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[100] U. Iqbal, A. Doering, H. Yasin, B. Krüger, A. Weber, and J. Gall, “A dual-source

approach for 3d human pose estimation from single images,” Computer Vision and

Image Understanding, vol. 172, pp. 37–49, 2018.

[101] P. Witoonchart and P. Chongstitvatana, “Application of structured support vector

machine backpropagation to a convolutional neural network for human pose esti-

mation,” Neural Networks, vol. 92, pp. 39–46, 2017.

[102] S. Li, W. Zhang, and A. B. Chan, “Maximum-margin structured learning with deep

networks for 3d human pose estimation,” in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 2848–2856.

[103] A. Agarwal and B. Triggs, “Recovering 3d human pose from monocular images,”

IEEE transactions on pattern analysis and machine intelligence, vol. 28, no. 1, pp.

44–58, 2005.

[104] ——, “3d human pose from silhouettes by relevance vector regression,” in Pro-

ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2004. CVPR 2004., vol. 2. IEEE, 2004, pp. II–II.

[105] B. Tekin, I. Katircioglu, M. Salzmann, V. Lepetit, and P. Fua, “Structured

prediction of 3d human pose with deep neural networks,” arXiv preprint

arXiv:1605.05180, 2016.

199



References

[106] C. Hong, J. Yu, J. Wan, D. Tao, and M. Wang, “Multimodal deep autoencoder for

human pose recovery,” IEEE Transactions on Image Processing, vol. 24, no. 12,

pp. 5659–5670, 2015.

[107] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Daniilidis, “Sparseness

meets deepness: 3d human pose estimation from monocular video,” in Proceed-

ings of the IEEE conference on computer vision and pattern recognition, 2016, pp.

4966–4975.

[108] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural

networks,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2014, pp. 1653–1660.

[109] D. C. Luvizon, H. Tabia, and D. Picard, “Human pose regression by combining in-

direct part detection and contextual information,” Computers & Graphics, vol. 85,

pp. 15–22, 2019.

[110] L. Zhao, X. Peng, Y. Tian, M. Kapadia, and D. N. Metaxas, “Semantic graph con-

volutional networks for 3d human pose regression,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2019, pp. 3425–3435.

[111] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose

estimation,” in European conference on computer vision. Springer, 2016, pp.

483–499.

[112] C.-J. Chou, J.-T. Chien, and H.-T. Chen, “Self adversarial training for human pose

estimation,” in 2018 Asia-Pacific Signal and Information Processing Association

Annual Summit and Conference (APSIPA ASC). IEEE, 2018, pp. 17–30.

[113] A. Nibali, Z. He, S. Morgan, and L. Prendergast, “3d human pose estimation with

2d marginal heatmaps,” in 2019 IEEE Winter Conference on Applications of Com-

puter Vision (WACV). IEEE, 2019, pp. 1477–1485.

200



References

[114] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet effective baseline

for 3d human pose estimation,” in Proceedings of the IEEE International Confer-

ence on Computer Vision, 2017, pp. 2640–2649.

[115] I. Ramı́rez, A. Cuesta-Infante, E. Schiavi, and J. J. Pantrigo, “Bayesian capsule

networks for 3d human pose estimation from single 2d images,” Neurocomputing,

2019.

[116] F. Flitti, M. Bennamoun, D. Q. Huynh, and R. A. Owens, “Probabilistic human

pose recovery from 2d images,” in 2010 IEEE International Conference on Image

Processing. IEEE, 2010, pp. 1517–1520.

[117] A. Tejani, R. Kouskouridas, A. Doumanoglou, D. Tang, and T.-K. Kim, “Latent-

class hough forests for 6 dof object pose estimation,” IEEE transactions on pattern

analysis and machine intelligence, vol. 40, no. 1, pp. 119–132, 2017.

[118] P. Li, H. Ling, X. Li, and C. Liao, “3d hand pose estimation using randomized

decision forest with segmentation index points,” in Proceedings of the IEEE inter-

national conference on computer vision, 2015, pp. 819–827.

[119] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[120] H. Cho and S. M. Yoon, “Divide and conquer-based 1d cnn human activity recog-

nition using test data sharpening,” Sensors, vol. 18, no. 4, p. 1055, 2018.

[121] N. Dua, S. N. Singh, and V. B. Semwal, “Multi-input cnn-gru based human activity

recognition using wearable sensors,” Computing, pp. 1–18, 2021.

[122] B. Almaslukh, J. AlMuhtadi, and A. Artoli, “An effective deep autoencoder ap-

proach for online smartphone-based human activity recognition,” Int. J. Comput.

Sci. Netw. Secur, vol. 17, no. 4, pp. 160–165, 2017.

[123] D. Balabka, “Semi-supervised learning for human activity recognition using adver-

sarial autoencoders,” in Adjunct Proceedings of the 2019 ACM International Joint

201



References

Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019

ACM International Symposium on Wearable Computers, 2019, pp. 685–688.

[124] D. Singh, E. Merdivan, I. Psychoula, J. Kropf, S. Hanke, M. Geist, and

A. Holzinger, “Human activity recognition using recurrent neural networks,” in

International cross-domain conference for machine learning and knowledge ex-

traction. Springer, 2017, pp. 267–274.

[125] R. Mutegeki and D. S. Han, “A cnn-lstm approach to human activity recogni-

tion,” in 2020 International Conference on Artificial Intelligence in Information

and Communication (ICAIIC), 2020, pp. 362–366.

[126] M. Eichner, M. Marin-Jimenez, A. Zisserman, and V. Ferrari, “Articulated human

pose estimation and search in (almost) unconstrained still images,” 2010.

[127] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose estima-

tion: New benchmark and state of the art analysis,” in Proceedings of the IEEE

Conference on computer Vision and Pattern Recognition, 2014, pp. 3686–3693.

[128] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The

pascal visual object classes (voc) challenge,” International journal of computer

vision, vol. 88, no. 2, pp. 303–338, 2010.

[129] S. ur Rehman, S. Tu, M. Waqas, Y. Huang, O. ur Rehman, B. Ahmad, and S. Ah-

mad, “Unsupervised pre-trained filter learning approach for efficient convolution

neural network,” Neurocomputing, vol. 365, pp. 171–190, 2019.

[130] S. Johnson and M. Everingham, “Learning effective human pose estimation from

inaccurate annotation,” in CVPR 2011, 2011, pp. 1465–1472.

[131] B. Sapp and B. Taskar, “Modec: Multimodal decomposable models for human pose

estimation,” in 2013 IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2013, pp. 3674–3681.

202



References

[132] A. Cherian, J. Mairal, K. Alahari, and C. Schmid, “Mixing body-part sequences

for human pose estimation,” in 2014 IEEE Conference on Computer Vision and

Pattern Recognition, 2014, pp. 2361–2368.

[133] L. Sigal, A. Balan, and M. J. Black, “HumanEva: Synchronized video and motion

capture dataset and baseline algorithm for evaluation of articulated human motion,”

International Journal of Computer Vision, vol. 87, no. 1, pp. 4–27, Mar. 2010.

[134] N. R. Howe, “A recognition-based motion capture baseline on the humaneva ii test

data,” Machine Vision and Applications, vol. 22, pp. 995–1008, 2011.

[135] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale

datasets and predictive methods for 3d human sensing in natural environments,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7,

pp. 1325–1339, jul 2014.

[136] M. Sun and S. Savarese, “Articulated part-based model for joint object detection

and pose estimation,” in 2011 International Conference on Computer Vision, 2011,

pp. 723–730.

[137] V. Ferrari, M. Marin-Jimenez, and A. Zisserman, “Progressive search space reduc-

tion for human pose estimation,” in 2008 IEEE Conference on Computer Vision

and Pattern Recognition, 2008, pp. 1–8.

[138] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “Rmpe: Regional multi-person pose

estimation,” in Proceedings of the IEEE International Conference on Computer

Vision, 2017, pp. 2334–2343.
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