.23 90.47±5.63 88.57±7.12 89.04±5.65 93.33±4.85

10−2SVs 35.71 31.63 98.57 40.81 12.65 6.93 2.85 3.26 13.06
Time (in sec) 0.0007 0.1815 0.97s 0.0049 0.88 0.90 0.90 0.90 0.98

Sonar
Accuracy 75.55±4.01 75.07±4.43 76.41±4.82 74.60±3.75 (2) 76.82±3.19 76.66± 4.26 74.92±5.21 75.87±4.24 75.07± 5.26

10−6SVs 54.41 44.82 63.88 62.75 44.34 47.03 49.10 46.27 44.34
Time (in sec) 2.380 0.1815 0.007s 0.011 2.86 2.76 2.73 2.72 2.72

Cleveland
Accuracy 81.64±2.55 83.62±1.56 47.77±3.21 82.96±2.36 (2) 83.29± 2.13 84.28±3.77 84.28±4.50 83.40±2.66 86.37±4.99

10−3SVs 38.01 53.01 99.52 36.32 18.16 22.45 15.47 11.79 9.85
Time (in sec) 0.5962 0.32 0.0036 0.191 0.7 0.84 0.90 0.92 0.90

Haberman
Accuracy 71.30±3.77 73.34±1.76 68.83±3.46 72.06±2.66 (1) 73.04±2.94 72.60±5.60 73.05±3.71 73.47±2.39 72.93±2.85

10−2SVs 56.07 84.25 83.09 63.08 61.91 41.86 23.08 15.70 15.74
Time (in sec) 0.02 1.49 0.003s 0.089 1.5 1.62 1.81 1.87 1.88

Australian
Accuracy 85.14±1.94 86.18±2.08 81.55±3.24 85.84±1.55 (1) 86.57±1.85 86.13±1.60 86.03±1.96 85.89±1.36 85.16±2.10

10−2SVs 29.35 43.12 22.19 31.46 16.16 12.13 7.701 6.79 7.61
Time (in sec) 141.16 5.007 365.36 102.15 15.45 15.84 16.35 16.57 16.14

Pima
Indians

Accuracy 75.93±1.38 74.02±2.14 77.13±6.87 76.53±2.33 (3) 73.82±1.57 74.32±2.52 73.76±2.13 75.15±2.41 73.59±2.24
10−3SVs 51.85 58.10 61.00 51.02 25.17 17.15 15.81 13.01 11.43

Time (in sec) 4.25 13.05 2.71 2.10 10.48 10.72 11.17 11.21 11.51

CMC
Accuracy 67.01±2.42 64.34±1.60 66.67±1.45 67.17±0.98 (2) 66.85±1.87 65.27±2.58 66.93±1.69 67.64±1.24 65.99±2.02

10−2SVs 71.21 85.77 67.66 71.17 48.81 54.09 44.09 33.97 25.78
Time (in sec) 0.18 2.40 0.078 0.07 1.28 2.99 3.11 3.23 3.24

Spambase
Accuracy 92.70±1.73 91.006±0.92 79.49±0.11 92.17±0.41 (3) 92.17±0.71 92.33±0.65 92.47±0.65 92.97±0.36 92.07±0.51

10−3SVs 17.98 63.94 60.08 21.42 51.97 37.94 20.57 12.32 9.009
Time (in sec) 898.65 28.46 1.17 182.79 73.06 123.67 126.12 126.75 126.51

Banana
Accuracy 54.52±2.98 56.99±1.31 80.48±0.98 55.27±1.17 (0.2) 56.704±2.37 56.33±1.69 55.23±2.44 55.78±2.88 58.01±3.55

10−2SVs 89.75 100 24.50 88.84 88.84 50.93 42.15 33.34 15.05
Time (in sec) 0.18 11.30 18.37 0.11 9.90 10.48 10.79 10.50 10.68

Page
Blocks

Accuracy 94.09±0.89 93.52±0.78 92.44±0.64 94.52±0.67 (0.2) 94.57±0.72 94.67±0.61 94.38±0.77 93.80±0.44 93.19±0.34
10−3SVs 7.82 88.35 98.17 9.47 2.00 2.91 3.77 2.76 2.00

Time (in sec) 188.02 89.36 0.56 206.39 176.41 177.31 184.12 209.65 187.03

Musk
(version 2)

Accuracy 95.10±0.68 84.94±0.34 91.15±0.28 99.56±0.16 (2) 99.58±0.10 99.49±0.06 99.57±0.09 99.51±0.09 99.61±0.09
10−5SVs 12.38 62.98 98.54 0.71 0 0.11 0 0.01 0.01

Time (in sec) 2.055 174.13 4.67 0.664 31.17 20.94 20.96 21.22 22.04

Mushrooms
Accuracy 96.69±0.41 96.86±0.87 99.98±0.20 96.59±0.96 (1) 100±0.00 99.99±0.01 99.95±0.06 100±0.00 100±0.00

10−8SVs 9.69 15.96 23.07 14.66 2.41 2.52 2.49 2.54 2.55
Time (in sec) 0.81 154.12 11.51 1.31 15.96 15.87 15.87 16.15 16.87

3.2, 3.3 and 3.4, under the column named ‘RSVM-RHHQ (η-val)’ (η-val in parenthesis

indicates the η value with the best accuracy), the best accuracy is mentioned amongst

different η values. In all the results, the best accuracy in a row is marked bold. The

support vector ratio and the computational time are also reported according to the same

η value. In the case of RSVM-PDProx, all the results corresponding to the different η

values are provided. Please note that all the experiments are performed ten times, so

the mean and standard deviation (std) of accuracies on those ten runs can computed.

In Table 3.2, the accuracy, the support vector ratio (SVs), and the computational

time (in sec) are mentioned. The table also comprises the value of the regularization

3.5. Numerical Experiments and Results 51

parameter used for RSVM-PDProx in the last column of Table 3.2. The optimal reg-

ularization parameter is selected using 10-fold cross-validation on 10% of the data set.

The set from which the regularization parameter selected is

λ ∈
{

10−a : a ∈ {−10,−9,−8, . . . ,−1}
}
.

The same set of λ is considered for all the experiments.

Similarly, the experiments were conducted over the data sets with different label

noise. First, the training set was corrupted, with a 15% label noise. Table 3.3 reports

the results with a 15% label noise. In all the results, the best accuracy in a row is

marked bold. Please note that all the experiments were performed ten times, so the

mean and standard deviation (std) of accuracies on those ten runs are computed. These

are reported in the format ‘mean±std.’ For SVs and the computational time, the mean

of all the ten runs is reported.

Next, the experiments were performed after switching 30% of labels in the training

set. The results of this experiment are reported in Table 3.4. Please note that for the

numerical computation of pin-SVM in all the experiments, the legacy of [57] is followed

in which Shen et al. get the best accuracy at τ=0.5; therefore, in all the experiments,

the same value of τ is used.

Table 3.2 shows that the proposed approach RSVM-PDProx shows better accuracy

on ten data sets out of twelve data sets. On rest two data sets, pin-SVM shows better

accuracy than all the methods. pin-SVM performs exceptionally well on the Banana

data set but performs the worst on the Cleveland data set. The proposed approach

shows a significant variation of accuracies on the data sets like SCADI, Sonar, Cleveland,

Australian, and mushrooms.

When 15% label noise was added in the training data, the accuracy of all the

methods decreased to some extent. The drop in accuracy in RSVM-PDProx is slighter

than the rest of the methods (see Table 3.3). The best accuracies on all the data sets are

52 3.5. Numerical Experiments and Results

Table 3.3: Results of RSVM-PDProx and the Existing Methods with 15% Noise in
the Real-World Data Sets

Data Sets Results SVM SVM-PDProx pin-SVM RSVM-RHHQ (η-val) RSVM-PDProx

η=0.2 η=0.5 η=1 η=2 η=3 Parameter

SCADI
Accuracy 73.33±9.80 89.04±4.78 84.30±5.55 78.57±10.48 (0.2) 92.38±5.71 89.04±7.92 87.61±8.83 88.57±4.85 89.52±5.55

10−2SVs 56.53 77.55 98.59 53.06 78.16 48.57 35.30 31.02 24.69
Time (in sec) 0.0009 0.086 1.31 0.008 0.14 0.17 0.25 0.24 0.25

Sonar
Accuracy 71.11±5.109 70.37±5.98 74.08±4.91 72.53±4.97 (1) 72.53±5.01 73.49±5.89 74.76±3.40 74.12±6.19 72.58±6.40

10−6SVs 69.17 53.58 75 71.72 54.65 76.34 49.72 47.79 41.86
Time (in sec) 0.001 2.23 0.0016s 0.001 2.72 2.62 2.65 2.72 2.60

Cleveland
Accuracy 79.76±2.51 80.00±3.83 43.95±4.67 80.98±2.60 (0.2) 79.89±3.18 81.09±3.50 80.43±3.60 79.78±2.83 81.53±3.67

10−3SVs 57.12 77.87 99.56 64.15 18.86 10.00 8.96 7.40 6.60
Time (in sec) 1.07 0.27 0.0036 0.357 5.94 6.32 6.45 6.50 6.50

Haberman
Accuracy 72.60±4.47 73.26±3.15 67.03±4.28 73.36±2.71 (3) 71.63±5.98 73.91±3.82 72.195±4.24 71.41±2.70 72.50±3.70

10−4SVs 67.42 86.77 86.38 64.95 27.71 16.96 9.20 7.71 7.28
Time (in sec) 0.038 1.39 0.038 0.001 2.02 6.98 7.13 7.19 7.15

Australian
Accuracy 79.80±2.10 83.86±1.92 71.36±3.24 83.23±2.42 (0.5) 85.31±2.005 84.87±1.79 85.50±1.85 84.68±2.20 85.41±1.78

10−4SVs 44.80 81.71 50.20 51.34 15.007 11.71 7.92 7.88 6.52
Time (in sec) 185.03 3.51 69.58 126.10 8.02 8.40 9.04 9.18 8.85

Pima
Indians

Accuracy 75.75±1.06 73.33±2.09 71.93±5.71 75.88±2.35 (0.5) 73.46±1.43 73.81±2.36 75.32±2.13 72.68±2.04 73.73±2.76
10−4SVs 66.10 69.53 93 65.36 22.36 16.38 16.20 16.18 16.35

Time (in sec) 5.55 10.74 2.92 3.20 47.38 40.24 48.47 48.17 48.43

CMC
Accuracy 65.42±2.23 64.25±2.72 63.01±1.02 65.99±2.47 (1) 65.75±1.80 65.63±2.20 66.38±2.17 65.47±1.66 65.58±1.89

10−3SVs 80.38 87.66 75.72 80.79 53.22 16.68 14.25 14.04 13.20
Time (in sec) 0.15 2.59 0.08 0.02 21.59 22.88 23.36 23.51 23.45

Spambase
Accuracy 89.22±0.98 90.36±0.77 71.73±0.82 89.87±1.21 (3) 90.35±0.87 90.78±0.64 91.16±0.70 89.03±4.75 88.27±4.73

10−3SVs 47.95 91.72 65.95 55.49 87.73 83.78 75.27 49.84 35.56
Time (in sec) 886.56 29.39 1.80 487.12 43.06 43.40 44.31 44.87 44.05

Banana
Accuracy 56.16±2.11 55.16±2.78 81.67±0.98 55.70±1.05 (3) 56.71±1.40 56.16±2.61 50.18±5.92 53.97±3.57 50.64±5.67

10−7SVs 94.60 100 65.95 92.58 95.99 56.60 73.22 28.20 18.89
Time (in sec) 0.26 10.95 1.80 0.11 25.49 14.41 18.73 26.25 26.79

Page
Blocks

Accuracy 91.23±0.89 89.22±2.56 91.03±0.72 92.35±0.69 (0.2) 92.91±0.64 91.63±0.74 88.14±2.53 87.89±2.49 87.56±0.59
10−5SVs 29.83 95.34 98.21 34.35 15.30 17.20 12.53 11.25 10.11

Time (in sec) 490.31 89.21 0.56 617.78 252.26 253.64 258.78 260.55 260.88

Musk
(version 2)

Accuracy 93.71±0.76 82.26±0.46 88.07±1.11 99.57±0.07 (0.2) 99.49±0.07 99.55±0.09 99.67±0.011 99.48±0.07 99.60±0.03
10−6SVs 41.81 83.94 96.40 83.23 53.47 51.009 36.12 6.28 6.27

Time (in sec) 13.37 204.81 4.53 996.57 58 59 58.12 57.66 60.18

Mushrooms
Accuracy 94.77±0.36 95.11±0.38 78.82±2.11 94.71±0.36 (0.5) 95.11±0.38 95.82±0.71 96.01±0.52 95.11±0.42 94.59±0.37

10−6SVs 51.99 54.28 46.15 55.90 82.28 66.97 33.74 7.45 7.72
Time (in sec) 7.08 159.73 119.97 5.25 22.19 21.77 23.15 22.69 21.73

shown in boldface. The majority of boldfaced accuracies are seen with RSVM-PDProx.

It again shows that the proposed method outperforms even in the presence of significant

label noise. For conducting the experiments on noisy data set, the optimal parameter

was obtained beforehand.

When 30% label noise is added to the training data, the accuracy of all the methods

further decrease. This drop in the accuracy is most significant for pin-SVM and the

least significant for our proposed method, RSVM-PDProx (see Table 3.4).

3.5. Numerical Experiments and Results 53

Table 3.4: Results of RSVM-PDProx and the Existing Methods with 30% Noise in
the Real-World Data Sets

Data Sets Results SVM SVM-PDProx pin-SVM RSVM-RHHQ (η-val) RSVM-PDProx

η=0.2 η=0.5 η=1 η=2 η=3 Parameter

SCADI
Accuracy 67.61±8.98 86.66±5.12 78.50±9.28 68.09±11.47 (0.2) 86.66±7.61 85.23±7.81 90.00±3.95 84.76±8.19 85.23±5.81

10−6SVs 68.57 84.89 98.42 77.55 80.40 66.32 49.79 35.91 43.26
Time (in sec) 0.0011 0.14 1.02 0.001 0.17 0.21 0.18 0.20 0.24

Sonar
Accuracy 67.30±6.77 66.98±4.24 50.00±3.79 64.12±5.77 (0.2) 68.25±7.37 67.77±5.40 71.42±4.65 65.71±6.19 64.28±5.46

10−6SVs 78.68 65.86 88.19 61.37 76.89 70.41 70.68 56.08 44.55
Time (in sec) 0.001 2.10 0.001 0.004 2.38 2.39 2.35 2.44 2.40

Cleveland
Accuracy 75.71±3.20 77.25±2.69 46.15±2.91 75.27±3.78 (2) 78.68±3.34 78.02±3.57 77.58±4.63 78.90±5.85 78.68±4.23

10−3SVs 67.78 90.23 99.52 76.41 22.83 11.83 10.42 8.20 6.12
Time (in sec) 0.93 0.26 0.004 0.54 6.14 6.47 6.39 6.53 6.49

Haberman
Accuracy 71.63±4.25 60.32±9.46 61.53±2.69 72.17±3.41 (2) 71.52±3.16 72.41±3.26 71.08±3.71 70.86±4.23 71.30±4.53

10−5SVs 81.49 92.009 88.26 91.58 23.87 17.89 17.19 19.06 13.50
Time (in sec) 0.022 1.11 0.0026 0.007 16.48 19.52 17.03 17.65 13.94

Australian
Accuracy 81.59±2.82 84.63±1.69 59.12±3.11 82.80±2.97 (3) 84.20±1.60 83.81±1.28 81.15±5.09 83.57±2.97 84.78±2.90

10−4SVs 58.13 94.94 67.42 72.04 14.24 11.80 13.47 8.34 8.19
Time (in sec) 140.10 3.42 92.43 74.11 16.90 16.70 17.14 17.50 17.60

Pima
Indians

Accuracy 75.70±2.98 72.46±2.42 61.52±6.31 72.20±4.26 (0.2) 72.68±2.03 70.21±2.06 72.55±1.28 71.47±3.00 73.16±2.37
10−2SVs 77.16 78.99 100.00 84.72 22.94 17.72 17.54 18.28 16.55

Time (in sec) 5.40 9.11 3.05 0.008 47.58 48.03 48.21 48.37 48.42

CMC
Accuracy 64.47±3.42 66.80±2.28 56.96±1.51 63.86±3.60 (1) 65.04±2.27 64.29±2.96 64.14±3.47 63.98±2.48 63.59±1.91

10−2SVs 86.30 94.80 84.27 89.21 22.94 28.98 21.65 18.50 17.50
Time (in sec) 0.16 2.57 0.085 0.092 47.58 20.03 20.22 20.40 10.49

Spambase
Accuracy 87.90±0.76 89.39±1.81 61.08±1.84 86.42±1.71 (2) 89.13±0.83 89.68±1.14 90.23±0.89 84.16±6.89 80.14±12.38

10−3SVs 64.62 98.54 78.68 76.10 96.03 93.66 70.56 65.40 31.39
Time (in sec) 951.04 2.57 2.24 489.12 54.02 54.44 55.62 56.07 45.28

Banana
Accuracy 53.58±3.91 55.109±4.004 80.23±1.98 55.47±0.78 (2) 56.17±3.50 54.89±3.64 54.69±4.30 53.88±5.59 51.11±3.19

10−5SVs 94.55 96.55 76.86 94.59 96.19 82.45 85.02 51.22 24.31
Time (in sec) 0.178 81.61 751.08 0.12 25.00 26.16 26.24 26.48 26.51

Page
Blocks

Accuracy 89.57±3.02 83.08±3.34 86.17±1.07 90.32±1.43 (0.5) 86.94±3.11 85.38±2.29 85.14±3.02 79.64±1.27 84.83±3.19
10−5SVs 41.24 97.55 98.25 55.07 30.45 15.67 15.93 14.72 13.30

Time (in sec) 412.61 88.63 0.65 497.97 268.73 277.10 178.67 279.76 222.69

Musk
(version 2)

Accuracy 92.07±1.46 82.26±0.46 85.49±0.97 99.50±0.17 (0.5) 99.58±0.20 99.55±0.06 99.54±0.07 99.51±0.07 99.61±0.13
10−6SVs 59.54 91.38 98.09 91.72 98.61 98.69 99.12 93.17 50.12

Time (in sec) 16.58 203.43 4.77 1263.26 62.24 62.35 64.11 61.96 71.49

Mushrooms
Accuracy 92.91±020 92.41±1.40 64.25±3.47 91.96±2.66 (2) 91.29±1.89 85.11±2.36 91.68±0.92 93.24±1.19 95.44±0.18

10−8SVs 66.69 71.57 64.48 78.67 90.69 80.39 33.32 16.09 14.06
Time (in sec) 7.68 159.67 412.45 7.91 22.34 22.85 23.58 23.53 23.76

3.5.2.2 Sparseness

Sparsity is the property based on the number of variables used by the classifier in

the classification. If the coefficient of a variable is 0, it does not affect the model.

It is required to make the classifier dependent on as few variables as possible as the

classification time of the classifier directly depends upon the non-zero dual variables. It

also minimizes the tendency of overfitting, resulting in better generalizability. The use

of a non-smooth regularizer improves the sparsity of the classifier. Therefore, in this

section, the sparsity of the proposed classifier is under focus, and the support vector

ratio is calculated for measuring sparseness in a model.

54 3.5. Numerical Experiments and Results

From the Tables 3.2, 3.3, and 3.4, it is evident that the support vector ratio for

RSVM-PDProx is less than the rest of the methods for all the data sets. Another

interesting observation is the decrease in support vector ratio when η is increased from

η = 0.2 to η = 3. Also, as the noise increases in the data sets, the support vector ratio

generally increases. Therefore, the support vector ratio is positively correlated with the

label noise in the data set.

Figure 3.7 explicitly compares the support vector ratio of RSVM-PDProx and the

RSVM-RHHQ method for all the three cases where data sets are noise-free, data sets

with 15% noise, and data sets with 30% noise. In all the cases, RSVM-PDProx outper-

forms RSVM-RHHQ in terms of the support vector ratio.

The average support vector ratio of all the above-compared methods are listed in

Table 3.5. From this table, it is evident that the proposed method is more sparse than

the rest of the methods, and RSVM-PDProx shows the lower ratio of support vectors

at η = 3, which is boldfaced in Table 3.5.

It should be noted here that the proposed approach is much more sparse than

the existing methods; therefore, this method can be implemented in devices with low

computational power and low memory.

0

10

20

30

40

50

60

70

80

90

100

S
u

p
p

o
rt

 V
ec

to
r

R
at

io

Data Sets

0% Noise

RSVM-RHHQ RSVM-PDProx

(a) 0% Noisy Data Set

0

10

20

30

40

50

60

70

80

90

100

S
u

p
p

o
rt

 V
ec

to
r

R
at

io

Data Sets

15% Noise

RSVM-RHHQ RSVM-PDProx

(b) 15% Noisy Data Set

3.6. Discussion about dual variable and regularization parameter 55

0

20

40

60

80

100

120

S
u

p
p

o
rt

 V
ec

to
r

R
at

io
Data Sets

30% Noise

RSVM-RHHQ RSVM-PDProx

(c) 30% Noisy Data Set

Figure 3.7: Comparison of RSVM-RHHQ and RSVM-PDProx Based on Support
Vector Ratio over Real-World Data Sets

Table 3.5: Mean Support Vector Ratios Over All the Data Sets

Cases SVM SVM-PDProx pin-SVM RSVM-RHHQ RSVM-PDProx

η=0.2 η=0.5 η=1 η=2 η=3 η=0.2 η=0.5 η=1 η=2 η=3

0% noise 39.51 60.99 66.68 41.04 39.87 40.49 40.28 39.20 31.03 24.66 18.92 15.14 13.03
15% noise 58.97 79.99 79.25 65.42 63.31 65.76 65.29 66.65 50.39 39.34 31.03 19.58 16.25
30% noise 70.39 88.10 86.87 78.77 77.79 77.41 79.46 77.91 56.34 49.65 42.05 33.74 23.57

3.6 Discussion about dual variable and regularization

parameter

The dual variable, α, in the equation of rescaled hinge loss, is updated by gradient

mapping with another dual variable β. These variables are updated according to Steps

4 and 6 in Algorithm 1.

In this subsection, the effect of the regularization parameter, λ, on the support

vector ratio and the accuracy of RSVM-PDProx is discussed. As the regularization

parameter was obtained from the set, λ ∈ {10−a : a ∈ {−10,−9,−8, · · · ,−1}}, the

accuracy and the support vector ratio were computed on all the λ values of this set.

For this experimentation, the synthetic data set was used. All the experiments are

performed with a constant η = 3.

56 3.6. Discussion about dual variable and regularization parameter

(i) The effect of the regularization parameter on the accuracy of a classifier

The accuracy graph is plotted over various regularization parameters. This plot

is shown in Figure 3.8. The a from the set of regularization parameters is plotted

on the x-axis, and the accuracy is plotted on the y-axis. From Figure 3.8, it is

Figure 3.8: Effect of λ on the Accuracy at η = 3

observed that the maximum accuracy is generally achieved at a = 3, which implies

10−3 is the optimal parameter for this data set. However, the regularization

parameter is data set dependent. Therefore, in all the experiments, the optimal

parameter is selected first, even after adding noise to the same data set.

(ii) The effect of the regularization parameter on the support vector ratio

Here also, the a values from the set of regularization parameters are plotted on

the x-axis, and now, it is plotted against the support vector ratio on the y-axis.

This is shown in Figure 3.9. From Figure 3.9, it is observed that the support

vector ratio first decreases up to a = 6, and after that, there is uncertainty in the

support vector ratio. Another point observed from Figure 3.9 is the increase in

support vector ratio as the noise in the data set increases.

3.7. Summary of the Work 57

Figure 3.9: Effect of λ on the Support Vector Ratio at η = 3

3.7 Summary of the Work

In this work, an improved SVM version is proposed, which is robust towards label noise

and has better sparseness. The rescaled α-hinge loss is used as the loss function (see

(3.10)). This rescaled α-hinge loss is combined with a non-smooth regularizer to obtain

a non-smooth objective function. This non-smooth function is optimized using the

PDProx technique [79] which not only adds sparseness to the classifier but also better

robustifies the classifier towards label noise (see Subsections 3.5.2.1 and 3.5.2.2). The

time complexity of the optimization technique, which is O(n3), where n denotes the

number of instances, is also provided. To apply the PDProx technique, FISTA is used.

Therefore, the time taken by the proposed approach is comparatively more for some

data sets. For larger data sets (Spambase, page blocks, and musk, etc.), where other

techniques take quite long, RSVM-PDProx converges faster with better results in terms

of both robustness and sparsity. The proposed technique outperforms other techniques

for the majority of the data sets. Also, the support vector ratio has been noticed to

be lesser in the case of RSVM-PDProx. Besides, it has been observed that the support

58 3.7. Summary of the Work

vector ratio is inversely proportional to the η values. Although, with the growing noise

in the data sets, the support vector ratio increases for the proposed approach. However,

it is much lesser than the existing techniques (see Table 3.5).

