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PREFACE

Although support vector machines (SVMs) are one of the oldest machine learning ap-
proaches, both the regression and classification variants still help solve real-world tasks.
However, the model has a limitation of sensitivity towards noise in the data set. The
performance of SVM gets adversely affected when the model is trained with noisy data.
This is due to the presence of unbounded hinge loss function. Since the other SVM
variants also comprise hinge loss function, the limitation is inherited in all the SVM

variants.

In this thesis, the robust formulations of SVM and its variants, which can handle
sensitivity towards the noise, are proposed. This comes under the category of robust
statistics. For classification tasks, the robustness against label noise in the data sets
is added, while the robustness against Gaussian and uniform noise in the data sets is

added for regression tasks.

First, the robustness against label noise in the conventional SVM is added. In this
literature, the rescaled a-hinge loss function with a non-smooth L, regularizer isused.
To solve the non-smooth optimization technique, the primal dual proximal (PDProx)-
dual technique is implemented. The proposed approach is observed to be more sparse
than the existing robust SVMs. The model converges at the rate of O(1/7) where T'

denotes the number of iterations.

Next, the robustness against the uniform and Gaussian noise in a regression model,

twin support vector regression (TSVR) has been added. The rescaled hinge loss func-
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tion is used in this literature. To solve the non-convex problem, the half-quadratic
optimization technique is used. Subsequently, an algorithm, Res-TSVR, has been de-
vised to implement the proposed approach. It is found that the maximum number of
iterations required to achieve an e-precision solution is O(log(1/e)).

Next, the twin support vector machine (TWSVM) is used in diabetic retinopathy
detection using eye fundus images. In this work, the pinball loss function is used with
TWSVM to add robustness to the model. It also helped in reducing the computational
time. In all the experiments, the proposed approaches are compared with the existing
approaches to prove the superiority of the proposed works.

The above contributions discussed are in the field of supervised machine learning.
A semi-supervised machine learning framework has also been made robust to the label
noise. Next contribution belongs to the addition of robustness to the conventional
transductive support vector machine (TSVM). The semi-supervised learning model is
robustified against label noise using a truncated pinball loss function. The model is
tested on both small and large scale real-world data sets. The proposed approach is
implemented using both the stochastic gradient descent (SGD) method and the dual
problem solver, mlev_quadprog (name is based on the machine learning-computer vision
lab) . The robust model is also applied to the detection of COVID-19 infected patients

using chest X-ray images.



