
CHAPTER 2

AN INVESTIGATION ON TEMPERATURE-RATE
DEPENDENT THERMOELASTICITY USING A
COMPLETE FINITE ELEMENT APPROACH

2.1 Introduction1

The present chapter aims at studying a thermoelastic problem under the temperature-

rate dependent theory by considering a hollow disk with the thermal shock applied

on its inner boundary. The motivation of this chapter is further oriented to describe

how a complete finite element scheme can be applied to solve the problems of coupled

dynamical thermoelasticity.

Deriving a closed form solution for the system of coupled thermoelastic equations

is possible only for a few initial boundary value problems, and closed form solution

cannot be obtained for many practical problems. Due to this reason and to reduce the

complexity of the problem, some simplified forms of basic equations are assumed by

observations based on practical experiments. In the structural designs, the use of these

approximated forms of basic equations may result good for simple structures, but for

heavy-duty equipment, it does not give satisfactory responses. Hence, the calculation

must be performed on the basis of all governing equations of thermoelasticity theory

in such cases. Usually, numerical methods like finite difference, finite element and

1Part of this chapter is published in Computational Methos in Science and Technology, Vol. 25(2),
pp. 61-70, 2019.
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boundary element methods are used in these cases. Analysis of thermoelastic responses

for various problems by using the finite difference schemes has been reported by the

researchers including Barone and Patterson (1998), Abd-Alla and Mahmoud (2010),

Lee et al. (2001). The boundary element method has been applied by Chen and

Dargush (1995), Hetnarski and Eslami (2009), Hosseini and Eslami (2000), Sladek

and Sladek (1984) to solve different coupled and uncoupled thermoelastic problems.

However, it has been realized that among all the numerical methods, the finite element

method (FEM) can be applied efficiently to various coupled thermoelastic problems (see

Prakash et al. (2000), Mishra et al. (2008) and Xu and Li (2003)). The finite element

formulation for spatial derivatives with a time integration scheme is the most widely

used numerical method for structural problems involving thermomechanical loading. In

this approach, the Laplace transformation technique is generally applied for the time

domain, and then the finite element equation is derived for the space domain to get

the solution in Laplace transform domain. Further, the suitable method for numerical

inversion of the transformed solution gives the final solution of the coupled equations. A

problem of the hollow disc for various thermoelasticity models using FEM with Laplace

transformation has been studied by Bagri and Eslami (2008), Hetnarski and Eslami

(2009) and also by Kothari and Mukhopadhyay (2013). Hasanpour and Mirzaei (2018),

Hosseini (2009), Sladek et al. (2001) have solved different thermoelastic problems using

meshless techniques with the Newmark method as well as with the implicit central

difference scheme. Rincon et al. (2005) have discussed an alternative approach for the

time domain to solve coupled thermoelastic equations using the finite element method.

They have suggested the discretization in space for deriving finite element equations

and then used an implicit Newmark scheme to get the solution in the time domain.

Abbas and Alzahrani (2018) have used FEM with implicit temporal integration method

to solve a mode-I crack problem in a two dimensional isotropic medium based on GN

thermoelasticity theory. Stasa (1985) has given a detailed discussion for FEM to various
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structural problems and suggested a complete finite element approach for space as well

as time domain. Balla (1989) derived the explicit formulation of field variables for a

two dimensional heat conduction equation based on the CV model using this approach.

This Chapter attempts to apply the complete Galerkin’s approach of finite element

for the solution of problems on the coupled dynamical thermoelasticity theory. It aims

to investigate the predictions of the temperature-rate dependent thermoelasticity theory

(GL theory) as compared to the LS thermoelasticity theory (Lord and Shulman (1967)).

Here, the unified form of thermoelasticity theories proposed by Lord and Shulman

(1967) and Green and Lindsay (1972) are employed by considering a problem of hollow

disk subjected to a thermal shock applied on its inner boundary. In order to solve this

radially symmetric problem, first, the space domain is discretized into small elements

of equal intervals, and then the weak formulation is used to derive the finite element

equations for the space domain. Next, the discretization of the time domain is used to

apply Galerkin’s approach of finite element and derived explicit finite element equations

for the time and space domain. The implementation of the scheme is performed for a

particular case, and computational work is carried out to obtain the numerical solution

of the problem. For the validation of results, the present solution is compared with the

solutions obtained by a trans-FEM method in which the Laplace transform technique

is used for the time domain. It is observed that there is a perfect match in solutions

by the complete finite element approach with the corresponding solution obtained by

a trans-finite element method which implies successful implementation of the present

scheme. The variations of all field variables are studied for the thermoelasticity theory

involving two thermal relaxation parameters (temperature-rate dependent theory) and

thermoelasticity theory with one relaxation parameter (LS theory). A comparative

analysis is made for the predictions by two different theories.
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2.2 Basic Governing Equations

Following Lord and Shulman (1967) and Green and Lindsay (1972), the unified form

of the basic governing equations corresponding to LS and GL thermoelasticity theories

for a homogeneous and isotropic medium can be given as follows:

The stress-displacement equation of motion in absence of any body force:

σij,j = ρüi. (2.2.1)

The energy balance equation without heat source:

qi,i = −ρT0Ṡ. (2.2.2)

The constitutive relations:

σij = 2µεij + λεkkδij − β(θ +mt1θ̇)δij, (2.2.3)

T0ρS = ρcE(θ +mt2θ̇) + T0βekk, (2.2.4)

qi + ntq
∂qi
∂t

= −Kθ,i. (2.2.5)

Strain-displacement relation:

eij =
1

2
(ui,j + uj,i). (2.2.6)

In this system of equations, a rectangular coordinate system xk in three dimensional

Euclidean space with usual indicial notations and m, n as parameters are used for

unifying the governing equations corresponding to LS and GL theories such that the

equations of respective theories can be obtained by setting the values of the parameters

m, n as follows:

• For LS theory: m = 0, n = 1

• For GL theory: m = 1, n = 0.
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Therefore, the unified heat conduction equation can be obtained from Eqs. (2.2.2),

(2.2.4) and (2.2.5) as(
1 + ntq

∂

∂t

)[
ρcE(1 +mt2

∂

∂t
)θ̇ + βT0ε̇kk

]
= Kθ,ii. (2.2.7)

2.3 Problem Formulation

In the present work, we consider a problem of a hollow disk with inner radius, r1 and

outer radius r2 under the linear thermoelasticity theory based on LS and GL model as

described above. The material of the disc is assumed to be homogeneous and isotropic

for this problem. Let us assume radially symmetric motion of the body so that the phys-

ical field variables are functions of the radial coordinate, r and time, t only. Hence, the

displacement vector has only the radial component, u (r, t). Therefore, the Eq. (2.2.7)

for the present problem can be written in the polar form as

K

(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
−
(

1 + ntq
∂

∂t

)[
ρcE(1 +mt2

∂

∂t
)
∂θ

∂t
+ βT0

∂

∂t

(
∂u

∂r
+
u

r

)]
= 0.

(2.3.1)

Further, from Eqs. (2.2.1) and (2.2.3), the polar form of the equation of motion in

terms of displacement and temperature is obtained as

(λ+ 2µ)

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
− β

(
∂θ

∂r
+mt1

∂θ̇

∂r

)
− ρ∂

2u

∂t2
= 0. (2.3.2)

The radial and circumference stress components can also be obtained from Eq. (2.2.3)

as

σrr = 2µ
∂u

∂r
+ λ

(
∂u

∂r
+
u

r

)
− β

(
θ +mt1θ̇

)
, (2.3.3)

σφφ = 2µ
u

r
+ λ

(
∂u

∂r
+
u

r

)
− β

(
θ +mt1θ̇

)
, (2.3.4)

where σrr and σφφ are radial and circumferential stress components, respectively.

For this problem, the frictionless inner surface is considered, and a thermal shock is
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applied to the inner boundary of the disk. The rigid outer boundary is assumed to be

insulated. Also, the initial conditions are considered to be homogeneous. Therefore, we

have

u(r, 0) = 0, θ(r, 0) = 0, at r1 ≤ r ≤ r2

u̇(r, 0) = 0, θ̇(r, 0) = 0, at r1 ≤ r ≤ r2

 , (2.3.5)

θ(r1, t) = 1− e−1000t and σrr(r1, t) = 0, at t > 0

∂θ(r2,t)
∂r

= 0, and u(r2, 0) = 0, at t > 0

 . (2.3.6)

Now, to make the equations in simplified non-dimensional forms, the following dimen-

sionless variables are assumed:

r′ = c1n0r, θ
′ = θ

T0
, t′ = c2

1n0t, (t′q, t
′
1, t
′
2) = c2

1n0(tq, t1, t2),

(σ′rr, σ
′
φφ) = ( σrr

βT0
,
σφφ
βT0

), u′ = c1n0(λ+2µ)
βT0

u, c2
1 = (λ+2µ)

ρ
, n0 = ρcE

K
.

Using the above dimensionless variables and ignoring the prime notations for simplicity,

we find that the basic Eqs. (2.3.1 - 2.3.4) will take the following forms:

(λ+ 2µ)

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
− (λ+ 2µ)

(
∂θ

∂r
+mt1

∂θ̇

∂r

)
− ρc2

1

∂2u

∂t2
= 0, (2.3.7)

∂2θ

∂r2
+

1

r

∂θ

∂r
−
(

1 + (ntq +mt2)
∂

∂t

)
∂

∂t

[
θ + ξ

(
∂u

∂r
+
u

r

)]
= 0, (2.3.8)

σrr =
2µ

λ+ 2µ

∂u

∂r
+

λ

λ+ 2µ

(
∂u

∂r
+
u

r

)
−
(
θ +mt1θ̇

)
, (2.3.9)

σφφ =
2µ

λ+ 2µ

u

r
+

λ

λ+ 2µ

(
∂u

∂r
+
u

r

)
−
(
θ +mt1θ̇

)
. (2.3.10)

where ξ = β2T0
ρcE(λ+2µ)

.

2.4 Finite Element Formulation

Now, to solve the coupled Eqs. (2.3.7) and (2.3.8) with the initial conditions (2.3.5)

and boundary conditions (2.3.6), the Galerkin’s approach of complete finite element
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method is used. In this process, discretization of space domain into small sub-domains

takes place (see Fig. 2.4.1), and the temperature and displacement are approximated

by the following functions for each sub-domain:

u =
h∑
i=1

NiU
(e)
i (t), and θ =

h∑
i=1

NiΘ
(e)
i (t), (2.4.1)

where Ni, i = 1, 2, ..h are the shape functions and U (e)
i (t), Θ

(e)
i (t), i = 1, 2, ..h are the

the approximated nodal displacement and temperature, respectively.

Figure 2.4.1: Finite element profile

Therefore, by applying Galerkin’s approach and assuming shape function as weight

function with the approximation (2.4.1), the Eqs. (2.3.7) and (2.3.8) can be written in

the formsˆ
V

Ni

[
(λ+ 2µ)

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
− (λ+ 2µ)

(
∂θ

∂r
+mt1

∂θ̇

∂r

)
− ρc2

1

∂2u

∂t2

]
dV = 0,

(2.4.2)ˆ
V

Ni

[(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
−
(

1 + (ntq +mt2)
∂

∂t

)
∂

∂t

[
θ + ξ

(
∂u

∂r
+
u

r

)]]
dV = 0.

(2.4.3)

For a disk, the infinitesimal volume element will be rdrdφ, but in the present case

of radial symmetry, all the variables are independent from the angle. Therefore, by
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considering the infinitesimal volume element as dV = rdr and r = rk + η, k = 1, 2, ...h

in the Eqs. (2.4.2) and (2.4.3), we have

ˆ h

0

Ni

[
(λ+ 2µ)

[
∂2u

∂η2
+

1

(η + ri)

∂u

∂η
− u

(η + ri)2

]
(2.4.4)

− (λ+ 2µ)

(
∂θ

∂η
+mt1

∂θ̇

∂η

)
− ρc2

1

∂2u

∂t2

]
(η + ri)dη = 0,

and

hˆ

0

Ni

[(
∂2θ

∂η2
+

1

(η + rk)

∂θ

∂η

)
−
(

1 + (ntq +mt2)
∂

∂t

)[
∂θ

∂t
= 0 (2.4.5)

−ξ ∂
∂t

(
∂u

∂η
+

u

(η + rk)

)]]
(η + rk)dη.

Now, we apply integration by parts in the first term of the Eq. (2.4.4) to derive the

weak formulation, which implies that

hˆ

0

[
(λ+ 2µ)

(
(η + rk)

∂Ni

∂η

∂u

∂η
+Ni

u

(η + rk)

)
+ ρc2

1Ni
∂2u

∂t2

]
dη

+

hˆ

0

Ni(λ+ 2µ)

(
∂θ

∂η
+mt1

∂θ̇

∂η

)
(η + rk)dη = (λ+ 2µ)(η + rk)Ni|h0 .

(2.4.6)

Similarly, the Eq. (2.4.5) yields

hˆ

0

∂Ni

∂η

∂θ

∂η
(η + rk)dη +

hˆ

0

Ni(η + rk)

(
1 + (ntq +mt2)

∂

∂t

)
∂θ

∂t
dη

+

hˆ

0

ξ

(
1 + ntq

∂

∂t

)
∂

∂t

(
∂u

∂r
+
u

r

)
Nidη = Ni

∂θ

∂η
(η + rk)

∣∣∣∣h
0

.

(2.4.7)
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Now, using the Eq. (2.4.1) in Eqs. (2.4.6) and (2.4.7) for i = 1, 2, the finite element

equation formulation is obtained as

U
(e)
1 (λ+ 2µ)

hˆ

0

[
(η + rk)

∂Ni

∂η

∂N1

∂η
+

NiN1

(η + rk)

]
dη + Θ

(e)
1 (λ+ 2µ)

hˆ

0

Ni
∂N1

∂η
(η + rk)dη

+U
(e)
2 (λ+ 2µ)

hˆ

0

[
(η + rk)

∂Ni

∂η

∂N2

∂η
+

NiN2

(η + rk)

]
dη + Θ

(e)
2 (λ+ 2µ)

hˆ

0

Ni
∂N2

∂η
(η + rk)dη

+Θ̇
(e)
1

mt1(λ+ 2µ)

hˆ

0

Ni
∂N1

∂η
(η + rk)dη

+ Θ̇
(e)
2

mt1(λ+ 2µ)

hˆ

0

Ni
∂N2

∂η
(η + rk)dη


+Ü

(e)
1

 hˆ

0

ρc2
1NiN1dη

+ Ü
(e)
2

 hˆ

0

ρc2
1NiN2dη

 = (λ+ 2µ)Ni
∂u

∂η
(η + rk)

∣∣∣∣rk+1

rk

,

(2.4.8)

Θ
(e)
1

 hˆ

0

∂Ni

∂η

∂N1

∂η
(η + rk)dη

+ Θ
(e)
2

 hˆ

0

∂Ni

∂η

∂N2

∂η
(η + rk)dη


+Θ̇

(e)
1

[ˆ h

0

NiN1(η + rk)dη

]
+ Θ̇

(e)
2

[ˆ h

0

NiN2(η + rk)dη

]
+Θ̈

(e)
1

[
(ntq +mt2)

ˆ h

0

NiN1(η + rk)dη

]
+Θ̈

(e)
2

[
(ntq +mt2)

ˆ h

0

NiN2(η + rk)dη

]
+U̇

(e)
1

[
ξ

ˆ h

0

Ni(η + rk)

(
∂N1

∂η
+

N1

(η + rk)

)
dη

]
+

U̇
(e)
2

[
ξ

ˆ h

0

Ni(η + rk)

(
∂N2

∂η
+

N2

(η + rk)

)
dη

]
(2.4.9)

+Ü
(e)
1

[
ntqξ

ˆ h

0

Ni(η + rk)

(
∂N1

∂η
+

N1

(η + rk)

)
dη

]
+Ü

(e)
2

[
ntqξ

ˆ h

0

Ni(η + rk)

(
∂N2

∂η
+

N2

(η + rk)

)
dη

]
=
∂θ

∂η
Ni(η + rk)

∣∣∣∣rk+1

rk

.

Therefore, in view of Eqs. (2.4.8) and (2.4.9), the matrix form of finite element equation
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for a single element can be obtained as

 [R11] [R12]

[R21] [R22]




Ü1

Θ̈1

Ü2

Θ̈2



(e)

+

 [Q11] [Q12]

[Q21] [Q22]




U̇1

Θ̇1

U̇2

Θ̇2



(e)

+ (2.4.10)

 [P11] [P12]

[P21] [P22]




U1

Θ2

U1

Θ2



(e)

=



J1

g1

J2

g2



(e)

,

where

[P11] =

 A11
11

A12
11

A21
11 A22

11

 , [P12] =

 A11
12

A12
12

A21
12 A22

12

 , [P21] =

 A11
21

A12
21

A21
21 A22

21

 ,
[P22] =

 A11
22 A12

22

A21
22 A22

22

 , [Q11] =

 Ȧ11
11

Ȧ12
11

Ȧ21
11 Ȧ22

11

 , [P12] =

 Ȧ11
12

Ȧ12
12

Ȧ21
12 Ȧ22

12

 ,
[Q21] =

 Ȧ11
21

Ȧ12
21

Ȧ21
21 Ȧ22

21

 , [Q22] =

 Ȧ11
22 Ȧ12

22

Ȧ21
22 Ȧ22

22

 , [R11] =

 Ä11
11

Ä12
11

Ä21
11 Ä22

11

 ,
[R12] =

 Ä11
12

Ä12
12

Ä21
12 Ä22

12

 , [R21] =

 Ä11
21

Ä12
21

Ä21
21 Ä22

21

 , [R22] =

 Ä11
22 Ä12

22

A21
22 Ä22

22





, (2.4.11)

with
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A11
ij =

[
(λ+ 2µ)

´ h
0

[
(η + rk)

∂Ni
∂η

∂Nj
∂η

+
NiNj

(η+rk)

]
dη
]
, Ȧ11

ij = 0,

Ä11
ij =

[´ h
0
ρc2

1NiNjdη
]
, A12

ij =
[
(λ+ 2µ)

´ h
0
Ni

∂Nj
∂η

(η + rk)dη
]
,

Ȧ12
ij = mt1

[
(λ+ 2µ)

´ h
0
Ni

∂Nj
∂η

(η + rk)dη
]
, Ä12

ij = 0, A21
ij = 0,

Ȧ21
ij =

[
ξ
´ h

0
Ni(η + rk)

(
∂Nj
∂η

+
Nj

(η+rk)

)
dη
]
,

Ä21
ij =

[´ h
0
ntqξ

[
∂Nj
∂η
Ni +

NiNj
(η+rk)

]
(η + rk)dη

]
A22
ij =

[´ h
0
∂Ni
∂η

∂Nj
∂η

(η + rk)dη
]
, Ȧ22

ij =
[´ h

0
(η + rk)NiNjdη

]
,

Ä12
ij =

[
(ntq +mt2)

´ h
0
NiNj(η + rk)dη

]



. (2.4.12)

Also, the load vector can be written as

J1 = −(λ+ 2µ)∂u
∂η

(η + rk)
∣∣∣
rk
, J2 = (λ+ 2µ)∂u

∂η
(η + rk)

∣∣∣
rk+1

g1 = − ∂θ
∂η

(η + rk)
∣∣∣
rk
, g2 = ∂θ

∂η
Ni(η + rk)

∣∣∣
rk+1

 . (2.4.13)

Hence, from Eqs. (2.4.10-2.4.13) and the boundary conditions (2.3.5-2.3.6), the global

system of differential equations for the whole disk are written in the matrix form as

RΩ̈ +QΩ̇ + PΩ = f, (2.4.14)

where, f =



λU1 − (λ+ 2µ)θ1

0

0

.

.

0


(h−2)×1

, Ω =



U1

U2

.

.

.

Θh−1

Θh


(h−2)×1

and the matricesR, Q, P are global matrices corresponding to the coefficients

 [R11] [R12]

[R21] [R22]

 ,
 [Q11] [Q12]

[Q21] [Q22]

 and

 [P11] [P12]

[P21] [P22]

 of element Eq. (2.4.10), respectively.
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2.5 Discretization in Time

Now, to obtain the complete solution of Eq. (2.4.14), further the finite element approach

is used for the time domain. For this, the time domain is divided into the nodes of

length 2∆t with nodal unknowns Ωk−1, Ωk, Ωk+1 and the shape functions M1, M2, and

M3. Therefore, the function Ω for interval [tk−1, tk+1] can be approximated as (Stasa

(1985))

Ω = M1Ωi−1 +M2Ωi +M3Ωi+1, (2.5.1)

where the shape functions are assumed in the forms

M1(t) = −1

2
p(1− p), M2 = (1 + p)(1− p), M3 =

1

2
p(1 + p), (2.5.2)

and

p =
t− ti

tk+1 − tk
=
t− tk
∆t

for tt−1 ≤ t ≤ tt+1, (2.5.3)

so, dp = dt/∆t.

Therefore, the Eqs. (2.5.1- 2.5.3) give

Ω̇(t) =
1

∆t
[(−1/2 + p)Ωk−1 − 2pΩk + (1/2 + p)Ωk+1] , (2.5.4)

and

Ω̈(t) =
1

(∆t)2 [Ωk−1 − 2Ωk + Ωk+1] . (2.5.5)

Similarly, the vector f may be written as

f = M1(t)fk−1 +M2(t)fk +M3(t)fk+1. (2.5.6)

Now, by applying the Galerkin’s approach on Eq. (2.4.14) and using Eqs. (2.5.1,
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2.5.4-2.5.6), it is obtained that

1ˆ

−1

w

{
R

1

(∆t)2 [Ωk−1 − 2Ωk + Ωk+1] +

Q
1

∆t
[(−1/2 + p)Ωk−1 − 2pΩk + (1/2 + p)Ωk+1] +

P

[
−1

2
p(1− p)Ωk−1 + (1 + p)(1− p)Ωk +

1

2
p(1 + p)Ωk+1

]}
dp

=

ˆ 1

−1

w

(
−1

2
p(1− p)fk−1 + (1 + p)(1− p)fk +

1

2
p(1 + p)fk+1

)
dp, (2.5.7)

where w is the weight function and fk−1, fk, fk+1 are the load vectors at nodal points of

time element. All shape functions (M1, M2, M3) can be considered as weight functions.

It has been verified that M3 shows the most favorable stability and accuracy charac-

teristics (see the book by Stasa (1985)). So, here we have considered M3 as weight

function and hence the Eq. (2.5.7) yields

F1Ωk+1 = F2Ωk + F3Ωk−1 +G, (2.5.8)

where

F1 = R

1ˆ

−1

M3dp+D∆t

1ˆ

−1

M3(1/2 + p)dp+ P (∆t)2

1ˆ

−1

1

2
M3p(1 + p)dp, (2.5.9)

F2 = 2R

1ˆ

−1

M3dp+ 2D∆t

1ˆ

−1

M3pdp+ P (∆t)2

1ˆ

−1

1

2
M3(1− p)(1 + p)dp, (2.5.10)

F3 = −R
1ˆ

−1

M3dp−D∆t
1ˆ

−1

M3(−1/2 + p)dp+ P (∆t)2

1ˆ

−1

1

2
M3p(1 + p)dp, (2.5.11)
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G = −

 1ˆ

−1

1

2
M3p(1− p)dp

 (∆t)2fk−1 +

 1ˆ

−1

M3(1 + p)(1− p)dp

 (∆t)2fk (2.5.12)

−

 1ˆ

−1

1

2
M3p(1 + p)dp

 (∆t)2fk+1.

Further, by some detailed manipulations, the Eqs. (2.5.9-2.5.12) are reduced to

F1 = R +
3

2
Q∆t+

4

5
P (∆t)2, (2.5.13)

F2 = 2R + 2Q∆t− 2

5
P (∆t)2, (2.5.14)

F3 = −R− 1

2
Q∆t+

1

5
P (∆t)2, (2.5.15)

G =

[
−1

5
fk−1 +

2

5
fk +

4

5
fk+1

]
(∆t)2. (2.5.16)

Hence, the Eq. (2.5.8) together with Eqs. (2.5.13-2.5.16), yields an explicit form of

system of equations, and by using this explicit form, the value of Ωk+1 can be determined

if the nodal unknowns Ωk and Ωk−1 are known. For the first iteration at k = 1, we need

to calculate Ω1. For that, the Crank-Nicholson method is applied, which can be given

as [
2

∆t
R +Q+

∆t

2
P

]
Ω1 =

[
2

∆t
R +Q− ∆t

2
P

]
Ω0 + 2RΩ̇0 +

∆t

2
[f0 + f1] . (2.5.17)

Now, the values of Ω0 and Ω̇0 are known from the initial conditions and f1, f2 are

known as load vectors. Now, all the unknowns can be determined by using the iterative

scheme given by Eqs. (2.5.8) and (2.5.17). This completes the theoretical development

of the solution method for the present problem.

It must be pointed out that the trans-FEM method can also be used to formulate

the solution for the time domain (see the refs. Bagri and Eslami (2008); Kothari and

Mukhopadhyaya (2013)). In the trans-FEM method for coupled dynamical problems,

the Laplace transform is applied for the time domain to get the solution of the problem

in the Laplace transform domain and further a numerical inversion scheme of Laplace
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transformation (like the methods of Honig and Hirdes (1984), Bellman et al. (1966),

Stehfest (1970) etc.) can be used to derive the solution in the real time domain. Here

the solutions obtained by the Trans-FEM method are compared with the present results

and a perfect match in the behaviour of all field variables observed for both trans-FEM

and present FE approach.

2.6 Numerical Results

Now, for implementation of the method, computer programming code using MATLAB

is developed to solve the problem, as mentioned in the previous section. The solution

to the problem is studied by computing the temperature, displacement, and stress

distributions inside the hollow disk of a metallic medium under consideration of initial

and boundary conditions. The reference temperature is taken to be T0 = 293K. The

materialistic parameters are considered for copper metal in SI unit as (Sherief and Salah

(2005))

λ = 7.76× 1010 kgm−1.s−2, µ = 3.86× 1010 kgm−1s−2 ρ = 8954 kgm−3

cE = 383.1m2 K−1 s−2, αt = 17.8× 10−6 K−1, K = 8886.73 kgmK−1 s−3

Also, the time domain is discretized in the step size of equal length ∆t = 0.05 and the

dimensionless values of inner and outer radii of the disk are assumed to be 1 and 10,

respectively.

The dimensionless value of heat flux delay parameters is considered as tq = 0.03 and the

relaxation parameters are taken to t2 = 0.03, t1 = 0.05. In the formulation of the finite

element equation, the general case is considered, but the linear Lagrangian polynomials

are assumed as shape functions for computation. For the spatial element, the hollow

disk is divided into the 100 nodes of equal length along the radial direction and time

domain is taken from 0 to 5. Here, the computation is performed for 100 time steps.
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Figure 2.6.1: Variation of displacement (u) with r and t under GL theory

Figure 2.6.2: Variation of temperature (θ) with r and t under GL theory
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Figure 2.6.3: Variation of radial stress (σrr) with r and t under GL theory

Figure 2.6.4: Variation of circumferential stress (σφφ) with r and t under GL theory
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The Figs. 2.6.1-2.6.4 represent the variations of the field variables under temperature-

rate dependent theory (i.e., displacement, temperature, radial and circumference stresses)

with respect to time and space using 3D plots.

Figure 2.6.1 clearly shows that displacement is zero at t = 0 and it grows up with time.

The displacement starts growing from negative values at r = 1 to attain a maximum

value after some distance from the inner boundary and then decreases to zero. The

peak value of the displacement as well as the region of influence is increasing with time.

However, it shows a finite domain of influence.

Figure 2.6.2 represents the temperature variation and indicates that the temperature

starts decreasing from 1 to zero with space. The effective domain of influence increases

with time. For example, at t = 1.2, the temperature reaches to zero value near r = 2.9,

while for t = 2.0, it becomes zero at r = 3.6. In the Fig. 2.6.3, the radial stress (σrr)

is plotted for various times and radial grids. At the inner boundary, it is zero and

is oscillatory in nature nearer to the inner boundary. The radial stress is compressive

near the region of inner boundary and becomes tensile while reaching towards the outer

boundary; finally, this field becomes zero. The region of influence increases with time.

The circumferential stress (σφφ) is plotted in Fig. 2.6.4, displaying that σφφ starts

growing up from its minimum absolute value (at r = 1) to a local maximum and then

again after a local minimum it increases to zero w.r.t. radial distance. Also, with the

increment of time, σφφ is taking the larger distance to reach its minimum and maximum

values. However, this stress is fully compressive in nature.

Figures 2.6.5-2.6.8 show the comparison of solutions of the present problem obtained

under two different thermoelasticity theories. It is noticed that all the field variables

have a similar trend of behaviour under both the theories. However, the thermal shock

at boundary has the prominent influence under the temperature-rate dependent theory

and the effected region for each field under the temperature-rate dependent theory is

larger than LS thermoelasticity theory.

60



CHAPTER 2. An investigation of the temperature-rate dependent thermoelasticity...

1 2 3 4 5 6 7 8 9 10
r

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

u

GL theory at t=1.0
LS theory at t=1.0
GL theory at t=1.5
LS theory at t=1.5

Figure 2.6.5: Distribution of displacement (u) under GL and LS theories at t = 1.0, 1.5
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Figure 2.6.6: Distribution of temperature (θ) under GL and LS theories at t = 1.0, 1.5
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Figure 2.6.7: Distribution of radial stress (σrr) under GL and LS theories at t = 1.0, 1.5
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Figure 2.6.8: Distribution of circumferential stress (σφφ) under GL and LS theories at
t = 1.0, 1.5
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Figure 2.6.9: Temperature distribution at t = 0.39 for solutions obtained using trans-
FEM and Complete FEM method

To validate of the present results, we have compared our solution of the problem with

the corresponding solution obtained by employing the trans-finite element method,

which involves the Laplace transform technique for the time domain and the numerical

inversion of Laplace transform by a suitable numerical method. Here, the method given

by Bellman et al. (1966) is followed for the numerical inversion of the Laplace transform.

It is noted that the results obtained by the present scheme of a complete finite element

method match perfectly with corresponding results obtained by the trans-finite element

method. Particularly, the results of the temperature field are shown at two different

times in Figs. 2.6.5-2.6.6. The black colour is used to show results for the trans-FEM

method, and the red colour is used to represent the solution obtained under the complete

finite element method. The similar trend of variation in the field variables and a perfect

match in plots validate our results and successful implementation of the complete finite

element method. Hence, any problem on coupled thermoelasticity can be solved by
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using the approach as discussed in the present chapter. This approach avoids the use

of the Laplace transform method and simplifies the method for the numerical solution

of the problem at any time.

2.7 Conclusion

This chapter has attempted to investigate the problem of a hollow disk under linear

coupled thermoelasticity based on the GL model for a homogeneous and isotropic elastic

solid. A complete FEM scheme is applied to get the solution of the problem. In this

process, the finite element equations for the present problem are derived for the space

domain and time domain by discretizing the basic equations in space as well as in

time. The validation of the results is also tested by using a well established trans- finite

element method. As the trans-FEMs involve numerical inversion of Laplace transform,

therefore to apply this approach, one needs to calculate the stiffness matrix for various

values of the Laplace transform parameter to obtain the solution at different time

steps. Hence, one major achievement of this chapter is that it provides an alternative

method of solution based on finite element approach that can be more advantageous as

compared to the trans-FEM method to solve the coupled thermodynamical problems as

it reduces the computational complexity involved in the trans-FEM method. Another

goal of the present study is to reveal a comparative analysis of solutions of the present

problem obtained under two different thermoelasticity theories. It is noticed that there

is a significant difference in the predictions for the behaviour of field variables by LS and

GL theories. Specially, the effect of the thermal shock at the boundary has prominent

influence under the temperature-rate dependent theory (GL theory) and the domain

of influence under the temperature-rate dependent theory is larger as compared to LS

thermoelasticity theory.
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