
CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Thermoelasticity: Perspectives and Applications

Thermoelasticity is a branch of science that is developed by considering the mutual

interactions of thermal and mechanical fields in an elastic body. It is concerned with

predicting the thermomechanical behaviour of the medium more precisely. From the

experimental results, it is well known that the time varying mechanical loading re-

sults not only in the variation of displacement field but also affects the temperature

distribution of the system. The converse of this phenomenon, i.e., a change in the

deformation along with the change in temperature field due to applied heating on the

body is also validated from the experimental point of view. These experimental results

lead to an argument for taking into account of the coupling between the thermal and

elastic fields. Therefore, the concept of thermoelasticity admits the existence of the

temperature term appearing in the equation of motion with a deformation term in the

heat conduction equation. Thermoelasticity theory is therefore based on two different

fundamental theories: theory of elasticity and theory of heat conduction.

In various disciplines of science and technology, thermoelasticity theory has gained

considerable interest from engineers and researchers due to its innumerous applications

to multiple fields. Thermal stress analysis is significant in a variety of structural is-

sues, such as high-speed plane manufacturing, designing of space vehicle, rocket and
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jet engine etc, nuclear reactor design, and so on. Thermomechanical processes may be

described using the governing equations of continuum mechanics and thermodynamics,

which can be utilised to address such problems. The thermoelasticity theory is also

finding increasing use in a variety of engineering issues, such as developing material

parts that can withstand abrupt thermal and mechanical loads and function at high

temperatures. For example, behaviour of carbon steel can be well explained by the

classical theory of elasticity at normal temperature and moderate stress field, however

at the temperature higher than 450oC, it behaves quite differently. The design and

development of turbine also requires the knowledge of the material behaviour at high

temperature. Hence, the study of this branch of science is essential for the designing

and development of structures under various engineering fields, like nuclear, chemi-

cal, metallurgy etc. Porothermoelasticity, visco-thermoelasticity, pizo-thermoelasticity,

magneto-thermoelasticity, and many other sub-branches of research are all built on the

foundation of thermoelasticity.

1.2 Development of the Conventional (Classical) Ther-
moelasticity Theory

The concept of the coupling between thermal and mechanical fields has been origi-

nated from the work reported by Duhamel (1837), where he has formulated a boundary

value problem and derived the equations involving a temperature gradient term for the

strain fields. According to this theory, the conduction of heat in a material is only de-

pendent on the temperature gradient and ignores the effect of other mechanical causes

such as the effect of elastic property of the material on the heat transfer. Therefore,

this theory is now termed as the uncoupled thermoelasticity theory. For the large time

scale or small heat flux values, this theory behaves well. However, it fails to explain

the accurate physical phenomena completely for the short time scale or high heat flux
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values. Duhamel (1837) has taken a simplified assumption that effect of the deforma-

tion on the thermal field can be neglected and under this assumption, he has derived

the governing equations of the thermoelasticity involving the effect of temperature field

on the deformation only. It is worth mentioning here that Neumann (1841) has inde-

pendently developed the similar stress-strain and temperature relation like Duhamel

(1837). Hence, this relation is also called as Duhamel-Neumann equation.

In view of the formulation of the thermal stresses introduced by Duhamel (1837;

1836), the theory starts gaining attention by the researchers. Thompson (1853) estab-

lished some theoretical results on this theory. Joule and Thomson (1857) has described

the thermal effects inside a thermoelastic body due to longitudinal compression and

tensile stresses. Todhunter (1886) has reported historical efforts and development in

this direction. Duhamel-Neumann equation has been used to deal with various ther-

moelastic problems, however, this equation was not supported by the thermodynamic

principles. Therefore, Voigt (2014) and Jeffreys (1930) have made attempt to justify

this relation from the thermodynamic sense. Later on, the most pioneering work in this

respect is reported by Biot (1956b), who has developed a fully justified theory of ther-

moelasticity and derived the basic governing equations of coupled thermoelasticity. He

has also presented a method for obtaining the general solution of thermoelastic problem

for homogeneous and isotropic medium. This theory is known as the classical coupled

dynamical thermoelasticity theory. Unlike the uncoupled thermoelasticity, the coupled

thermoelasticity theory takes into account the elastic effects on the heat conduction

along with the influence of strain on the temperature field. Hence, the coupled the-

ory overcomes the deficiency of the uncoupled thermoelasticity theory by considering

the effect of elastic changes on the thermal fields. The classical dynamical theory of

thermoelasticity is based on the Fourier’s law and among other constitutive relations

including Duhamel-Neumann relation.
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1.2.1 Formulation of the Classical Coupled Thermoelasticity
Theory

Biot’s theory is based on firm grounds of irreversible thermodynamics. On recalling the

work by Biot (1956b), the outlines of the formulation of this coupled thermoelasticity

theory from the thermodynamic principles can be presented as follows:

Consider a homogeneous and anisotropic thermoelastic body of volume V bounded by

the surface A. Then, the first law of thermodynamics can be writen as
d

dt

ˆ
V

1

2
ρu̇iu̇idV +

d

dt

ˆ
V

ρIdV =

ˆ
V

ρbiu̇idV +

ˆ
A

σijnju̇idA+

ˆ
V

ρQdV −
ˆ
A

qinidA,

(1.2.1)

where I is the intrinsic energy per unit volume, bi is the body force per unit volume,

σijnj is the traction force, Q is the heat produced per unit time and unit volume, and

qi is the heat flux through the surface of the body being positive outward in positive

direction of the unit outward normal vector ni. Here, the terms on the L.H.S. of Eq.

(1.2.1) are the rate of change of kinetic and intrinsic energies. Therefore, the first two

terms in the R.H.S. of this equation give the rates of the work done by all the body and

external traction forces, the third term is the heat produced per unit time inside the

body, and the fourth term denotes the heat transported into the body from an external

source.

Further, from the principle of virtual work done, it is known that the rate of change of

kinetic energy is equal to sum of all forces including internal and external forces, i.e.
d

dt

ˆ
V

1

2
u̇iu̇idV =

ˆ
V

ρbiu̇idV +

ˆ
A

σijnju̇idA−
ˆ
V

σij ėijdV. (1.2.2)

Now, the equations (1.2.1) and (1.2.2) yieldˆ
V

ρİdV =

ˆ
V

ρQdV −
ˆ
A

qinidA+

ˆ
V

σij ėijdV. (1.2.3)

Equation (1.2.3) holds for any arbitrary volume V , therefore, this equation can be

simplified as

ρİ = ρQ− qi,i + σij ėij. (1.2.4)
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Now, the second law of the thermodynamics which requires the positive entropy pro-

duction, can be given in terms of the Clausius inequality for the present thermoelastic

system as
d

dt

ˆ
V

ρS ≥
ˆ
V

ρ
Q

T
dV −

ˆ
A

qini
T
dA, (1.2.5)

where S denotes the entropy of the system and T is the temperature.

Further, Eq. (1.2.5) can be simplified as

ρ(T Ṡ −Q) + qi,i −
qi
T
T,i ≥ 0. (1.2.6)

The Helmholtz free energy function (f) is introduced as

f = I − TS. (1.2.7)

For the derivation of the governing equations, the response functions I and f are as-

sumed to be the functions of T , T,i and eij. Therefore, the time rate of internal energy

can be written as

İ =
∂f

∂T
Ṫ +

∂f

∂eij
ėij +

∂f

∂T,i
Ṫ,i − Ṫ S − T Ṡ. (1.2.8)

Now, in view of Eq. (1.2.8), the Eqs. (1.2.4) and (1.2.6) can be obtained in terms of

free energy function f as(
ρ
∂f

∂eij
− σij

)
ėij +

(
ρ
∂f

∂T
+ S

)
Ṫ + ρ

∂f

∂T,i
Ṫ,i + ρ

(
T Ṡ −Q

)
+ qi,i = 0, (1.2.9)

(
ρ
∂f

∂eij
− σij

)
ėij +

(
ρ
∂f

∂T
+ S

)
Ṫ +ρ

∂f

∂T,i
Ṫ,i +ρ

(
T Ṡ −Q

)
+ qi,i− qiT,i ≥ 0. (1.2.10)

Based on the assumption, the present system is independent from the functions Ṫ , Ṫ,i

and ėij, and therefore, in view of the linearity assumptions, the equations (1.2.9) and

(1.2.10) result as following:

σij = ρ
∂f

∂eij
, (1.2.11)

S = −ρ ∂f
∂T

, (1.2.12)

∂f

∂T,i
= 0, (1.2.13)
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qi,i = −ρ
(
T0Ṡ −Q

)
, (1.2.14)

and

qiT,i ≤ 0. (1.2.15)

Eqs. (1.2.11-1.2.15) represent the nonlinear theory of coupled thermoelasticity.

Now, Taylor series expansion of the free energy function about its natural state 0(T0, 0, 0)

(where T0 is the reference temperature) can be given as

f(T, eij) = f |0 + (T − T0)
∂f

∂T

∣∣∣∣
0

+ eij
∂f

∂eij

∣∣∣∣
0

+
1

2

[
(T − T0)2 ∂

2f

∂θ2

∣∣∣∣
0

+ (1.2.16)

+ (T − T0)eij
∂2f

∂T∂eij

∣∣∣∣
0

+ eijekl
∂2f

∂eij∂ekl

∣∣∣∣
0

]
.

In view of Eq. (1.2.16) and by substituting θ = T −T0, which denotes the temperature

above reference temperature T0 along with the natural initial assumptions ∂f
∂T

∣∣
0

= 0

and ∂f
∂eij

∣∣∣
0

= 0, the equations (1.2.11-1.2.12) are reduced to the forms

σij = Cijklekl − βijθ, (1.2.17)

ρT0S = ρcEθ + T0βijeij, (1.2.18)

where Cijkl = ρ ∂2f
∂eij∂ekl

∣∣∣
0
is the elasticity tensor, βij = −ρ ∂2f

∂eij∂ekl

∣∣∣
0
is the thermoelas-

ticity tensor, and cE= T0
∂2f
∂T 2

∣∣∣
0
is the specific heat.

Again, by taking the Taylor’s expansion of qi about its natural state as

qi(T, T,i, eij) = qi|0 + θ
∂qi
∂T

∣∣∣∣
0

+ θ,j
∂qi
∂T,j

∣∣∣∣
0

+ eij
∂qi
∂eij

∣∣∣∣
0

, (1.2.19)

and taking qi|0 = ∂qi
∂T

∣∣
0

= ∂qi
∂eij

∣∣∣
0

= 0 and Kij = − ∂qi
∂T,j

∣∣∣
0
at natural state, the Eq.

(1.2.19) can be simplified as

qi = −Kijθ,j. (1.2.20)

Hence, the linearized basic governing equations of the coupled thermoelasticity are

derived as
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Equation of motion:

σij + ρbi = ρüi. (1.2.21)

Energy equation:

qi,i = ρ(Q− θṠ). (1.2.22)

Constitutive relations:

qi = −Kijθj, (1.2.23)

ρθ0S = ρcEθ − T0βijeij, (1.2.24)

σij = Cijklekl − βijθ. (1.2.25)

Now, from the above set of the Eqs. (1.2.21-1.2.25), the field equations can be given in

terms of displacement (ui) and temperature (θ) as

Kijθij = ρcE θ̇ + T0βij ėij − ρQ, (1.2.26)

Cijklekl,j − βijθ,j + ρbi = ρüi. (1.2.27)

Eqs. (1.2.21-1.2.27) represent the complete set governing equations of the classical

coupled thermoelasticity (1956b) for homogeneous and anisotropic medium. For the

isotropic medium, the tensors βij, Cijkl and Kij are reduced as

βij = βδij,

Cijkl = λδijδkl + (δikδjl + δilδjk)µ,

Kij = Kδij.

(1.2.28)

Hence, the constitutive relations for the isotropic medium can be given as

qi = −Kθ,i,

ρT0S = ρcE(θ)− βT0ekk,

σij = λδijekk + 2µeij − βθ.

(1.2.29)

Also, the Eqs. (1.2.26-1.2.27) can be simplified as

Kθ,ii = ρcE θ̇ + T0βėkk − ρQ, (1.2.30)
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(λ+ µ)uj,ji + µui,jj − βθ,i + ρbi = ρüi. (1.2.31)

Equations (1.2.21-1.2.22, 1.2.29-1.2.31) represent the linear system of equations under

coupled thermoelasticity theory for homogeneous and isotropic medium.

1.3 Limitations of the Classical Coupled Thermoelas-
ticity

The classical thermoelasticity theory as described above has been widely used to

study the thermal and elastic coupling involved in various thermoelastic problems.

Clearly, the heat conduction Eq. (1.2.30), which is based on the Fourier’s law of heat

conduction is a parabolic type partial differential equation (diffusion equation), the Eq.

(1.2.31) being hyperbolic type differential equation. Therefore, this equation predicts

that the thermal signal propagates with infinite speed, i.e., the effect of any disturbance

on a material can be instantaneously felt at infinite distance from the source of distur-

bance. It has been observed that this theory successfully explains the thermomechanical

interactions for the thermoelastic problems involving low heat flux and large time re-

sponse. However, the theory gives physically unrealistic results and fails to explain the

transient behaviour of heat propagation, specially for the short time responses or high

heat flux values. Also, the micro and nano-scale devices have demonstrated the distinct

behaviour, which is not compatible with the classical thermoelasticity theory. More-

over, several researchers have worked in this direction and have developed theoretical

as well as practical evidences and results admitting a finite speed of thermal wave. An

exciting research interest has therefore been developed in last few decades to address the

shortcomings in Fourier law and also in the classical coupled thermoelasticity theory.

It is worth mentioning here the work by Maxwell (1867), who had postulated a modifi-

cation in the Fourier’s law while doing his experiments for gases and commented that

“heat propagation is a wave type phenomenon rather than diffusion type”. A detailed
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history in this respect can be found in the review article by Chandrasekharaiah (1986b).

The finite speed behaviour of heat wave is now called as ’second sound effect’ (see ref.

Chandrasekharaiah (1986b)). The ’second sound effect’ has also been discussed by

several eminent researchers like, Nernst (1917), Landau (1941), Tisza (1947). Landau

(1941) has reported the ’second sound effect’ for the liquid helium as the propagation

of the phonon density disturbance and approximated its speed to be equal to vp√
3
at

0 K temperature, where vp is the speed of the ordinary sound (first sound). Further,

Peshkov (1994) has also detcted the ’second sound effect’ experimentally.

The advancement of the micro-scale technologies has also supported the wave type

heat conduction. Therefore, a serious attention has been paid by the researchers to

overcome apparent drawback of classical thermoelasticity theory in presenting the un-

convincing results in the case of short time responses and high temperature gradi-

ents (see refs. Lord and Shulman (1967), Green and Lindsay (1972), Francis (1972),

Chandrasekharaiah (1986b), Ignaczak and Ostoja-Starzewski (2010) etc.). Some useful

modifications in classical thermoelasticity theory have been proposed during the last six

decades. These modified thermoelasticity theories are often referred to as generalized

thermoelasticity theories. A brief introduction regarding the generalized thermoelastic-

ity theories relevant to the present thesis is given in the next sub-sections.

1.4 Generalized Thermoelasticity Theory

Generalized thermoelasticity theories are the theories developed as the modified or alter-

native forms of the conventional (classical) coupled thermoelasticity theory to overcome

the appearent paradox of infinite speed of thermal wave propagation. The develop-

ment of these generalized theories are mainly based on the following three different

approaches:

• Incorporating the concept of phase-lags/thermal relaxation parameters for consti-

tutive variables in the Fourier law of heat conduction (see Lord-Shulman (LS) theory,
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dual-phase-lag (DPL) theory, three-phase-lag (TPL) theory).

• Considering the effects of higher order terms of constitutive field variables in the

formulation of the governing equations (see temperature-rate dependent theory, strain

and temperature-rate dependent theory).

• Developing alternative formulation of the coupled theory by introducing new con-

stitutive field variables in the derivation of governing equations (see Green and Naghdi

(GN) theory).

1.4.1 Lord-Shulman (LS) Thermoelasticity Theory or Extended
Thermoelasticity Theory (ETE)

Lord and Shulman (1967) have proposed a generalized thermoelastic model suggest-

ing the finite speed of heat propagation. This theory is also known as the extended

thermoelasticity theory (ETE). The first modification in the Fourier’s heat conduction

theory has been suggested by Cattaneo (1958) and Vernotte (1958; 1961). They intro-

duced the heat flux rate term in Fourier’s law with a time relaxation parameter and

hence, proposed a hyperbolic type heat conduction equation predicting the finite speed

of thermal waves. This work was motivated by Onsager (1931), who has suggested that

heat conduction requires a delay time to accelerate the heat flow. Lord and Shulman

(1967) have applied this modified Fourier’s law of heat conduction (Catteneo-Vernotte

law) and derived the first generalized coupled theory of thermoelasticity. The heat con-

duction law based on the LS thermoelasticity theory for the homogeneous and isotropic

medium can be given as

qi + tq
∂qi
∂t

= −Kθ,i (1.4.1)

Here, tq is the relaxation time required to achieve the steady-state of heat conduction

under a suddenly applied temperature gradient. Combining Eq. (1.4.1) with the energy

equation (1.4.9) and entropy equation, the heat conduction equation for LS thermoe-
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lasticity theory can be obtained as

Kθ,jj =

(
1 + tq

∂

∂t

)(
ρcE θ̇ + T0βu̇j,j − ρQ

)
. (1.4.2)

Clearly, Eq. (1.4.2) is a hyperbolic type heat conduction equation and admits the

propagation of thermal wave with a finite speed of
√

K
ρcEtq

.

The physical values of the time relaxation parameter (tq) for different materials have

been reported in literatute by various researchers while carrying out their experimental

work. Chester (1963) has supported the existence of relaxation parameter for heat

conduction and estimated the value of the relaxation parameter, tq in terms of material

constants as tq = 3K
ρcEv2s

. Here, vs denotes the velocity of sound. From this relation, it

can be observed that in general, the value of tq is very small and therefore, its effect

can be neglected in the study of heat conduction. However, several authors including

Baumeister and Hamill (1969; 1971), Chan et al. (1971), Maurer and Thompson (1973),

Sadd and Cha (1982) have demonstrated the essence of this modified heat conduction

theory for very high heat flux and very short time intervals. Several other authors (see

refs. Nettleton (1960), Chester (1963; 1966), Maurer (1969), Mengi and Turhan (1978)

etc.) have attempted to determine the values of the relaxation parameter experimentally

and reported that the value of relaxation time range from 10−14 s to 10−10s for metals.

It is also noted that the relaxation time may be as large as 11s for glass and 21s for the

sand at laboratory temperature, and for the organic materials and tissues, the relaxation

time can range from 10s to 1000s (see Hetnarski et al. (2009), Chandrasekhariah (1998),

Tzou (1995b; 1995a)).

1.4.2 Green-Naghdi (GN) Thermoelasticity Theory

In the 1990s, Green and Naghdi (1991; 1992; 1993) have followed a completely different

approach to develop an alternative version of thermoelasticity theory. They modified

Fourier’s law by introducing a new constitutive variable in the theory of heat conduction
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and developed their new thermoelasticity theory from thermodynamic principles. The

concept of this new constitutive variable arosed from limiting case in Cattaneo and

Vernotte heat conduction model qi+ tq
∂qi
∂t

= −Kθ,i, when tq approaches to infinity such

that K
tq

remains finite. In this limiting case, an alternative heat conduction law can be

derived as

qi
tq

+
∂qi
∂t

= −K
tq
θ,i, (1.4.3)

which in the limiting case gives

∂qi
∂t

= −K∗θ,i, (1.4.4)

where K∗ = K/tq is referred as the conductivity rate which is considered as a new

material parameter, characteristic of Green-Naghdi theory.

Following this idea Green and Naghdi (1991) have established the alternative ther-

moelasticity theory by introducing a new constitutive variable ν in the heat tonduction

law. This constitutive variable is related to the thermodynamic temperature as ∂ν
∂t

= θ.

Therefore, ν is termed as the thermal displacement. The general form of heat conduc-

tion law suggested by Green and Naghdi (1991; 1992; 1993) for the homogeneous and

anisotropic medium is given as

qi = −Kθ,i −K∗ν,i, (1.4.5)

where θ, θ,i, ν and ν,i are taken as independent variables. Therefore, the heat conduc-

tion equation based on this theory can be derived as

Kθ,ii +K∗ν,ii = ρcθ̇ + T0βėkk − ρQ. (1.4.6)

This theory can be categorized into three different cases. The theory based on Eq.

(1.4.6) represents the type-III (GN-III) thermoelasticity theory. Further, Green and

Naghdi (1991; 1992; 1993) have shown that type-I (GN-I) and type-II (GN-II) theory
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can be obtained as particular cases of the general theory, i.e., GN-III theory. WhenK =

0, the theory is termed as GN-I theory, which also coincides with Biot thermoelasticity

theory. For K = 0, this theory is inferred as the GN-II thermoelasticity theory. This

theory admits undampped thermal wave and suggests no dissipation in the energy

during the heat flow, therefore, GN-II theory is also known as the thermoelasticity

theory without energy dissipation. Equations for the anisotropic case for both GN-II

and GN-III thermoelasticity theories are further articulated by Quintanilla (1999; 2001;

2002).

1.4.3 Dual-Phase-Lag (DPL) Thermoelasticity Theory

The dual-phase-lag thermoelasticity theory has been developed on the basis of dual-

phase-lag heat conduction theory (Tzou (1995b; 1995a)) that incorporates two different

phase-lag parameters. Tzou (1993) has introduced the concept of phase-lag in the

theory of heat conduction. He has presented a time phase-lag term for heat flux vector

in the Fourier law and suggested that the Cattaneo (1958) and Vernotte (1958; 1961)

heat conduction equation can be redeemed from this equation by taking the Taylor

series expansion of the heat flux vector about phase-lag tq. The phase-lag based heat

conduction law suggested by Tzou (1995b; 1995a) for anisotropic medium can be written

as

qi(x, t+ tq) = −Kijθ,j(x, t). (1.4.7)

Further, this idea of phase-lag has been extended by Tzou (1995b; 1995a) who has

suggested to include two phase-lag parameters, one in the heat flux vector tq and another

in the temperature gradient vector tθ, to take into account the microscopic effects in

heat transport phenomonon. Due to the presence of two different phase-lag parameters,

this theory is referred to as dual-phase-lag or two phase-lag heat conduction theory.

The dual-phase-lag (DPL) heat conduction relation proposed by Tzou (1995b; 1995a)

is given as follows:
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qi(x, t+ tq) = −Kijθ,j(x, t+ tθ). (1.4.8)

By introducing these phase-lag parameters, Tzou has considered the effect of both

macro as well as micro scale interactions due to applied thermoelastic loadings. Further,

Tzou has shown that by taking different Taylor series approximations of Eq. (1.4.8),

different constitutive relations can be drawn. In particular, Tzou (1995b; 1995a) has

demonstrated two different constitutive relations for heat flux and temperature gradient

vectors as follows:

Taking the first order Taylor series expansion in Eq. (1.4.8), Tzou considered his first

DPL heat conduction model as(
1 + tq

∂

∂t

)
qi = −Kij

(
1 + tθ

∂

∂t

)
θ,j. (1.4.9)

Further, by taking the second order Taylor’s expansion heat flux vector and first-order

expansion of temperature gradient term, the second DPL model has been derived as

(
1 + tq

∂

∂t
+ t2q

∂2

∂t2

)
qi = −Kij

(
1 + tθ

∂

∂t

)
θ,j. (1.4.10)

It can be verified that (1.4.10) exhibits thermal propagation as wave in nature,

whereas results of Eq. (1.4.9) depend on the values of tq and tθ. More detailed elabo-

ration of these two models and several important findings in this respect are available

in the book given by Tzou (1997).

Chandrasekharaiah (1998) has subsequently extended the DPL heat conduction

theory to theory of thermoelasticity and developed a DPL thermoelasticity theory based

on modified Fourier’s heat conduction Eqs.(1.4.9-1.4.10). The author has combined Eq.

(1.4.10) with energy and entropy equations to derive heat conduction equation for DPL

thermoelasticity theory in the context of isotropic medium as

(
1 + tθ

∂

∂t

)
Kijθ,ij =

(
1 + tq

∂

∂t
+ t2q

∂2

∂t2

)(
ρcE θ̇ + T0βiju̇i,j − ρQ

)
. (1.4.11)
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1.4.4 Three-Phase-Lag (TPL) Thermoelasticity Theory

Roychoudhuri (2007a) has further generalized the concept of phase-lag to Green-Naghdi

thermoelasticity theory by incorporating three different phase-lag (TPL) parameters in

the constitutive relation for heat conduction relation (1.4.5) given by Green and Naghdi.

One additional phase-lag parameter τν is incorporated here for the gradient of thermal

displacement, along with the incorporation of phase-lag parameters for the heat flux as

well as temperature gradient terms. The modified heat conduction law corresponding

to the TPL theory for the homogeneous and anisotropic medium can be given as

qi(x, t+ tq) = −Kijθ,i(x, t+ tθ)−K∗ijν,i(x, t+ tν). (1.4.12)

Further, by combining energy equation and entropy equation along with the Eq. (1.4.12)

heat conduction equation corresponding to the TPL theory can be obtained. Similar

to DPL theory, different order Taylor series approximation of Eq. (1.4.12) also results

different constitutive relation corresponding TPL theory. Roychoudhuri has derived

two different version of the TPL theory in his article. Following Roychoudhuri (2007a)

the heat conduction equation for the TPL theory on the context of homogeneous and

isotropic medium can be given as

(
1 + tq

∂

∂t
+ t2q

∂2

∂t2

)(
ρcθ̇ + T0βiju̇j,j − ρQ

)
= K∗θ̇,ii + (1.4.13)

Ktθθ̈,ii +K∗θ,ii.

Neglecting t2q in Eq. (1.4.13) will result another version of the thermal field equation

of three-phase-lag thermoelasticity theory (see Roychoudhuri (2007a)). By setting the

different values of the material parameters in the Eq. (1.4.13), all the previously dis-

cussed thermoelasticity theories can be derived. Hence, this theory is the most general

theory of thermoelasticity.

In 2009, Dreher et al. (2009) have mathematically examined the dual-phase-lag
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and three-phase-lag theories and reported that when these constitutive equations are

combined with classical energy equation −qi,i(x, t) = cE θ̇(x, t), there exists a sequence

of solutions such that the real part of its eigenvalues tends to infinity. Thus, the

mathematical system is not well-posed in the Hadamard sense and it is observed that

these theories are not based on a priori thermodynamic formulation. Therefore, it

becomes interesting to study various Taylor’s approximations of these models rather

than studying the models mentioned above. The theories obtained by Taylor series

approximation of these models provide mathematical formulations where well-posedness

can be established with some conditions on the parameters.

Recently, Quintanilla (2009) has proposed some modifications to the three-phase-

lag model and studied the well-posedness and spatial behaviour of this newly proposed

models. In his new formulation, the parameters are assumed to be tν < tq = tθ and

t0 = tq−tν . Now, the three-phase-lag model is reduced to a heat conduction model with

a single delay term, t0 > 0, and by considering Taylor’s approximation up to second

order for the delay term, the heat conduction relation is given here in the form

qi = −Kθ,ii −K∗ν,ii −K∗t0ν̇,ii −K∗
t20
2
ν̈,ii. (1.4.14)

A detailed discussion on this model and spatial behaviour of its solution has been

elaborated by Leseduarte and Quintanilla (2018).

1.4.5 Green-Lindsay (GL) Thermoelasticity Theory

All the previously discussed thermoelasticity theories are based on the modification in

Fourier’s heat conduction law. In 1972, Green and Lindsay (1972) proposed a com-

pletely different generalization of classical thermoelasticity theory, which is developed

by applying the effect of temperature-rate along with the temperature in thermoelas-

ticity theory. Therefore, this theory is also known as the temperature-rate dependent

(TRD) thermoelasticity theory. Prior to this, in 1967, Muller (1967) has postulated
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a modified form of entropy inequality (Clausius-Duhem inequality Eq.(3.2.5)) . Later

on, Green and Laws (1972) have generalized this entropy production inequality and

suggested that for non-equilibrium situations, the temperature associated with heat

supply in the entropy inequality should be replaced with a constitutive relation involv-

ing temperature, temperature-rate, and temperature gradient. Subsequently, Green

and Lindsay (1972) have employed this concept and established his temperature-rate

dependent thermoelasticity theory (GL theory). Unlike most of the thermoelasticity

theories, this theory describes the finite speed of thermal wave without violating the

Fourier law and in spite of that, this theory modifies the classical theory by introducing

two thermal relaxation time parameters: one in the stress–strain–temperature relation

and another in the entropy equation. Due to the presence of two relaxation parameters,

this theory is also referred to as the thermoelasticity theory with two relaxation times.

The constitutive relations for linear generalized thermoelasticity theory given by

Green and Lindsay (1972) for the anisotropic homogeneous medium with the center of

symmetry are given as follows:

The equation of motion:
σij,j + ρbi = ρüi. (1.4.15)

The energy equation:
ρT0Ṡ = −qi,i + ρQ. (1.4.16)

The constitutive relations:

θ0ρS = ρcE(θ + t1θ̇) + βijT0eij, (1.4.17)

σij = Cijklekl − βij(θ + t2θ̇), (1.4.18)

qi = −Kijθ,j, (1.4.19)

where t1 and t2 are the two thermal relaxation time parameters such that t1 > t2.
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1.4.6 Modified Green-Lindsay (MGL) Thermoelasticity Theory

Green and Lindsay (1972) thermoelasticity theory has successfully overcome the

drawback of the infinite speed of heat propagation in classical thermoelasticity the-

ory and has been applied to analyze the transient response of various thermoelastic

problems in a more realistic way. However, critical analysis has been reported on

this temperature-rate dependent thermoelasticity theory that this model experiences a

drawback of discontinuity in the displacement field at both thermal and elastic wave-

fronts under the elevated temperature at the boundary surface of an elastic medium

(see Chandrasekharaish and Srikantiah (1987); Dhaliwal and Rokne (1989); Chatterjee

and Roychoudhuri (1990); Ignaczak and Mr’owka-Matejewska (1990)). Discontinuity

in the displacement field suggests that one part of matter penetrates into the other,

which disobeys the continuum hypothesis (Chandrasekharaiah (1998)).

Therefore, in order to overcome this drawback in the TRD thermoelasticity, recently,

Yu et al. (2018) have proposed a modified Green-Lindsay (MGL) thermoelasticity the-

ory. While developing the MGL theory, authors have incorporated the effects of strain-

rate along with the temperature-rate terms in the thermoelasticity theory. Hence, this

theory can also be termed as the strain and temperature-rate dependent thermoelastic-

ity theory. Yu et. al. (2018) have also discussed a half space problem based on MGL

theory and demonstrated that this theory successfully overcomes the drawback on the

discontinuity in the displacement field. While developing this theory, the modification

in constitutive relations are resulted as follows:

T0ρS = ρcE(θ + t1θ̇) + βijT0(eij + t1ėij), (1.4.20)

σij = Cijkl(ekl + t2ėkl)− βij(θ + t2θ̇). (1.4.21)

Eq. (1.4.20) and Eq. (1.4.21) identify the incorporation of strain-rate term and

temperature-rate term in the entropy and stress-strain-temperature relations, respec-

tively.
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1.4.7 Two-Temperature Thermoelasticity Theory

Gurtin and Williams (1966) have suggested that the entropy inequality needs a mod-

ification based on the distinction between heat flux inside the body and the external

heat supply. In view of these two different mechanisms, the entropy flow is shown

here to be separated in the second law of thermodynamics, and they have postulated

that by the same factor of proportionality, two different temperatures can be assumed.

Therefore, Gurtin and Williams (1966) have proposed a modified form of the Clausius

inequality involving two temperatures. The volume-relevant temperature is referred to

as conductive temperature, while the surface-relevant temperature is referred to as the

thermodynamic temperature. Based on this modified second law of thermodynamics,

Chen and Gurtin (1968) have formulated the two-temperature theory of heat conduc-

tion for nonsimple materials. This modification has suggested the new classification

of materials termed as simple and nonsimple materials. For the simple materials, the

energy, heat flux, and the thermodynamic temperature (i.e., local states) are depen-

dent on the history up to present time of the strain, conductive temperature, and their

first spatial gradients (Gurtin and Williams (1966)), while in the nonsimple materials

local state is characterized by the instantaneous values of the deformation gradient,

the conductive temperature, and their first two spatial gradients. Thus, simple ma-

terials form a subset of the class of nonsimple materials (Chakrabarti (1973)). Chen

and Gurtin (1968) have further shown that the difference between these two tempera-

tures is proportional to the heat supply in the time independent situation, and in the

absence of an external heat source, the two temperatures will be the same. However,

in the time dependent situation, the two temperatures will not be the same, even in

the absence of a heat source. Further, Chen et al. (1969) have derived the governing

equations of the two-temperature theory of thermoelasticity from the fundamental laws

of thermodynamics. The modified heat conduction law and two-temperature relation

corresponding to two-temperature thermoelasticity based on Biot theory for isotropic
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medium are given in the forms as

Kφ,ii = ρcE θ̇ + T0βėkk − ρQ, (1.4.22)

φ− θ = aφ,ii, (1.4.23)

where φ is the conductive temperature and θ is the thermodynamic temperature. a is

called as the two-temperature parameter. Tzou (1995b) has indicated that in situations

of microscale heat transfer, the temperature discrepancy can be measured in terms of

the mean free path (l) as a ∼ l2 and mathematically mean free path is approximated

as l ∼ cτ , where c is the mean phonon speed and τ is the relaxation parameter.

Therefore, temperature discrepancy (two-temperature parameter) can be approximated

as a ∼ (cτ)2.

The two-temperature generalization of LS theory has been introduced by Youssef

(2006b), who has derived the constitutive relations from the energy equation and the

first law of thermodynamics by keeping the two-temperature relation suggested by

Chen et al. (1969) unchanged. later on, the two-temperature model of Green-Naghdi

theory has been established by Youssef (2011). Sur and Kanoria (2012) have proposed

a fractional order theory of two-temperature thermoelasticity.

1.4.8 Other Generalized Thermoelasticity Theories

Apart from the thermoelasticity theories discussed above, other modified theories have

also been developed on the basis of the coupling of the thermoelasticity with other

branches of physics like magnetic fields, electric fields, viscosity etc. In this context the

books by Das (2017), Truesdell (2013), Ignaczak and Ostoja-Starzewski (2010), Irgens

(2008) can be studied.

Some generalizations of the thermoelasticity theories have also been established on

the basis of material properties of the medium like, nonlocal, micropolar thermoelas-

ticity theories. Eringen (1970) has reported the fundamental concepts and the de-
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velopment of the governing equation of the micropolar thermoelasticity theory. Sev-

eral other authors have worked on the development of the generalized thermoelasticity

for the micropolar theory. In this context, the articles by Boschi and Ieşan (1973),

Chandrasekharaiah (1986a), Ciarletta (1999), Sherief et al. (2005), Othman and Singh

(2007), Ciarletta et al. (2007) can be consulted. Systematic development of the frac-

tional order thermoelasticity theories that involve the fractional order derivative terms

in the heat conduction law has been reported in the books by Povstenko (2015; 2019).

1.5 Porothermoelasticity Theory

Porosity is found in a variety of natural and artificial composites like crustal and reser-

voir rock in the earth, sound-absorbing materials, polyurethane foam, osseous tissue,

etc. Consequently, the problems dealing with fluid flow and heat conduction and the

dynamics of a system with porosity have aroused much interest in researchers. It is

to be recalled that first time the concept of porosity in the presence of elasticity has

been introduced by Biot (1956a). He has considered the general class of solid ma-

terials consisting of innumerable interconnected fluid saturated cavities and used the

Lagrange’s equations to derive the stress-strain relation and the coupled equations of

motion in the context of generalized poroelasticity. The study of porous materials in-

cludes a large class of engineering problems related to water saturated soil, asphalt

concrete pavements etc. Porous solids also exist in nature in the form of crustal and

reservoir rocks in the earth and therefore have a wide range of applications in the field

of geophysics and related topics. The researchers are devoting increasing attention to

study the thermal and mechanical interactions in the porothermoelastic solids. Bear

et al. (1992) and Levy et al. (1995) have dealt with the fluid transport phenomenon

through a porous medium and derived basic equations for the microscopic dynamics.

Further, Biot (1962a; 1962b) has extended the concept of poroelasticity to the acoustic
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propagation theory. Crown and Nuziato (1983) have developed the linear theory for

the elastic materials with voids. Several authors have further worked for the evolution

of the theory to various thermomechanical problems (see refs. Fourie and Du Plessis

(2003); Wang (2017); Ghassemi and Diek (2002)). While incorporating the thermal

effects, most of these authors have followed the Classical theory of heat conduction

(Biot (1956b)). The basic governing equations and the constitutive relations of the

porothermoelasticity theory corresponding to classical thermoelasticity theory can be

given as

Equations of motion:

τji,j + ρsbsi = ρ11üi + ρ12Üi, (1.5.1)

τ,j + ρfbfi = ρ12üi + ρ22Üi. (1.5.2)

The energy equations:

qsi,i = −ρT0Ṡ
s, (1.5.3)

qfi,i = −ρT0Ṡ
f . (1.5.4)

The constitutive relations:

τij = Cijklekl +Dijε− βsijϑs − β
f
ijϑ

f , (1.5.5)

τ = Cε+Dijeij − βsϑs − βfϑf , (1.5.6)

ρϑ0S
s = −T0(βsijeij + βsε) + ρcsEϑ

s, (1.5.7)

ρϑ0S
f = −T0(βfijeij + βfε) + ρcfEϑ

f , (1.5.8)

qsi = −Ks
ijϑ

s
,j, (1.5.9)

qfi = −Kf
ijϑ

f
,j, (1.5.10)

where τij and τ denote the components of stress tensor and fluid pressure corresponding

to the solid and fluid phases, respectively; bi is the external body force per unit volume;
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Cijkl is the elasticity tensor; Dij is poroelastic coupling tensor; C is the bulk modulus

of fluid phase; βωij is the thermoelasticity tensor; βω is the thermoelasticity constant

due to the presence of porosity; qωi is heat flux vector; Kω
ij is the conductivity tensor;

θω is temperature above reference temperature T0, such that |θ
ω |
θ0
� 1; cωE is the specific

heat at constant strain; ρω is the density of material; Sω is the entropy, where, super

scripted ω will be used s to denote the solid phase and f to denote the fluid phase for

material parameters and field variables.

In 2007, Youssef (2007) has established a theoretical foundation to the generalized

theory of porothermoelasticity admitting finite speed of heat signals.

1.6 Literature Review

After the well postulated thermoelasticity theory came into existence in the mid of 19th

century, the theory has been continuously evolving, and various generalized thermoelas-

ticity theories have been developed over time. Several researchers have paid significant

attention to the investigation of these thermoelasticity theories for different engineering

problems to study the thermomechanical behaviour of the field variables for different

(homogeneous and non-homogeneous) mediums under various thermoelastic environ-

ments. A broad range of studies on the advancement and analysis of coupled ther-

moelasticity theories has been reported in the literature. The extensive review articles

and books by Chandrasekhariah (1986b; 1998) and Nowacki (1969), Joseph and Pre-

zoski (1989), Straughan (2011), Parkus (2012), Suhubi (1975), Iesan (1994), Hetnarski

and Ignaczak (1999), Hetnarski and Eslami (2009) and Ignaczak and Ostoja-Starzewski

(2010) are worth to be mentioned in this respect. Detailed analysis on some recently

introduced thermoelasticity theories and their applications to specific problems can also

be found in the Ph.D. theses by Roushan Kumar (2010), Rajesh Prasad (2012), Shweta

Kothari (2013), Rakhi Tiwari (2017), Bharti Kumari (2017), Shashi Kant (2018), and
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Anil Kumar (2018). In addition, the present section aims at reporting state of art in

the context of the modified thermoelasticity theories as described in previous sections.

Sternberg and McDowell (1957) have employed Green’s function method to inves-

tigate a semi-infinite elastic medium under Biot’s theory and demonstrated the steady

state behaviour of stress and displacement fields. Lessen (1957; 1959) has studied the

wave nature of the solution due to thermal and elastic effects under the classical theory

and shown the propagation of thermal wave along with the elastic wave. Paria (1958)

has applied this theory to study a half space thermoelastic problem. Further, Hetnarski

(1961; 1964) has discussed a one dimensional thermoelastic problem subjected to ther-

mal shock at boundary and obtained an analytical solution of the problem by using

short-time approximation approach. Chadwick (1962) has analyzed the thermoelastic

interaction inside thick beam and plate. Parkus (1963) has reported a detailed discus-

sion about various methods for solving different thermoelastic problems under Biot’s

theory. Goodman (1964) has developed an integral method for deducing the ordinary

initial value problem of heat conduction from the nonlinear boundary conditions and

hence, approximated the solution of heat conduction based on Biot’s theory. Nickell

and Wilson (1966) have applied the variational approach of the finite element method

to derive the continuous spatial solutions of two dimensional heat conduction prob-

lem. Nickell and Sackman (1968) have presented a variational principle for the Biot’s

thermoelasticity theory for inhomogeneous and isotropic continuum. Further, Nowacki

(1968) has generalized some theorems for the coupled thermoelasticity medium, which

is characterized by displacement and rotation vectors. Verruijt (1969) has applied

Mindlin’s theorem of completeness and proved the completeness of the solution under

Biot’s theory. Several results and applications of the classical thermoelasticity the-

ory have been reported in the books by Boley and Winer (1960), Nowacki (1975) and

Nowinski (1978). This theory has been widely applied to study the thermoelastic prob-

lem, and it is observed that although the theory explains the coupling effects, however,
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it still predicts the paradox of infinite speed for heat propagation.

The extended thermoelasticity theory is given by Lord and Shulman (1967), who

has generalized the classical thermoelasticity theory by proposing an appropriate modi-

fication in Fourier’s law of heat conduction. They have further derived an exact solution

for a one dimensional half space thermoelastic problem for homogeneous and isotropic

medium and demonstrated the elimination of paradox of infinite speed by comparing

their results with the results obtained under Biot’s thermoelasticity theory. Following

Lord and Shulman (1967), Fox (1969) and further Lord and Lopez (1970) have investi-

gated the thermoelastic disturbances and wave propagation in thermoelastic solids at

a very low temperature. Chen and Gurtin (1970) have applied the LS theory to ana-

lyze the second sound effect for thermoelastic materials with memory. Further, Nayfeh

and Nemat-Nasser (1971) have studied the plane harmonic and Rayleigh’s surface wave

propagation under this modified theory and derived the explicit expressions for various

parameters characterizing these waves. They have also verified the phenomenon of the

finite speed of heat propagation in their work. Puri (1973) analyzed phase velocity,

specific loss, and amplitude ratio of the plane waves and approximated the expres-

sions for very low and high frequency values. He has observed that this generalized

theory concern with the wave nature of the thermal disturbance. The thermoelastic

responses inside a cylindrical medium have been analyzed by Wadhawan (1973). He

has considered a two dimensional infinite circular cylinder of isotropic medium and

solved the harmonic problem of thermoelasticity under small vibration. Gonsovskii

and Rossikhin (1974) have investigated the propagation of plane harmonic wave in an

anisotropic medium and observer four different types of damped and dispersed waves,

a quasi-longitudinal, two quasi-transverse corresponding to the elastic field and a heat

wave corresponding to the thermal field. Ignaczak (1979) has established the unique-

ness results under this generalized thermoelasticity theory. Chandrasekharaiah (1980)

has applied the short time approximation to study the half space problem of thermoe-
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lasticity and analyzed the exact discontinuities in mechanical and thermal fields due

to applied thermal shock on the boundary. Thermoelastic wave propagation inside an

infinite medium with a spherical cavity has been investigated by Mukhopadhyay et al.

(1991) under the step-rise in temperature and pressure on the boundary surface. Some

other investigations and discussion under the LS thermoelasticity theory have been re-

ported in the review articles by Boley (1980), Chandrasekharaiah (1986b) and Joseph

and Preziosi (1989; 1990). Several theoretical results and some numerical approaches

to solve the thermoelastic problems under the LS theory have been demonstrated in

the books by Hetnarski and Eslami (2009) and Ignaczak and Ostoja-Starzewski (2010).

Picard (2005) has reported the structural formulation for linear thermoelasticity in

nonsmooth media. Subsequently, a structural formulation for linear material laws in

classical mathematical physics has been introduced by Picard (2009), who has consid-

ered a class of evolutionary problems that covered a number of initial boundary value

problems of classical mathematical physics. The corresponding solution theory is also

established here, and the well-posedness of classical thermoelasticity and Lord–Shulman

theory are shown to be covered by this model. This study has been further extended

by Mukhopadhyay et al. (2016). They have studied various models of thermoelas-

ticity theory and have shown that these models can be treated within the common

structural framework of evolutionary equations, and considering the flexibility of the

structural perspective, they have obtained well-posedness results for a large class of

generalized models allowing for more general material properties such as anisotropies,

inhomogeneities, and so on.

The thermoelasticity theories by Green and Naghdi (1991; 1992; 1993) have also

aroused much interest in researchers over the years to understand these new general-

ized thermoelasticity theories (GN-I, GN-II and GN-III theories) that involve thermal

displacement as a new constitutive variable. An alternative formulation of the GN-II

thermoelasticity theory in terms of entropy heat flux has been developed by Chan-
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drasekharaiah (1996a) to establish the uniqueness theorem. Chandrasekharaiah (1996c)

has developed an alternative approach to discuss the uniqueness results on the GN

thermoelasticity theory, and further Chandrasekharaiah (1996b) has also studied a one

dimensional linear thermoelastic problem to investigate the propagation of plane wave

under the thermoelasticity theory without energy dissipation (GN-II theory). Chan-

drasekharaiah and Srinath (1997c) have discussed the thermoelastic interactions under

GN-II theory due to point heat source. Chandrasekharaiah and Srinath (1997b) have

also investigated wave propagation in a rotating thermoelastic body. Further, Chan-

drasekharaiah and Srinath (1997a) have employed the GN-II thermoelasticity theory to

study the thermoelastic behaviour inside an axisymmetric unbounded medium with a

cylindrical cavity. Dhaliwal et al. (1997) have solved the thermoelastic problem under

the GN-III theory and noted that this theory also suffers from the drawback of the in-

finite speed of heat propagation. Ieşan (1998), Quintanilla (1999; 2002) have developed

some theoretical results under the GN thermoelasticity theory. Ciarletta (1999) has

developed a micropolar thermoelasticity theory based on GN theory and also formu-

lated a Galerkin type solution under this theory. Other relevant works under Green and

Naghdi theory have been carried out by Svanadze et al. (2006), Chandrasekharaiah and

Srinath (2000), Misra et al. (2000), Wang and Slattery (2002), Sharma et al. (2003),

Quintanilla and Straughan (2004), Roychoudhuri and Bandyopadhyay (2005), Bagri

and Eslami (2007b), Mallik and Kanoria (2008), Abbas and Othman (2009), Chiriţă

and Ciarletta (2010) and many others. Mukhopadhyay and Kumar (2010) have applied

a state-space approach to solve a thermoelastic problem under the GN model. Tiwari

and Mukhopadhyay (2017) have investigated the wave propagation inside an electro-

magneto-thermoelastic medium under GN-II theory. Abbas (2018) studied the free

vibration of a nanobeam resonator under the GN thermoelasticity theory. Jahangir et

al. (2020) have investigated the diffusion effect on the propagation of a plane harmonic

wave under the micro-stretched thermoelastic medium. EL-Attar et al. (2019) have
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examined the effect of phase-lag on the GN theory for electro-thermoelastic medium.

Abouelregal (2020) has developed a new generalization of the GN thermoelasticity the-

ory, including the higher order time differential and phase-lag terms. Sarkar et al.

(2020) have considered the non-local effect to study the effect of the laser pulse on the

transient wave under GN thermoelasticity theory. Recently, Zenkour (2021), Chirilă et

al. (2021) and Hendy et al. (2021) have investigated the GN thermoelasticity theory

in different thermomechanical contexts.

The DPL thermoelasticity theory by Chandrasekharaiah (1998) is the generaliza-

tion of heat conduction theory involving two phase-lag parameters Tzou (1995a; 1995b).

Chaandrasekharaiah (1998) has presented a detailed discussion about the DPL theory

along with other hyperbolic thermoelasticity theories in his review article. Hetnarski

and Ignaczak (1998) have described the analytical approach for the generalized ther-

moelasticity theories and compared the results under all previously developed thermoe-

lasticity theories with the results under DPL thermoelasticity theory. Quintanilla (2002;

2003) has performed some qualitative analysis on the DPL theory to study the stability

of the thermoelastic problem and proved that the DPL heat conduction model is not

unconditionally stable. Further, he has also derived the stability condition for the one

dimensional problem. Further, Horgan and Quintanilla (2005) have investigated the

spatial behaviour of solutions under the DPL heat conduction theory. Al-Huniti (2005)

and Al-Nimir (2005) have analyzed the thermoelastic responses inside a composite slab

under the DPL thermoelasticity theory. Roychoudhary (2007b) studied the thermoe-

lastic wave inside an elastic half space under DPL theory and observed two different

waves in the solution of the problem. Abdullah (2009) has applied the DPL theory

to investigate the thermomechanical properties inside semi-infinite medium under the

influence of ultrashort laser pulse heating on the boundary. Ghazanfarian and Abbassi

(2009) have examined the effects of phonon scattering on boundary under the DPL

theory to simulate the micro and nano scale heat conduction. Prasad et al. (2010) have
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investigated the propagation of the plane harmonic wave under the DPL thermoelas-

ticity theory. Authors have formulated an exact expression for the dispersion relation

analytically and also derived the asymptotic expressions for the variables character-

izing thermoelastic waves such as phase velocity, penetration depth, specific loss and

amplitude ratio. Mukhopadhyay et al. (2011) have established the domain of influence

results for DPL theory to prove that there are no thermal and elastic signals outside a

suitably defined bounded domain. They also verified the finite speed of thermal and me-

chanical wave propagation under DPL theory. Several other authors have also worked

on the DPL theory to investigate different thermoelastic problems. In this context,

the articles Abouelregal (2011), Zenkour et al. (2013), El-Karamany and Ezzat (2014),

Sarkar (2017), Megana and Quintanilla (2018), Liu and Quintanilla (2018), Mondal

et al. (2019), Biswas (2019), Gupta and Mukhopadhyay (2019b), Mondal (2020) and

Campo et al. (2021) can also be referred.

Three-phase-lag (TPL) theory is a more generalized form of the thermoelasticity

theory that contains the three-phase-lag parameters in the heat conduction law. De-

tailed qualitative analysis on this model has been carried out by Quintanilla (2008) to

obtain the restriction of the material parameters to ensure the exponential stability of

solutions. Further, Quintanilla (2009) has investigated the well-posedness of thermoe-

lastic problems under TPL theory. Kar and Kanoria (2009) have solved a thermoelastic

problem of functionally graded hollow sphere under thermal shock to analyze this gen-

eralized theory. Authors have applied the Laplace transform technique to simplify

the governing equations and then applied an eigenvalue approach to solve the matrix

form of the system of equations. Kumar and Mukhopadhyay (2009) have solved a

thermoelastic problem of an infinite cylindrical cavity under step input temperature

on the boundary and highlighted the significance of phase-lag parameters in the TPL

thermoelasticity theory. Subsequently, Mukhopadhyay et al. (2010) have formulated

Galerkin’s type representation of the solution under this theory. Kothari et al. (2010)
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have derived the fundamental solution for the thermoelastic problem of homogeneous

and isotropic medium, and by using this solution, the authors have examined the effect

of heat source and concentrated load on the unbounded medium. Analysis on the ef-

fects of TPL theory for the plane harmonic wave propagation has been carried out by

Kumar and Mukhopadhyay (2010a). Kumar and Chawla (2011) have investigated the

plane wave propagation in an anisotropic thermoelastic medium under DPL and TPL

thermoelasticity theories. El-Karamany and Ezzat (2013) have established the gener-

alization of the TPL theory of inhomogeneous and anisotropic medium in the context

of micropolar thermoelasticity theory and also presented some theoretical results based

on this theory. Kothari and Mukhopadhyay (2013) have investigated the thermoelas-

tic interactions inside a functionally graded hollow disk by applying the finite element

method along with the Laplace transform technique. Abbas (2014) has examined the

effect of TPL theory inside the fiber reinforced anisotropic medium. Later on, Othman

and Said (2014) have investigated a two dimensional magneto-thermoelastic problem of

fiber reinforced medium under the TPL theory. Kumar et al. (2015) have established a

domain of influence theorem under the three-phase-lag thermoelasticity theory. Biswas

et al. (2017) have investigated the propagation Rayleigh wave under the TPL ther-

moelasticity theory. The study carried out by Singh et al. (2019), Abouelregal (2019),

Kumar and Mukhopadhyaya (2020), Liu and He (2020), Mondal and Kanoria (2020),

Prasad and Kumar (2021), Othman and Abbas (2021) are also worth to be mentioned

in this context.

In 1972, Green and Lindsay (1972) demonstrated a completely different approach

to generalize Biot’s thermoelasticity theory, which is based on the modified Clausius

inequality (1967) and well established from the firm grounds of the irreversible ther-

modynamics. This theory has attracted the serious attention of researchers since its

development. Green (1972) investigated the propagation of acceleration waves under

the linear thermoelasticity based on the GL model. The generalization of the Green and
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Lindsay (GL) theory to the micropolar thermoelasticity has been derived by Boschi and

Iesan (1973). Further, Boschi and Iesan (1973) considered a plain stress condition in

linear thermoelasticity under the GL theory and applied the associated matrix method

to demonstrate the Galerkin type representation. Moreover, authors have used this

representation to obtain the solution of the vibration problem under the concentrated

body forces and heat source. Dost and Tabarrok (1978) determined the condition for

the existence of acceleration waves in micropolar thermoelastic solids under GL the-

ory and formulated an implicit expression for the acoustic tensor, which provides the

speed of wave propagation. Igznaczak (1978b) derived the domain of influence theorem

based on the GL thermoelasticity theory and verified the finite speed of thermal wave

propagation theoretically. Further, Igznaczak (1978a) established the Boggio type de-

composition theorem for linear thermoelasticity theory under the GL model. Agarwal

(1978) considered a homogeneous and isotropic thermoelastic half space to study the

surface waves under LS and GL theories. Agarwal (1979) has further investigated the

propagation and stability for the time dependent plane harmonic waves under these

theories. Mechanical and thermal acceleration wave propagation under the nonlocal

thermoelasticity theory of the GL model has been examined by Lindsay and Straughan

(1979). A detailed literature review of the thermoelasticity theories predicting the finite

speed of thermal waves, including GL theory, has been reported by Igznaczak (1980).

Prevost and Tao (1983) considered GL theory to demonstrate the finite element formu-

lation for the transient problems of thermoelasticity. Chandrasekharaiah and Srikantiah

(1984) formulated the governing equations for the temperature-rate dependent theory

(GL theory) for thermo-pizoelectricity and proved a uniqueness theorem based on the

derived theory. Further, Chandrasekharaiah and Srikantiah (1984) discussed a problem

of homogeneous and isotropic unbounded thermoelastic body rotating with uniform

angular velocity and examined the effect of rotation on the characteristics of wave

propagation. Some theoretical results on temperature-rate dependent theory have been
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established by Chandrasekharaiah and Srikantaiah (1983) and Gladysz (1985). Tao and

Prevost (1984) applied the perturbation technique to study the wave propagation un-

der GL theory and analyzed the effects of relaxation time parameters. Ignaczak (1985)

investigated thermoelasticity theory with two relaxation times (GL theory) under in-

stantaneous heat source in an infinite medium and discovered a jump discontinuity in

displacement function. While studying the thermoelastic plane wave under GL the-

ory, Choudhuri (1985) analyzed the effect of rotation and the relaxation parameters

on wave propagation. Chen and Wang (1988) applied the finite element technique

along with the Laplace transform method to investigate the thermomechanical effects

inside an axisymmetric cylinder under GL theory. Noda et al. (1989) considered a

system of unified governing equations for the LS and GL theories and examined the

thermoelastic interactions inside a one dimensional infinite solid with a hole. Dhaliwal

and Rokne (1989) used the GL theory to solve a half space problem under a sudden

applied temperature rise and noted two discontinuities in the temperature and dis-

placement fields along with the infinite discontinuity for the stress fields at the wave

fronts. Roychoudhari and Roy (1990) considered the generalization of the GL theory

to magneto-thermoelasticity and studied the wave propagation due to thermal effect

in a finitely conducting half space. Several other problems of the thermoelasticity in

the context of GL theory has been investigated by Chandrasekharaiah and Murthy

(1991), Sherief (1992), Hetnarski and Ignaczak (1993), Sherief (1993; 1994), Anwar and

Sherief (1994), Chandrasekharaiah and Murthy (1994), Sanderson et al. (1995), Misra

et al. (1996), Singh and Kumar (1998), Singh (2000), Ezzat and El-Karamany (2002),

Othman (2003; 2004), El-Maghraby (2005), Youssef (2006a; 2006c), Abbas and Abd-

alla (2008). Othman (2010a) has analyzed the effect of rotation and thermal shock on

the magneto-thermoelastic half space under GL theory. Further, Othman (2010b) has

extended this work on electro-magneto-thermoelastic medium under GL theory. Darab-

seh et al. (2012) have investigated a thermoelastic problem of a functionally graded
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thick hollow cylinder under the GL theory. Sarkar and Lahiri (2012) have discussed the

modified Ohm’s law, including the effect of thermal gradient and charge density under

this temperature-rate dependent theory. Lotfy (2012) have discussed a two dimensional

mode-I crack problem of the fiber-reinforced thermoelastic medium under GL theory.

Othman et al. (2013) have studied the effect of temperature-rate on the thermoelastic-

ity theory under the influence of the gravitational field. Youssef and EL-Bary (2014)

have examined thermomechanical interactions under the GL theory by comparing the

behaviour of field variables under four different thermoelasticity theories. Filopoulos et

al. (2014) have developed an enhanced GL theory for the linear thermoelastic medium

with microstructures. Zenkour (2015) have analyzed the effect of thermal shock inside

a three dimensional thermoelastic medium and examined the results under different

thermoelasticity theories. Aouadi and Moulahi (2015) studied the optimal decay rate

for the unidimensional thermoelastic problem under GL thermoelasticity theory. Abbas

(2015) derived an analytical solution to study the free vibration problem of a thermoe-

lastic hollow sphere. Ailawalia et al. (2016) have examined the effect of internal heat

source on microelongated thermoelastic half space under GL theory and derived the

analytical expressions for the field variables. Kumar et al. (2016) have investigated

a problem of the cylindrical cavity to analyze the GL theory in the context of two-

temperature theory and highlighted the differences of GL theory with different other

thermoelasticity theories. Reflection and refraction of P wave have been examined at

the interface of thermoelastic and porothermoelastic medium by Wei et al. (2016).

Chyr and Shynkarenko (2017) have established a well-posedness result for the dynam-

ical problem of thermoelasticity under the GL theory. Ezzat and Al-Bary (2017) have

discussed the application of the magneto-thermoelasticity theory involving fractional

order derivatives for the perfectly conducting cylindrical cavity. Several other thermo-

mechanical problems have also been studied in recent years to explore the application

of GL theory (see the refs. Abd-alla et al. (2017), Kumar et al. (2017), Magaña et
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al. (2018), Ezzat et al. (2018), Aouadi et al. (2019), Guo et al. (2019), Quintanilla et

al. (2019), Marin et al. (2020a), Sherief et al. (2020), Mondal and Pal (2021), Sarkar

(2021)).

Modified GL (MGL) theory or strain and temperature-rate dependent theory (2018)

is a recently proposed thermoelastic model that attempts to overcome the drawback of

discontinuity in the displacement field and involving the effect of stain and temperature-

rate terms in the governing equations. This theory has gained attention from the re-

searchers who have investigated this theory in the contexts of different thermoelastic

problems and reported some interesting observations on this theory. Quintanilla (2018)

presented some qualitative results on this theory, including continuous dependence of

the solution on initial conditions and Phragman-Lindelof alternative for the spatial

behaviour of the solution. Gupta and Mukhopadhyay (2019a) derived the general so-

lution of the thermoelastic system of governing equations in terms of metamorphic

functions with the help of the representation theorem of Galerkin type solution under

MGL theory. Sarkar et al. (2019) investigated the reflection and wave propagation

in an isothermal stress free surface of a thermoelastic medium in this context. Fur-

ther, Singh and Mukhopahdhyay (2020) have considered a homogeneous and isotropic

cylindrical cavity under thermal shock and observed the infinite speed behaviour of the

thermal wave under the MGL thermoelasticity theory. Singh et al. (2020) derived the

fundamental solution for the distribution of thermal and elastic fields under the strain

and temperature-rate dependent theory (MGL theory). Sarkar et al. (2019; 2020) and

Sarkar and De (2020) have investigated the reflection and time harmonic wave propaga-

tion under different thermoelastic mediums and observed the existence of longitudinal

wave and one vertically shear type wave (SV wave). Gupta and Mukhopadhyay (2020)

have considered three different theories: LS, GL and MGL to study the harmonic plane

wave propagation and highlighted the differences under these thermoelasticity theo-

ries. Shakeriaski et al. (2021a) have considered the MGL theory to demonstrate the
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implementation of a nonlinear numerical method for solving the coupled thermoelastic

problems and also validated the numerical results by comparing them with the ana-

lytical solution of the corresponding problem. Recently, Shakeriaski et al. (2021b)

have reported the advancement of the recent thermoelasticity theories (including MGL

theory) and their applications. Mohamed et al. (2021) examined the thermal effect

on elastic solid due to absorption of the leaser pulse radiation under MGL theory. Al-

though the MGL has been studied for various thermoelastic problems. However, it is a

topic of active interest of researchers, and several thermoelastic problems are yet to be

investigated under this theory.

The two-temperature thermoelasticity theory is a generalization of thermoelastic-

ity theory for non-simple materials. Iesan (1970) considered a linear theory of two-

temperature thermoelasticity given by Chen et al. (1969) for homogeneous and isotropic

medium and presented the uniqueness theorem, variational principle and reciprocity re-

sults based on this theory. Warren (1972) has studied the two-temperature theory for

the cylindrical and spherical cavities of isotropic materials. Warren and Chen (1973)

have studied a wave propagation problem under the two-temperature theory. Nunziato

(1975) formulated the general condition for the acceleration wave inside the thermoelas-

tic medium and observed that the wave velocity of the two-temperature theory is always

greater than the Classical theory. Colton and Wimps (1979) examined the asymptotic

behaviour of the fundamental solution under the two-temperature theory of heat con-

duction. Here, the authors have also noted that the main effect of the two-temperature

theory is to mitigate the maximum compressive stress of the thermoelasticity theory

without two-temperature. Quintanilla (2004a) demonstrated the existence, uniqueness,

stability, and convergence of solution characteristics under the two-temperature the-

ory. Puri and Jorden (2006) proposed a generalization of the two-temperature theory

in the context of LS theory and investigated a wave propagation problem under this

theory. However, a more appropriate justification of the two-temperature theory for
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the isotropic medium has been proposed by Youssef (2006b). Further, Youssef and

AL-Harby (2007) have applied a state space approach to solve the thermoelastic prob-

lem of an infinite medium under the two-temperature LS theory. Moreover, Youssef

(2008) has solved a thermoelastic problem under the ramp type heating to study the

two-temperature LS theory. Abbas and Youssef (2009) and Ezzat et.al. (2009) have

solved the different thermoelastic problems to analyze the two-temperature theory in the

context of magneto-thermoelasticity. Magana and Quintanilla (2009) have considered

the two-temperature theory of the GL model and derived the uniqueness and growth

of the solution under two-temperature LS and GL theories. Quintanillla and Jordan

(2009) have presented an exact solution for the mixed initial boundary value problem

of two-temperature thermoelasticity theory in the context of DPL theory. Mukhopad-

hyay and Kumar (2009) have investigated the thermomechanical interactions inside

the infinite cylindrical cavity under the two-temperature LS theory. Ezzat and Awad

(2010) have derived the constitutive relations for the micropolar thermoelasticity of

two-temperature and established the uniqueness results based on this theory. Youssef

(2010) and Youssef and El-Bary (2010) have solved different thermoelastic problems

under the two-temperature LS theory. Kaushal et al. (2010) have solved a thermoe-

lastic problem and compared the results under the two-temperature versions of LS and

GL theories to highlight the differences between these two theories. Convolutional type

variational principle for two-temperature thermoelasticity theory for the homogeneous

and isotropic medium has been established by Kumar et al. (2010). Further, Kumar

and Mukhopadhyay (2010b) have studied the propagation of plane harmonic waves in-

side a thermoelastic medium under two-temperature theory. Banik and Kanoria (2011)

employed the two-temperature theory to investigate the behaviour of the physical field

variables inside an infinite thermoelastic medium with a spherical cavity under the LS

and GN models. El-Karamany and Ezzat (2011a) have introduced the fractional order

term in the two-temperature relation and derived a fractional thermoelasticity theory
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of two-temperature model and also proved the uniqueness and reciprocity theorems

on this model for the homogeneous and isotropic medium. Further, El-Karamany and

Ezzat (2011b) and Youssef and Elsibai (2015) have investigated the two-temperature

generalization of the Green and Naghdi (1991; 1992; 1993) theory and shown that this

generalization exhibits the dissipation of energy for the nonzero values of the two-

temperature parameter. Mukhopadhyay et al. (2011) and Singh and Bijarnia (2012)

have studied the two-temperature version of the DPL thermoelasticity theory. Prasad

and Mukhopadhyay (2012) have investigated the effect of rotation on the harmonic

wave propagation of the two-temperature thermoelasticity theory. Kumar et al. (2017)

have performed an in-depth analysis of plane harmonic waves under two-temperature

thermoelasticity of GL model and observed that the longitudinal wave is coupled with

the temperature effect. However, the transverse wave has no effect on the thermal field.

Miranville and Quintanilla (2017) have discussed the spatial behaviour of the solutions

under the two-temperature LS and GL thermoelasticity theories. Mukhopadhyay et al.

(2017) have applied the Hilbert space framework to investigate the well-posedness of

the governing equations of the two-temperature thermoelasticity theory. An alterna-

tive two-temperature thermoelastic model has also been proposed here in which one

can avoid involving roots of an unbounded operator. An et al. (2017) have presented

a generalization to the two-temperature model involving the coupled phonon interac-

tions in the nanosized graphene. Sur and Kanoria (2017) have investigated the effect of

temperature dependent thermal loading inside three dimensional thermoelastic medium

under the TPL version of two-temperature theory. Youssef and Al-Bary (2018) have

proposed new two-temperature relation predicting the finite speed of thermal waves.

Zenkour (2018) examined the thermomechanical interactions inside a micro beam under

the refined two-temperature multi phase-lag theory of thermoelasticity. Kaur and Lata

(2019) have addressed the hall current effect on the plane wave propagation inside a

transversely isotropic elastic medium in the context of fractional order two-temperature
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theory. Mittal and Kulkarni (2019) have investigated a thermoelastic problem under

the fractional order two-temperature theory. Deng et al. (2020) have applied the

two-temperature theory to study the non-equilibrium transport involving weak phonon

coupling. Sur and Mondal (2020a) have applied the two-temperature theory to examine

the non-locality effect in the vibration of microbeams. Recently, Abbas et al. (2021),

Lotfy (2021), Youssef et al. (2021) have used the two-temperature theory in the context

of different thermoelastic models to study the various thermomechanical problems.

The study of porous materials includes a large class of engineering problems re-

lated to water saturated soil, sound absorbing materials, asphalt concrete pavements

etc. Porous solids also exist in nature in the form of crustal and reservoir rocks in

the earth and therefore have a wide range of applications in the field of geophysics

and related topics. The researchers are devoting increasing attention to study the

thermal and mechanical interactions in the porothermoelastic solids. Treitel (1959),

Armstrong (1984), Jacquey et al. (2015), Fu (2012) etc., have successfully verified

its geophysical relevance by investigating seismic attenuation, geothermal and hydro-

carbon exploration. Bear et al. (1992) and Levy et al. (1995) have dealt with the

fluid transport phenomenon through a porous medium and derived basic equations for

the microscopic dynamics. It is worth mentioning that Biot (1962a; 1962b; 1964) has

extended the concept of poroelasticity to the acoustic wave propagation theory. Biot

and Temple (1972), Rice and Cleary (1976) have discussed different problems based

on poroelasticity. Pecker and Deresiewicz (1973) have further included the thermal

effects in poroelasticity and studied the wave propagation in liquid filled porous media.

Crown and Nuziato (1983) have developed the linear theory for elastic materials with

voids. Mctigue (1986), Kurshige (1989), Wang and Papamichos (1994) have discussed

the problems on fluid saturated solid rocks and explained the heat and fluid flow in

a poroelastic medium. Several authors have further worked on the evolution of the

theory to various thermomechanical problems (see refs. Fourie and Du Plessis (2003);
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Wang (2017); Ghassemi and Diek (2002)). While incorporating the thermal effects,

most of these authors have followed Biot’s theory of heat conduction (1956b). During

the last few years, several developments have been made to the theory of thermoe-

lasticity, which motivated the researchers to establish various generalized theories and

further investigate the theoretical results, including uniqueness, stability analysis, ex-

istence, reciprocity and domain of influence results. The developments of generalized

porothermoelasticity theory, thermoelasticity theory for materials with voids, thermoe-

lasticity with double porosity, the theory of dipolar bodies are worth to be mentioned

in this direction. In 2007, Youssef (2007) has established a theoretical foundation to the

generalized theory of porothermoelasticity admitting finite speed of heat signals. He

derived the governing equations for isotropic medium and also proved the uniqueness

theorem based on this theory. Sharma (2008b) has discussed the results of wave prop-

agation under porothermoelasticity. Sherief and Hussein (2012) have also derived the

mathematical model for porothermoelasticity theory for the short time filtration cases

and investigated the uniqueness and reciprocity results corresponding to the proposed

model. Nunziato and Cowin (1979) had established the theory for the behaviour of elas-

tic porous structures. Later on, in 2014, Ishan and Quintanilla (2014) have extended

the Nunziato–Cowin theory of materials with voids and derived the thermoelasticity

theory for the materials with double porosity. In their work, they have also shown the

uniqueness results of a double porosity problem using the logarithmic convexity argu-

ment. Emin et al. (2021) have also discussed the uniqueness results for thermoelastic

materials with double porosity structures. Rohan et al. (2016) have studied the fluid

saturated elastic media with double porosity by deriving effective parameters of the

static problems. The fractional thermoelasticity for the porous asphalt materials has

been founded by Ezzat and Ezzat (2016). Roubíček (2017) has formulated a geophysical

model for the heat and fluid flow in a damageable poroelastic medium. Miller and Penta

(2020) have derived quasi-static governing equations for the macroscale behaviour in
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the poroelastic solids. Iovane and Passarella (2004) have studied Saint-Venant’s prin-

ciple in a dynamical porous elastic medium with a memory of heat flux and obtained

the domain of influence theorem accordingly. Iesan and Quintanilla (2014) have used

the semi-group approach to show the existence results for the double porosity theory.

Marin and Nicaise (2016) have derived the existence and exponential stability results

for the dipolar thermoelastic bodies with double porosity. Further, Marin et al. (2015)

have established an extension to the theory of double porosity to the micropolar bodies.

To mention some more interesting results for the theory of dipolar thermoelastic bodies,

we refer to the work carried out very recently by Marin et al. (2020c) and Marin et

al. (2020b). Liu and Chen (2017) have investigated the well-posedness and exponential

decay results for porothermoelastic systems having a time varying delay term in the

internal feedback. Zampoli and Amendola (2019) have shown the spatial behaviour

using the domain of influence results for the cylindrical anisotropic and inhomogeneous

porothermoelastic solid under dual-phase-lag and three-phase-lag theories. Marin et

al. (2020e) have formulated the domain of influence results for the initially stressed

thermoelastic solid with voids. Wei and Fu (2020) have derived the fundamental solu-

tion for the porothermoelastic solids. Recently, Marin et al. (2020d) have derived the

structural stability results for an elastic body with voids. Along with the theoretical

development, several thermomechanical problems have also been investigated to study

the effects of porosity on the thermoelastic solid under various thermal and mechanical

loads. The effect of thermal loading due to laser pulse on thermoelastic porous medium

under a thermoelasticity has been discussed by Othman and Marin (2017). Sherief and

Hussein (2012) have solved a half space problem to study liquid filled solid medium

under applied thermal shock. Ezzat and Ezzat (2016) have solved a porothermoelastic

problem under the fractional order theory. Carcione et al. (2019) have carried out a

numerical simulation to study the wave propagation in the porothermoelastic solid. Sur

(2020) has analyzed the wave propagation in porous asphalts on accounts of a memory
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response. Alzahrani and Abbas (2020a) have implemented the finite element method

to solve a one dimensional problem of porothermoelasticity under Green and Naghdi

theory. Saeed et al. (2020) have considered the governing equations for temperature-

rate dependent (GL) theory of porothermoelasticity for isotropic medium and solved

a one dimensional problem using FEM. Alzahrani and Abbas (2020b) and Guo et al.

(2019) have analyzed different thermomechanical problems in this context. Guo and

Xiang (2021) have analyzed the effect of the visco-elastic relaxation parameters on the

homogeneous and isotropic hydro-thermoelastic medium.

1.7 Objective of the Thesis

The main objective of the present thesis is to study some aspects of temperature-rate

dependent (TRD) thermoelasticity theory and analyze its applications to the various

thermomechanical problems. It also aims at developing various generalizations of the

TRD theory to different thermomechanical contexts and establish some useful theoret-

ical results on these theories. Applications of the theories are further elaborated by

solving different thermomechanical problems. Implementation and efficiency of an al-

ternative numerical technique are also dicussed in the thesis for the solution of coupled

dynamical thermoelastic problems.

To understand thermomechanical behaviour of TRD theory, a thermoelastic prob-

lem of the hollow disk is formulated in the context of LS and TRD thermoelasticity

theories and a unified system of governing equations is derived. Along with the investi-

gation of the TRD theory, an implementation of the complete finite element approach is

presented as an alternative and more efficient approach as compared to trans-finite ele-

ment approach for solving the dynamical problems of thermomechanics. The differences

in results under the two theories are highlighted. In order to investigate the strain and

temperature-rate dependent theory, a thermoelastic problem of the functionally graded
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hollow disk is further solved in a unified way under TRD and STRD theories, and the

effects of the strain-rate term in the theory of thermoelasticity are investigated. The

functionally graded material is taken to study the thermoelastic interactions due to

variable material configuration.

An attempt is made to derive the basic governing equations of the two-temperature

generalization of the TRD theory by following the principles of irreversible thermo-

dynamics. This theory is not yet available in the literature. A more general two-

temperature relation involving the temperature-rate term is derived here. Further, this

new relation is examined for one dimensional half space problem. Thermoelastic inter-

actions due to applied thermomechanical load in a two dimensional medium with the

presence of crack inside the medium are further investigated in this context. The effects

of temperature-rate terms are analyzed in detail.

Investigation on thermomechanical interactions inside a porothermoelastic material

in the context of generalized thermoelasticity theories is limited in literature, and the

porothermoelasticity theory in the context of TRD theory for the anisotropic medium

is not yet proposed in the literature. Therefore, to establish TRD porothermoelasticity

(TRDPTE), a mathematical formulation from fundamental laws of thermodynamics is

presented by using the necessary constitutive assumptions. Some basic fundamental

theorems are established in the context of this new theory. An applications of this

theory is further elaborated by considering a half space problem to investigate the

thermomechanical interactions due to the application of thermal shock at the boundary

of the two phase medium. The present analysis illustrates various essential aspects of

the theory which serve the purpose of the thesis.
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