CERTIFICATE

It is certified that the work contained in this thesis entitled "DESIGN AND DE-VELOPMENT OF DEEP LEARNING BASED APPROACHES FOR 2D and 3D HUMAN POSE ESTIMATION AND ACTIVITY RECOGNITION" by "Ms. PRATISHTHA VERMA (Roll No. 17071507)" has been carried out under my supervision and that it has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA.

Prof. Rajeev Srivastava

Professor Department of Computer Science and Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

DECLARATION BY THE CANDIDATE

I, PRATISHTHA VERMA , certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Prof. Rajeev Srivastava from DEC-2017 to JULY-2021, at the DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, Indian Institute of Technology (BHU) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully lifted up any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and included them in this thesis and cited as my own work.

Date : 14-07-2021 Place : Varanasi

1.

Signature of the Student (PRATISHTHA VERMA)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Signature of Supervisor

(Prof. Rajeev Srivastava)

Department of Computer Science and Engineering Indian Institute of Technology (Banaras Hindu University) आचार्य /Professor Varanasing 2710 (र्ट्यामार्थ Article Science) जारतीय प्रोद्योगिकी संस्थान /Indian Institute of Technology

> (बनारस हिन्दू यूनिवर्सिटी)/ABanaras Hindu University) वाराणसी Naranasi-221005

Signature of Head of Department

(Prof. S. K. Singh) आचार्य व विभागाध्यक्ष Professor & Head संगणक विज्ञान एवं अभियांत्रिकी विभाग Department of Computer Sc. & Engg. भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology (बनारस हिन्दू यूनिवर्सिटी) (Banaras Hindu University) याराणसी–२२१००५/Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: DESIGN AND DEVELOPMENT OF DEEP LEARNING BASED APPROACHES FOR 2D and 3D HUMAN POSE ESTIMATION AND ACTIVITY RECOGNITION Name of the Student: PRATISHTHA VERMA

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi, all rights under copyright that may exist in and for the above thesis submitted for the award of the DOCTOR OF PHILOSOPHY.

Pratistitus

Date : 14-07-2021

Place : Varanasi

(PRATISHTHA VERMA)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated. To My Beloved Parents Mrs. Rekha Verma and

Dr. Deepak Kumar

ACKNOWLEDGEMENT

I want to take this opportunity to express my deep sense of gratitude to all who helped me directly or indirectly during this thesis work. Firstly, I would like to thank my supervisor, Prof. Rajeev Srivastava, for being a great mentor and the best adviser I could ever have. His advice, encouragement, and critics are a source of innovative ideas, inspiration, and causes behind the successful completion of this Thesis work. The confidence shown on me by him was the most significant source of inspiration for me. It has been a privilege working with him for several years. I am highly obliged to all the faculty members of the Computer Science and Engineering Department for their support and encouragement. I express my sincere thanks to Prof. A. K. Tripathi, Prof. K. K. Shukla, Prof. S.K.Singh, and Dr. Prateek Chattopadhyay of the Department of Computer Science and Engineering and Prof. Subir Das, Department of Mathematical Sciences IIT (BHU), for providing continuous support, encouragement, and advice. I express my sincere thanks to all the Professors, Deans, office staff, supporting staff, and Ph.D. Research Scholars of Indian Institute of Technology (BHU) Varanasi India. I express my gratitude to the Director, Registrars, Deans, Heads, and Student Alumni of the Indian Institute of Technology (BHU) Varanasi.

My memory of the study period at IIT (BHU) can never be complete without mentioning my fellow research scholars. Special thanks to Dr. Vibhav Prakash Singh, Dr. Roshan Singh, Dr. Gargi Srivastava, Mr. Ankit Jaiswal, Dr. Kuntesh Ketan Jani, Mr. Surya Kant Singh, Mr. Ashish Kumar Sharma, Mrs. Divya Singh and Mr. Santosh Kumar Tripathy for their great help and cooperation.

I extend special thanks to the non-teaching staff in the department, particularly the late Mr. A. N. Yadav, Mr. Manoj Kumar Singh, Mr. Ravi Kumar Bharti, Mr. Prakhar Kumar, Mr. Ritesh Singh, and Mr. Shubham Pandey for their consistent support.

My parents, Dr. Deepak Kumar and Smt. Rekha Verma, who gave me the power and brain to work out on this research and their help at every level made me to see this success. I owe thanks to my elder sister, Ms. Akanksha Verma for her continued and unfailing love, support and understanding during my pursuit of Ph.D degree that made the completion of thesis possible. You were always around at times I thought that it is impossible to continue, you helped me to keep things in perspective. I greatly value her contribution and deeply appreciate her belief in me. I extend my thanks to my brother-in-laws Mr. Chander Soni who is my part of inspiration. Finally, I would like to wind up by paying my heartfelt thanks and prayers to the Almighty for his unbound love and grace.

- Pratishtha Verma

Contents

Li	ist of I	Figures		XV
Li	ist of T	Fables	X	vii
A	bbrevi	iations	2	xix
Sy	mbol	S	2	xxi
Pı	reface		XX	ciii
1	INT	RODU	TION	1
	1.1	Backg	ound	1
	1.2	Motiva	tion	3
	1.3	Proble	n Statement	6
	1.4	Thesis	Objective	7
	1.5	Outlin	of the thesis	10
2	THE	EORET	CAL FOUNDATION AND LITERATURE SURVEY	15
	2.1	Introdu	ction	16
	2.2	Applic	ations	20
		2.2.1	Human-Computer Interaction	20
		2.2.2	Video Surveillance	22
	2.3	Conve	tional and deep learning based human pose estimation techniques	22
		2.3.1	Analysis	24
		2.3.2	Input Modality	25
			2.3.2.1 RGB Image	25
			2.3.2.2 Depth Image	25
			2.3.2.3 Infra-red(IR) Image	26
		2.3.3	Conventional Approach	26
			2.3.3.1 Preprocessing	26
			Information calibration	26
			Localization	27

		Human Detection	27
		Background Substraction	27
		2.3.3.2 Feature Discription	28
		Low-level features:	30
		High-level features:	30
		Motion features:	30
		2.3.3.3 Body Modelling	32
		2.3.3.4 Methodology	34
		Generative and Descriminative Methods:	35
		I. Descriminative methods:	35
		(i) Mapping and Learning based methods:	36
		(ii) Deep laerning based HPE methods:	37
		Direct prediction:	37
		Indirect prediction:	38
		Single and Multi-stage approaches:	38
		II. Generative based methods:	40
		2.3.4 Post-processing:	41
	2.4	Deep learning based human activity recognition techniques:	42
		2.4.1 Convolutional neural network	43
		2.4.2 Autoencoder	43
		2.4.3 Recurrent neural network	43
	2.5	Benchmark and Evaluation metrics:	44
		2.5.1 For human pose estimation method:	44
		2.5.1.1 Evaluation metric:	45
		2.5.2 Evaluation metrics and datasets for HAR	47
		Cornell activity datasets (CAD-60)	47
		CAD-120	47
		UTD-MHAD	48
	2.6	Comparative analysis of recent state-of-the-art techniques for human pose	
		estimation	48
	2.7	Challenges	49
		2.7.1 2D Human Pose Estimation	49
		2.7.2 3D Human Pose Estimation	52
		2.7.3 Human Activity Recognition	53
	2.8	Conclusion	54
2	тш	TWO DEED NETWORKS FOR 2D HUMAN DOSE ESTIMATION	= =
3	1 11 3 1	Introduction	55 56
	3.1 2 7		50 61
	5.2	3.2.1 Multi-stage deep model for 2D human page estimation	61
		Convolution layer	67
		Feature manning layer	62 63
			55

			1	Pooling Layer	63
		3.2.2	2D hum	an pose estimation using detection followed by estimation	
			approac	h	64
	3.3	Method	1s		64
		3.3.1	Multi-st	age Deep learning network for 2D HPE	65
			3.3.1.1	Feature Extraction	68
			3.3.1.2	Feature Refinement	69
			3.3.1.3	Fusion	70
		3.3.2	Detectio	on followed by estimation Deep learning model for 2D HPE	73
			3.3.2.1	Detection module	73
			3.3.2.2	Feature Extraction and Classification	73
			3.3.2.3	Pre trained CNN based model for making detection ac-	
				curate	76
			3.3.2.4	Deep architecture for HPE	77
	3.4	Result	and Disc	ussion	78
		3.4.1	Multi-st	age Deep learning network for 2D HPE	78
			3.4.1.1	MPII Dataset	78
			3.4.1.2	LSP Dataset	78
			3.4.1.3	Training Details	79
			3.4.1.4	Evaluation Metric Used	79
			3.4.1.5	Preprocessing	81
			3.4.1.6	Experiments	82
			I	Experiment 1:	83
			I	Experiment 2:	83
		3.4.2	Detectio	on followed by estimation Deep learning model for 2D HPE	84
			3.4.2.1	Experiments	84
			I	NIRIA Person dataset:	84
			1	MPII and LSP Dataset:	85
	3.5	Conclu	sion		86
_					
4	DEE	P LEA	RNING A	APPROACHES FOR 3D HUMAN POSE ESTIMATION	07
	FRO			EW PERSPECTIVE	87
	4.1	Introdu	iction		88
	4.2	Literati	ure		91
	4.3	Method	1s		95
		4.3.1	Two-sta	ge deep network for 3D human pose estimation by ex-	05
		122	ploiting	spatial data via its 2D pose	95
		4.3.2	Three st	age deep network for 3D human pose estimation by ex-	07
			ploting s	Erama analific page estimation (ESDE) 2	9/
			4.3.2.1	Gratial Decompting Construction	9/
			4.3.2.2	$Sputial_{3D}$ Reconstruction	101
			4.3.2.3	reature Residual connection(FRC) strategy	102

		4.3.2.4 $Temporal_{3D}Reconstruction$	104
	4.4	Experiments and Results	105
		4.4.1 Two-stage deep network for 3D human pose estimation by ex-	
		ploiting spatial data via its 2D pose	105
		4.4.1.1 Dataset and Metrics:	105
		MPII Dataset:	105
		Human3.6M dataset:	105
		HumanEva-I dataset:	106
		Evaluation Metric:	106
		4.4.1.2 Implementation Details:	107
		4.4.1.3 Training Details	107
		4.4.1.4 Results and Ablation Analysis:	108
		4.4.1.5 MPII Dataset:	108
		4.4.1.6 Human3.6M Dataset:	109
		4.4.1.7 HumanEva-I	109
		4.4.2 Three stage deep network for 3D human pose estimation by ex-	
		ploting spatial and temporal data	111
		4.4.2.1 Dataset and evaluation protocols for 2D pose estimation	111
		MPII Dataset	112
		Evaluation Protocol(PCKh)	112
		4.4.2.2 Dataset and evaluation protocols for 3D pose estimation	113
		Human3.6M Dataset	113
		HumanEva-I	113
		Evaluation Protocols	114
		4.4.2.3 Implementation Details:	115
		Training Details.	115
		4.4.2.4 Result and Discussion	116
		4.4.2.5 Results on MPII	116
		4.4.2.6 Results on Human3.6M	117
		4.4.2.7 Results on HumanEva-I	118
		4.4.2.8 Failure results	118
	4.5	Conclusion	118
5	DFF	FP NETWORK FOR 3D HUMAN POSE ESTIMATION USING MULTI.	_
J	VIE	W DATA	123
	5.1	Introduction	123
	5.2	Related Work	127
	5.3	Proposed Method	130
	2.0	5.3.1 Enhanced stack-hourglass approach (ESHA)	130
	5.4	Multi-view spatial 3D reconstruction approach	132
		Convolutional(C)-ReLU(R) lavers	133
		Batch Normalization(BN) and Dropout(D)	135
		······································	

			Residual Module
			Image/2D joint heatmaps and its fusion
			Early Fusion
			Late Fusion
	5.5	Experi	ments
		5.5.1	Dataset and Evaluation protocol for ESHA
			MPII Dataset
			Evaluation Metric(PCKh)
		5.5.2	Datasets and Evaluation protocol for 3D HPR
			Evaluation Metric for 3D HPR
			Human3.6M Dataset
			Evaluation-protocol#1
		5.5.3	Implementation Details
		5.5.4	Results and Discussions
			5.5.4.1 Results and comparison with state-of-the-art 143
			MPII Dataset
			Human3.6M Dataset
			5.5.4.2 False Results
	5.6	Conclu	usion
	5.7	conclu	$sion \dots \dots$
6	5.7	conclu	sion \ldots \ldots \ldots \ldots \ldots 145
6	5.7 ACT	conclu FIVITY	RECOGNITION USING RGB AND SKELETON DATA INPUT151
6	5.7 ACT 6.1	conclu F IVITY INTR(Related	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DDUCTION 151 d Work 155
6	5.7 ACT 6.1 6.2 6.3	conclu FIVITY INTRO Related Metho	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DDUCTION 151 d Work 155 dology 157
6	ACT 6.1 6.2 6.3	Conclu FIVITY INTRO Related Metho	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DDUCTION 151 d Work 155 dology 157 RGB frames 157
6	ACT 6.1 6.2 6.3	Conclu FIVITY INTRO Related Metho 6.3.1	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DDUCTION 151 d Work 155 dology 157 RGB frames 157 6 3 1 1 Motion History Image (MHI) and Motion Energy Im-
6	AC 6.1 6.2 6.3	conclu FIVITY INTRO Related Metho 6.3.1	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DUCTION 151 d Work 155 dology 157 RGB frames 157 6.3.1.1 Motion History Image (MHI) and Motion Energy Im- age (MEI) 158
6	5.7 ACT 6.1 6.2 6.3	conclu FIVITY INTRO Related Metho 6.3.1	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DDUCTION 151 d Work 155 dology 157 RGB frames 157 6.3.1.1 Motion History Image (MHI) and Motion Energy Image (MEI) age (MEI) 158 6.3.1.2 First Stream
6	5.7 ACT 6.1 6.2 6.3	conclu FIVITY INTRO Related Metho 6.3.1 6.3.2	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DUCTION 151 d Work 155 dology 157 RGB frames 157 6.3.1.1 Motion History Image (MHI) and Motion Energy Image (MEI) age (MEI) 158 6.3.1.2 First Stream 160 Skeleton Joints 162
6	5.7 ACT 6.1 6.2 6.3	conclu FIVITY INTRO Related Metho 6.3.1 6.3.2	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DUCTION 151 d Work 155 dology 157 RGB frames 157 6.3.1.1 Motion History Image (MHI) and Motion Energy Image (MEI) age (MEI) 158 6.3.1.2 First Stream 162 6.3.2.1 From Skeleton sequences directed to the Images 163
6	5.7 ACT 6.1 6.2 6.3	conclu FIVITY INTRO Related Metho 6.3.1 6.3.2	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DUCTION 151 d Work 155 dology 157 RGB frames 157 6.3.1.1 Motion History Image (MHI) and Motion Energy Image (MEI) age (MEI) 158 6.3.1.2 First Stream 160 Skeleton Joints 162 6.3.2.1 From Skeleton sequences directed to the Images 163 6.3.2.2 Second Stream 168
6	5.7 ACT 6.1 6.2 6.3	conclu IVITY INTRO Related Metho 6.3.1 6.3.2 6.3.3	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DUCTION 151 d Work 155 dology 157 RGB frames 157 6.3.1.1 Motion History Image (MHI) and Motion Energy Image (MEI) age (MEI) 158 6.3.1.2 First Stream 162 6.3.2.1 From Skeleton sequences directed to the Images 163 6.3.2.2 Second Stream 168 Cyclic Learning Rate 172
6	5.7 ACT 6.1 6.2 6.3	conclu FIVITY INTRO Related Metho 6.3.1 6.3.2 6.3.3 6.3.4	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DUCTION 151 d Work 155 dology 157 RGB frames 157 6.3.1.1 Motion History Image (MHI) and Motion Energy Image (MEI) age (MEI) 158 6.3.1.2 First Stream 162 6.3.2.1 From Skeleton sequences directed to the Images 163 6.3.2.2 Second Stream 168 Cyclic Learning Rate 172 162 Decision Level Fusion(DLF) approach 173
6	5.7 ACT 6.1 6.2 6.3	conclu FIVITY INTRO Related Metho 6.3.1 6.3.2 6.3.3 6.3.4	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT 151 DDUCTION 151 d Work 155 dology 157 RGB frames 157 6.3.1.1 Motion History Image (MHI) and Motion Energy Image (MEI) age (MEI) 158 6.3.2.2 First Stream Cyclic Learning Rate 162 Cyclic Learning Rate 173 6.3.4.1 Weighted Product Model (WPM) 173
6	5.7 ACT 6.1 6.2 6.3	conclu FIVITY INTRO Related Metho 6.3.1 6.3.2 6.3.3 6.3.4 Experi	sion145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DDUCTION151d Work155dology157RGB frames1576.3.1.1Motion History Image (MHI) and Motion Energy Image (MEI)age (MEI)1586.3.2.1First Stream6.3.2.2Second Stream6.3.2.2Second StreamCyclic Learning Rate172Decision Level Fusion(DLF) approach173ments174
6	5.7 ACT 6.1 6.2 6.3 6.4	conclu IVITY INTRO Related Metho 6.3.1 6.3.2 6.3.3 6.3.4 Experi 6.4.1	sion 145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DDUCTION 151 d Work 155 dology 157 RGB frames 157 6.3.1.1 Motion History Image (MHI) and Motion Energy Image (MEI) age (MEI) 158 6.3.1.2 First Stream 160 Skeleton Joints 162 6.3.2.1 From Skeleton sequences directed to the Images 163 6.3.2.2 Second Stream 168 Cyclic Learning Rate 172 Decision Level Fusion(DLF) approach 173 6.3.4.1 Weighted Product Model (WPM) 173 ments 174 174
6	5.7 ACT 6.1 6.2 6.3 6.4	conclu FIVITY INTRO Related Metho 6.3.1 6.3.2 6.3.3 6.3.4 Experii 6.4.1 6.4.2	sion145 RECOGNITION USING RGB AND SKELETON DATA INPUT151 DUCTION151d Work155dology157RGB frames1576.3.1.1Motion History Image (MHI) and Motion Energy Image (MEI)age (MEI)1586.3.1.2First Stream1626.3.2.16.3.2.1From Skeleton sequences directed to the Images1631626.3.2.2Second Stream172Decision Level Fusion(DLF) approach1731736.3.4.1Weighted Product Model (WPM)174175CAD-60176
6	5.7 ACT 6.1 6.2 6.3 6.4	conclu IVITY INTRO Related Metho 6.3.1 6.3.2 6.3.3 6.3.4 Experi 6.4.1 6.4.2 6.4.3	sion145 RECOGNITION USING RGB AND SKELETON DATA INPUT 151 DUCTION151d Work155dology157RGB frames1576.3.1.1Motion History Image (MHI) and Motion Energy Image (MEI)age (MEI)1586.3.1.2First Stream160Skeleton Joints6.3.2.1From Skeleton sequences directed to the Images1636.3.2.2Second Stream168Cyclic Learning Rate172Decision Level Fusion(DLF) approach1736.3.4.1Weighted Product Model (WPM)174174UTD-MHAD Dataset175CAD-60176NTU-RGB+D120 Dataset177
6	5.7 ACT 6.1 6.2 6.3 6.4 6.4	conclu IVITY INTRO Related Metho 6.3.1 6.3.2 6.3.3 6.3.3 6.3.4 Experi 6.4.1 6.4.2 6.4.3 Conclu	sion145 RECOGNITION USING RGB AND SKELETON DATA INPUT 151 DUCTION151d Work155dology157RGB frames1576.3.1.1Motion History Image (MHI) and Motion Energy Image (MEI)age (MEI)1586.3.1.2First Stream160Skeleton Joints1626.3.2.1From Skeleton sequences directed to the Images1636.3.2.2Second Stream164Cyclic Learning Rate172Decision Level Fusion(DLF) approach1736.3.4.1Weighted Product Model (WPM)174UTD-MHAD Dataset175CAD-60NTU-RGB+D120 Dataset179usion and Future scope179

7 CONCLUSION AND FUTURE WORK

183

7.1 7.2	Conclusions	83 84
1.2		07
Referen	ces 1	87

List of Publications

219

List of Figures

2.1	Number of research publications in the area of Human Pose Estimation (HPE) and Human Activity Recognition (HAR).	17
2.2	Some applications for HPE and HAR (from top to bottom and left to right): Human-robot interaction, human-computer interaction, gaming,	
	video surveillance, sports, and proxemics.	17
2.3	A brief overview of the related tasks with Human Pose Estimation (HPE)	18
2.4	Goals of Preprocessing Techniques	29
2.5	The framework of the review which mainly contains four stages (left to right): Pre-processing, Feature Representation, human body models and	
	Methodology.	29
2.6	Image features	32
2.7	Direct method.	39
2.8	Indirect method	39
2.9	Convolutional neural network architecture	40
2.10	False human pose	42
3.1	The proposed architecture of first model	65
3.2	First stream of feature extraction.	66
3.3	Second stream of feature extraction.	67
3.4	Cascaded feature integration architecture.	70
3.5	The architecture of Detection module.	73
3.6	The multi-layer architecture with Fully Convolutional GoogleNet	77
3.7	The visualization of heatmap for all 16 joint locations on the MPII dataset. The images from left to right and top to bottom have been added the heatmaps for pelvis, thorax, upper neck, head top, right shoulder, right elbow, right wrist, left shoulder, left elbow, left wrist, right knee, right	
	ankle, left hip, left knee, left ankle, right hip	81
3.8	The visualization of the Qualitative evaluations on both MPII dataset	82
4.1	The framework of the proposed method	96
4.2	First stage of the network.	96
4.3	The overall pipeline of the proposed method	98
4.4	Feature Extraction for FSPE Module.	101
4.5	Feature Refinement with MSCFC Strategy.	101

4.6	Visualization of the image and its 3D reconstruction.	112
4.7	The MPJPE value on FSPE based (indicated by blue color) and 2D GT	
	based (indicated by orange color) 3D HPR method having activity order	
	mentioned in Table 4.2	119
4.8	The P-MPJPE value on FSPE based (indicated by blue color) and 2D GT	
	based (indicated by orange color) 3D HPR method having activity order	
	mentioned in Table 4.2	119
4.9	The MPJPE error value for different value of NSL =5, 10, and 20 with	
	respective LSTM layers.	119
4.10	Few of the erraneous poses of the SittingDown Class	121
5.1	The framework of the proposed method	129
5.2	The heatmaps for different joints.	133
5.3	Early and Late fusion network over Heatmap and Frame Flow	134
5.4	Multi-view images and its 3D pose.	146
5.5	Failure Cases	146
5.6	Illumination change output	146
5.7	The influence of change of image resolution.	147
5.8	Early and Late fusion network over Heatmap and Frame Flow	147
5.9	Comparision chart for reconstruction error	147
5.10	Early and Late fusion network over Heatmap and Frame Flow	148
<i>.</i> .		
6.1	Few RGB and skeleton sequences for the activity 'Right arm swipe to the	
	left' from UTD-MHAD dataset.	155
6.2	Proposed framework.	158
6.3	Architecture of the multi-input convnet. Here the features extracted from	
	the MEI are combined with the features extracted from the MHI. This	
	network has been inspired by the VGG-16 model but in order to prevent	1.00
<i>.</i> .	overfitting, the number of elements of the layers has been reduced	160
6.4	Stacked histogram of joint contribution for 2 actions in UTD-MHAD	
	dataset: 1. Forward Lunge 2. SQUAT. Each bar indicates the contribution	1.00
< -	ratio of each joint to the action in one instance.	162
6.5	Sample images of MHI, MEI, Skeleton Images(Front View, Side View,	
	and Top View) created RGB and skeletal data of UTD-MHAD dataset for	1.0
	activities 1. Draw X, 2. Boxing, 3. Tennis Swing	169
0.0	Architecture of the convnet model with supervision layers used for test-	171
	ing/training of a single view of the skeleton image.	1/1
6.7	The overall network with the fusion of 3-convnet streams of skeleton im-	171
	age. Intermediate supervision is present to avoid overfitting	1/1

List of Tables

2.1	Comparative analysis of state-of-the-art techniques on the basis of type of preprocessing, feature description, body model, method, dataset, and	
	metric they use.	49
2.2	List and Details of largely utilized datasets for HPE.	50
2.3	Comprative analysis of state-of-the-art for 2D human pose estimation	51
2.4	Comprative analysis for 3D human pose estimation	52
3.1	The result of the first introduced technique and its comparison with other state of the art on MPII dataset using modified PCK called PCKb with @0.5	90
2 2	PCKn with @0.5.	80
3.2	state of the art on LSP dataset using PCK with @0.2.	80
3.3	Some Evaluated Metrics on INIRIA Person Dataset	84
3.4	PCKh metric at 0.5 for MPII Dataset.	85
3.5	PCKh metric at 0.2 for LSP Dataset.	85
4.1	The outcome of proposed approach and its comparison with published	
	state-of-the-art techniques on the basis of PCK0.5 metric	110
4.2	The outcome of proposed approach and its comparison with published	
	state-of-the-art techniques on the basis of MPJPE metric	110
4.3	The outcome of proposed approach and its comparison with published	
	state-of-the-art techniques on the basis of P-MPJPE metric.	
4.4	The result of proposed method and comparison with other state-of-the-art	111
4 5	using MPJPE metric on HumanEva-I dataset.	111
4.5	The result of FSPE method and comparison with other state-of-the-art	110
1.0	using PCKn with $@0.5$	113
4.6	The Human 3.6M dataset has been utilized for 3D pose reconstruction er-	120
47	The Hannes 2 (M. detect has been stilled for 2D necessary structure)	120
4./	The Human 3.0 M dataset has been utilized for 3D pose reconstruction er-	101
10	The Hannes 2 (M. detect has been stilled for 2D as a substantian of	121
4.8	The Human 3.6 M dataset has been utilized for 3D pose reconstruction er-	100
10	The HumanEva I detect has been utilized for 2D nece reconstruction or	122
4.9	rors (in millimeters) based on Evaluation Criteria 1	100
		122

5.1	The ESHA algorithm result and its comparability with distinct state-of-	140
5.2	The Evaluation Criteria 1 over Human3.6M public data set has been em-	140
	ployed to calculate the 3D HPR errors (in the form of millimeters)	148
5.3	The Evaluation Criteria 2 over Human3.6M public data set has been em-	
	ployed to calculate the 3D HPR errors (in the form of millimeters)	149
5.4	The Evaluation Criteria 3 over Human3.6M public data set has been em-	
	ployed to calculate the 3D HPR errors (in the form of millimeters)	149
6.1	UTD-MHAD dataset evaluation for activity recognition techniques	178
6.2	Performance of individual streams and complete system on UTD-MHAD	178
6.3	Activity Recognition methods on CAD-60	179
6.4	NTU-RGB+D120 dataset evaluation for activity recognition techniques .	179
6.5	Confusion Matrix of 27 classes of UTD-MHAD	180
6.6	Confusion Matrix of 12 classes of CAD-60.	181

Abbreviations

CV	Computer Vision
HPE	Human Pose Estimation
HAR	Human Activity Recognition
CNN	Convolutional Neural Network
HOG	Histogram of Oriented Gradient
LBP	Local Binary Patterns
SVM	Support Vector Machine
ReLU	Rectified Linear Unit
LSTM	Long Short Term Memory
MPJPE	Mean Per Joint Error
P-MPJPE	P Mean Per Joint Error
RNN	Recurrent Neural Network
MHI	Motion History Image
MEI	Motion Eenergy Image
DOF	Degree Of Freedom
MoCap	Motion Capture
IMU	Inertial Measurement Units
FSPE	Frame Specific Pose Estimation
MSCFC	Multi Stage Cascaded Connection
FRC	Feature Residual Connection
AR	Augmented Reality
AI	Artificial Intelligence

UAV	Unmanned Per Joint Error
MLP	Multi Layer Perceptron
HBM	Human Body Model
KM	Kinematic Models
BME	Bayesian Mixture of experts
РСР	Percentage of Correctly estimated Parts
РСК	Percentage Correct Keypoints
PDJ	Percentage Detected Joints
DCDN	Densely Connected Deep Network
DCDN ESHA	Densely Connected Deep Network Enhanced Stack Hourglass Approach
DCDN ESHA FE	Densely Connected Deep Network Enhanced Stack Hourglass Approach Feature Extraction
DCDN ESHA FE FR	Densely Connected Deep Network Enhanced Stack Hourglass Approach Feature Extraction Feature Refinement
DCDN ESHA FE FR BN	Densely Connected Deep Network Enhanced Stack Hourglass Approach Feature Extraction Feature Refinement Batch Normalization
DCDN ESHA FE FR BN D	Densely Connected Deep Network Enhanced Stack Hourglass Approach Feature Extraction Feature Refinement Batch Normalization Dropout
DCDN ESHA FE FR BN D IJS	Densely Connected Deep Network Enhanced Stack Hourglass Approach Feature Extraction Feature Refinement Batch Normalization Dropout Informative Joints Score

Symbols

$\varepsilon(u,u')$	3D Error
$m_i(u)$	Predicted joint
$m_i(u')$	Ground-truth joint
$m_{root}(u')$	predicted root joint
$m_{root}(u)$	root joint of the ground-truth
y_e	ground truth 3D coordinate of end points of part e
z_e	ground truth 3D coordinate of start points of part e
z_i	predicted pose
$z_{i'}$	ground-truth pose
σ	non linear activation function
x_i	represents the input of the convolutional layer
k_{ij}	represents the parameter for the convolutional kernel
b_i	bias
sl	step length for the convolution
Y_x	2D body joint coordinate
P_x	Probability of that joint
NO_J	Number of joints
H_p	Feature map of body part
H_c	Context map
$F_1(I)$	First stream feature
$F_2(I)$	Second stream feature
K_s^P	Soft-argmax operation

K^P_s	Soft-argmax operation
$M_{\Gamma}(m,n,t)$	represents the MHI
$J_i(p)$	coordinate of the i^{th} joint in the p^{th} frame
$D_i(p)$	distance between the vectors $J_i(p)$ and $J_0(1)$

Due to technological advancement, massive multimedia data is usually available in image and video forms. Many demanding applications currently use pictures and videos like human-computer interaction, automatic surveillance systems, 3D scene understanding, sports performance analysis, etc. This thesis addresses Human Pose Estimation (HPE) and Human Activity Recognition (HAR) problem. These tasks are highly utilized in the above-mentioned applications. The HPE problem is divided into two categories based on the application requirement. The first one is 2D HPE, and the second is 3D HPE. Many state-of-the-art techniques have already been introduced for HPE and HAR problem solutions, but there are many challenges yet to be solved.

This thesis first presents a detailed survey for 2D HPE, 3D HPE, and HAR problems, followed by research gaps and challenges. Second, this thesis addresses the problem of 2D HPE from the single-view perspective. The task has further been classified into a direct 2D HPE and detection-based 2D HPE.

For detection-based 2D HPE, a machine and deep learning-based model has been proposed that detects the region of interest having a human as a subject and then estimates the respective body joints' locations. For the detection part, the HOG and LBP features have been extracted and then fused. The resultant fused features have been utilized with lib-SVM for classification purposes. A CNN-based deep model has been used to make the detected proposals more accurate. Finally, a deep network has been proposed for estimation of the joint locations over the detected part. The model has been examined on publically available datasets like the INIRIA person dataset, LSP, and MPII pose estimation dataset. The proposed method gives a remarkable performance on these datasets as compared to other state-of-the-art methods.

The direct 2D HPE method directly estimates the 2D body joint coordinates from an input image. The model consists of three consecutive parts: first, a two-branch input DCNN network has been used for feature extraction. Second, a cascaded feature integration technique has been used for feature refinement that is based on the stacked hourglass method. Finally, the fusion has been performed over the detected part heatmap and the context heatmap to make the system more accurate towards occlusion. To check the effectiveness of the model, the evaluation has been performed on two standard datasets MPII and LSP. The proposed method improves pose prediction results on the PCK metric and has been compared to other state-of-the-art techniques.

Later on in this thesis, we have extended our research towards estimating 3D human pose, which includes single view and multi-view data inputs.

For 3D HPE, three models have been proposed, where the first two work on single view data input and the third works on multi-view data input. The first model uses spatial data information for 3D HPR. For this, a two-stage deep learning model has been introduced. In the first stage, the model estimates the 2D joint key points, and in the next step, a densely connected deep architecture has been used for 3D HPE.

The second model over a single view data input uses spatial and temporal information to estimate 3D human pose. In this method, a three-stage deep learning model has been proposed. First, the model evaluates the 2D Human pose. Then, in the second stage, basic deep learning concepts like convolution, batch normalization, ReLU, and dropout have been utilized for spatial 3D pose estimation. In the last step, LSTM deep architecture has been used for temporal refinement. The third model is from multi-view data input. This model proposes a two-stage multi-view 3D HPR technique using deep learning that utilizes both the direct and 2D pose information in a multi-view scenario to estimate the 3D pose. All the proposed 3D HPE techniques give outstanding results on MPJPE, P-MPJPE, and N-MPJPE metrics over the Human3.6M dataset compared to other state-of-the-art approaches.

Finally, in this thesis, a conventional and machine learning-based technique has been proposed that uses RGB data with its 3D skeleton information for HAR. The model takes help of a convolutional neural network (Convnet) and long short-term memory (LSTM) as a recurrent neural network (RNN). The proposed method has two parts: first, motion representation images like motion history images (MHI) and motion energy images (MEI) have been created from the RGB videos. The convnet has been trained, using these images with feature-level fusion. Second, the skeleton data have been utilized with a proposed algorithm that develops skeleton intensity images for three views (top, front, and side). Each view is first analyzed by a convnet, which generates the set of feature maps fused for further analysis. On top of convnet sub-networks, LSTM has been used to exploit the temporal dependency. The softmax scores from these two independent parts are later

combined at the decision level—the suggested approach privileges the perfect utilization of RGB and skeleton data available from an RGB-D sensor. The proposed approach has been tested on three famous and challenging multimodal datasets: UTD-MHAD, CAD-60, and NTU-RGB + D120. Results have shown the method gives a satisfactory outcome as compared to the other state-of-the-art.