
Chapter 6

On the evolution of magnetic

shock wave in the mixture of gas

and small solid dust particles

“Go down deep enough into

anything and you will find

mathematics.”

-Dean Schlicter

6.1 Introduction

The study of effect of small solid dust particles on the evolution of weak shock wave

has gained significance due to its application in the area of medical sciences and

engineering e.g., in treatment of cancer, kidney stone disease, orthopedics etc. The

weak shock waves are utilized to break the stone into small pieces. The study of
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physical phenomena such as movement of small solid dust particles in rocket exhaust,

astrophysical problem and dust flow in geophysical problems is also very important.

When a weak shock wave is propagated in a dusty gas flow with magnetic field then

density, pressure, velocity and the energy carried by a weak shock wave changes

across the shock and has a significant difference from those which arise when the

weak shock wave passes through an ideal gas flow and dusty gas flow. Most of the

physical phenomenon occuring in the nature are represented by quasilinear hyper-

bolic system of partial differential equations [110, 19]. In the nonlinear systems, the

wave is considered as the moving surface along which the flow variables and their

derivatives suffer certain kind of discontinuity that are carried along the surface.

Further, the occurrence of these type of discontinuities are natural phenomenon in

several physical situations like collision of galaxies, supernova explosions, space sci-

ence, photo ionized gas, space re-entry vehicles, stellar winds and other astrophysical

situations.

Dusty gas is considered to be mixture of gas and small solid dust particles where

these dust particles attain less than five percent of total volume Miura [158]. At very

high speed of fluid, these small solid particles behave as a pseudo fluid Pai [159].

Also, the study of evolutionary behaviour of shock wave in the mixture of gas and

dust particles has grabbed more attention in many areas of industrial applications

and space exploration such as collision of interplanetary objects, supersonic flights

in polluted air, metallized propellant rocket, safe explosion into coal mines, under

ground explosions, interstellar masses, explosive volcanic eruptions, movement of

high speed vehicle in sand storms, application in space and other fields. Further,

the presence of dust particle increases the shock formation distance Chaturvedi et

al. [115].

The main motivation to work on magnetogasdynamics with dust particles is its appli-

cation in Astrophysics as dusty plasmas are common in astrophysical environments;
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examples range from the interstellar medium to cometary tails and planetary ring

system. Where there are plasmas, there are charged particle zipping around and

thus, there are magnetic fields. So the magnetic fields threading the planet and sun,

the solar system, distant nebulas and even the galaxy itself. The change of the dust

charge, when it is transferred from the region of weak magnetic field to the region of

strong magnetic field can be used in many experiments. The change of dust charges

by magnetic fields is important in dust shocks, in strong magnetic fields where the

value of the magnetic field suddenly changes at the surface of the shock. The con-

sideration of the mixture of an infinitely conducting gas and inert dust particles

(obeying Pai’s dusty gas model) as an infinitely conducting mixture may be a good

approximation when the volume fraction of solid particles in the mixture is much

smaller than that of the gas in the mixture. The magnetogasdynamic equations of

motion can then be supposed to describe the flow of such a dusty gas in presence of

a magnetic field. Consolmagno [160] has shown the influence of the Interplanetary

Magnetic Field on Cometary and Primordial Dust Orbits. Morfill and Grün [161]

described the motion in charged dust particles in interplanetary space.

Our main motive of the present work is to analyze the evolution of shock wave in

magnetogasdynamic flow with dust particles. By using the method of progressive

wave approach, the evolution of magnetic shock wave in mixture of gas and small

solid dust particles has not been analyzed by anyone untill now. Though the problem

has significant applications in many areas such as nuclear physics, plasma physics,

geophysics and astrophysics etc. The propagation of shock wave in dusty gas flow

with magnetic field is more complex natural phenomenon as compared to ideal gas

flow. The investigation of asymptotic nature of non-linear wave propagation and its

analysis have been discussed by using several approaches in different gaseous media.

Using the ray method, Hunter [162] obtained the weakly nonlinear wave solution

of quasilinear hyperbolic system. Choquet-Bruhat [58] considered the asymptotic
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technique to analyze the weakly non-linear wave propagation in which they have

determined the shockless solution of hyperbolic system. Most of the authors such as

Fusco and Engelbrecht [39], Germain [163], Fusco [37], Sharma et. [40] and Singh et

al. [118] have discussed weakly non-linear wave evolution in different gaseous media

by using the progressive wave technique.

The problem of investigation of asymptotic behaviour of the governing system of

quasilinear hyperbolic partial differential equations has got remarkable attention by

many researchers. Singh et al. [118] have utilized the asymptotic technique to study

the evolution of shock waves in magnetogasdynamic flow with radiation. Nand-

keolyar et al. [143] have studied the hydromagnetic natural convection flow of a

incompressible dusty fluid in the presence of transverse magnetic field and thermal

radiation. Nath [164] investigated the evolution of shock wave in a rotational ax-

isymmetric non-ideal gas flow with magnetic field. In last few decades, most of the

authors have focussed on the shock related phenomenon in which they have analyzed

the effect of dust particles in gas flow. Nath et al. [43] determined the influence

of dust particles on the propagation of shock wave. Chaturvedi et al. [115, 165]

analyzed the propagation of shock wave in planar and non-planar ideal gas flow in

the presence of small solid particles. Nath [141] studied the evolution of exponential

shock wave in non-ideal gas flow with small solid dust particles. By using the asymp-

totic technique, Gupta et al.[140] discussed the asymptotic behaviour of shock wave

in non-ideal radiating gas flow. Nath [166, 167] obtained the self similar solution for

one dimensional unsteady flow of dusty gas. Vishwakarma et al. [168] investigated

the propagation of diverging cylindrical shock waves in a weakly conducting dusty

gas (mixture of a perfect gas and small solid particles) under the influence of a spa-

tially variable axial magnetic induction.

The main objective of the present work is to analyze the process of weak shock

wave propagation in an inviscid, compressible, dusty gas under the influence of axial
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magnetic field. By utilizing the weakly non-linear asymptotic technique, an equation

governing the process of weak shock wave propagation in dusty gas flow with axial

magnetic field has been derived. A Bernoulli type evolution equation is obtained

here which determines the wave propagation phenomenon. The condition for time

of first wave breaking for planar and non planar flow has been computed. We also

derive equation governing the evolution of acceleration wave in a dusty gas flow in

magnetogasdynamic regime. The shock relations for the weak shock wave have been

derived which is utilized to compute the relations for the length(l) and velocity (v)

profile of half N-wave for both the cases, non-planar and planar flow. Further, we

present the results obtained graphically to analyze the effect of mass fraction of solid

particles on the propagation of weak shock wave in magnetogasdynamic flow. Also,

we analyze the effect of Alfven number on the evolutionary process of weak shock

wave in the presence of small solid dust particles. Kumar [169] discussed about the

particular solutions of cylindrical shock waves in magnetogasdynamics. Tao and

Duan [170] have studied the effects of the dust size distribution on the shock wave

in dusty plasma. Gupta et al. [171] have analyzed the interaction of waves in one-

dimensional dusty gas flow. Nath et al. [172] have obtained the self-similar solution

for the flow behind an exponential shock wave in a rotational axisymmetric non-ideal

gas with magnetic field. An analysis of the ion temperature gradient driven mode

solitary and shock waves in superthermal plasma is presented by Rehan et al. [173].

Formation of ion-acoustic shock waves and their propagation nature in a magnetized

plasma in the presence of superthermal trapped electrons are investigated by Sul-

tana [174]. Sahu [175] analyzed the shock wave propagation in perfectly conducting

rotational axisymmetric two-phase medium with increasing energy under the action

of heat conduction and radiation heat flux. Rehab M. and El-Shiekh [176] obtained

the novel solitary and shock wave solutions for the generalized variable-coefficients

(2+1)-dimensional KP-Burger equation arising in dusty plasma.
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The present work is divided into sections as: In second section, we present the fun-

damental equations of motion and determine the characteristics of the governing

system of PDEs. In third section, by applying the asymptotic expansions, we have

determined the transport equation. Also, the conditions for first wave breaking have

been derived. The analysis of previous section is utilized to discuss the evolutionary

behaviour of acceleration wave in fourth section. In section fifth, Rankine-Hugoniot

jump conditions are derived for weak shock wave in dusty gas flow with axial mag-

netic field. The shock relations derived in section fifth have been utilized to discuss

the propagation of weak shock wave in the form of half N-wave and find the relations

for length and velocity of saw-tooth profile in section six. The results obtained were

computed and presented graphically to analyze the effect of small solid particles and

axial magnetic field on the velocity and length of half N-wave. In the last section,

the conclusion of the present work is given.

6.2 Governing equation

The fundamental equations for one dimensional unsteady motion of a dusty gas in

the presence of a transverse magnetic field may be written as [177, 168],

∂ρ

∂t
+ ρ

∂v

∂r
+ v

∂ρ

∂r
+
ρnv

r
= 0, (6.1)

∂v

∂t
+ v

∂v

∂r
+

1

ρ

(
∂p

∂r
+
∂h

∂r

)
= 0, (6.2)

∂p

∂t
+ v

∂ρ

∂r
+ ρC2

(
∂v

∂r
+
nv

r

)
= 0, (6.3)

∂h

∂t
+ v

∂h

∂r
+ 2h

(
∂v

∂r
+
nv

r

)
= 0, (6.4)
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where, ρ and p represent the fluid density and pressure respectively. t is the time, r

is the spatial coordinate and v denotes fluid velocity. h is magnetic pressure defined

as h =
νH2

2
, where ν represents magnetic permeability and H is the transverse

magnetic field which is axial in planar case (n = 0) and in the cylindrical case,

the magnetic lines of force can be straight lines parallel to the axis of symmetry or

concentric circles with centres on the axis of symmetry. The letter n will take value

0 for planar flow and value 1 for cylindrically symmetric flow.

The quantity C is the equilibrium speed of sound which can be written as

C =

(
Γp

ρ(1− θρ)

)1/2

, (6.5)

where, Γ =
γ(1 + λβ)

(1 + λβγ)
, λ =

kp
(1− kp)

, β =
csp
cp

, γ =
cp
cv

.

Here cp and cv denotes the specific heat of the gas at constant pressure and constant

volume respectively and csp represent the specific heat of the solid particles.

The volume fraction Z is defined as,

Z =
Vsp
Vg

and in the mixture, kp is constant which represents the mass fraction of the solid

particles which defined as,

kp =
msp

mg

.

Here, Vsp and msp represent the volumetric extension and the total mass of the solid

particles respectively. Vg denotes the total volume and mg denotes total mass of the

mixture. The relation between Z and kp are represented by the equation Z = θρ,

where θ is constant which is defined as θ =
kp
ρsp

, with ρsp being the species density

of solid particles.
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The equation of state is written as

p =
(1− kp)
(1− Z)

ρRT, (6.6)

where, T and R are the temperature of the gas and gas constant respectively.

Now, the matrix form of system of equations (6.1) to (6.4) may be written as

∂V

∂t
+M

∂V

∂r
+N = 0. (6.7)

Here,

V =



ρ

v

p

h


,M =



v ρ 0 0

0 v 1
ρ

1
ρ

0 ρC2 v 0

0 2h 0 v


, N =



nρv
r

0

mρC2v
r

2hnv

r


. (6.8)

The system of equation (6.7) can be written in the following form

V i
t +M ijV j

r +N i = 0, i, j = 1, 2, 3, 4, (6.9)

where, M ij are components of matrix M . V i and N i are components of column

vector V and N respectively.

The eigenvalues of the matrix M are given as

λ1 = v − a, λ2 = v, λ3 = v, λ4 = v + a. (6.10)



Chapter 6. On the evolution of magnetic shock.... 131

Hence, system of equation (6.7) is hyperbolic.

Here, a is magneto-acoustic speed defined as

a = (C2 + d2)1/2 =
Γp

ρ(1− θρ)

(
1 +

d2

C2

)1/2

=
Γp

ρ(1− θρ)
µ1/2, (6.11)

where, d =

(
2h

ρ

)1/2

is the Alfven speed and µ = 1+
d2

C2
is constant which represents

Alfv́en number. The left and right eigenvector corresponding to the eigenvalue λ4

of the matrix M are

lT =



0

ρa

1

1


, k =



1

a
ρ

C2

d2


, (6.12)

where, superscript denotes transposition.

The following cases may arise on the dependence of the parameter Γ, θ and µ:

Case 1: When θ = 0, µ = 1 and Γ = γ then a2 =
γp

ρ
. Hence mixture converts in

an ideal gas.

Case 2: When θ = 0, µ > 1 and and Γ = γ then a2 =
γp

ρ
µ1/2. Hence It becomes

magnetogasdynamics flow without dust particles.

Case 3: When θ 6= 0, µ = 1 then a2 =
Γp

ρ(1− θρ)
. Hence mixture converts in ideal

gas with small solid dust particles.

Case 4:When θ 6= 0, µ > 1 then a2 =
Γp

ρ(1− θρ)
µ1/2. It becomes the case of

magnetogasdynamics flow with dust particles.
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6.3 Progressive Wave Solutions

By applying the asymptotic expansion, we obtained the asymptotic solution of (6.7)

which exhibits the characterization of progressive waves. Now, an asymptotic ex-

pansion for V i is written as

V i(x, t) = V i
0 + εV i

1 (r, t, ψ) +O(ε2). (6.13)

Here, V i
0 is known constant solution of Eq.(6.7) with N i(V0) = 0 and all the re-

mainning terms in Eq.(6.1) exhibits the character of progressive waves. ε is small

parameter which depends upon the physical problem to be studied. The magnitude

of ε depends on the physical problem which is considered here. The parameter ε

is ratio of characteristics time scale of medium (τchr) and attenuation time (τat)

such that ε = τch/τa � 1. The variable ψ is known as ”fast variable” defined by

ψ = F (r, t)/ε, where F (r, t) determined the wavefront and it is known as phase func-

tion. It is noticed here that the situation τchr � τa i.e. characteristics time scale

of medium is very small as compared to attenuation time which is corresponding to

the propagation of high frequency wave [130].

Now, by using the asymptotic expansion from Eq.(6.13) and applying the Taylor’s

series expansion for M ij and N i in the neighbourhood of V i
0 (uniform solution), we

obtained

M ij = M ij
0 + ε

(
∂M ij

∂V k

)
0

V k
1 +O(ε2), (6.14)

N i = N i
0 + ε

(
∂N i

∂V k

)
0

V k
1 +O(ε2). (6.15)

Hence, by utilizing the Eq.(6.13) to (6.15) in (6.9) and equating to zero the coefficient

of ε0 and ε1, we obtained (
M ij

0 − λδij
) ∂V j

1

∂ψ
= 0, (6.16)
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(
M ij

0 − λδij
) ∂V j

2

∂ψ
+

(
∂V i

1

∂t
+M ij

0

∂V j
1

∂r

)
F−1
r +V k

1

(
∂M ij

∂V k

)
0

∂V j
1

∂ψ
+F−1

r V k
1

(
∂N i

∂V k

)
0

= 0.

(6.17)

Here, λ = −Ft/Fr and δij is defined as Krönecker delta. The subscript 0 represents

that the quantity associated is determined at constant state V0. With the help of

Eq.(6.16), characteristics polynomial is obtained as λ2(λ2−a2
0) = 0, giving the eigen

values of M0 as ±a0 6= 0. From Eq. (6.12), the left and right eigenvectors with

respect to eigen value λ = a0 of matrix M0 are given by

lT =



0

ρ0a0

1

1


, k =



1

a0/ρ0

C2
0

d2
0


. (6.18)

By Eq.(6.16), we analyzed that
∂V1

∂ψ
is collinear to k0, therefore V1 can be represented

as

V1(r, t, ψ) = P (r, t, ψ)k0 + Ω(r, t). (6.19)

Eq.(6.19) determines the solution of Eq.(6.17), where P (x, t, ψ) is known as ampli-

tude factor to be calculated letter. Ωi are constants of integration which are compo-

nents of the vector Ω and these are not of the nature of progressive wave, therefore

it may be neglected. Further, the phase function i.e. F (r, t) may be written as

Ft + a0Fr = 0, (6.20)

and if F (r, 0) = r − r0, then

F (r, t) = (r − r0)− a0t. (6.21)
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Hence, by multiplying Eq.(6.17) with li and utilizing Eq.(6.21) in resulting equation

we obtained the following equation for P , which is used to analyze the evolution of

the disturbance

∂P

∂τ
+ A0P

∂P

∂ψ
+B0P = 0, (6.22)

where
∂

∂τ
=

∂

∂t
+ a0

∂

∂r
, is the ray derivative which is taken along the ray direction.

Here

A0 = km0

(
∂(v + a)

∂V m

)
0

=
(Γ + 1)C2

0

2ρ0a0(1− Z0)
+

3

2

d2
0

ρ0a0

> 0, (6.23)

B0 = (li0k
i
0)−1

0

(
(lj0r

k
0)
∂N i

∂V m

)
0

=
na0

2r
, (6.24)

where, B−1
0 has dimension of time and it can be taken as consisting of attenuation

time τat determining the medium. Further, we obtained that Eq.(6.22) is hyperbolic

partial differential equation and its characteristics curve can be written as:

Case I: For planar flow (n = 0)

ψ = ψ0 + τA0η(r0, ψ0). (6.25)

Case II: For cylindrically symmetric flow (n = 1),

ψ = ψ0 + 2A0η(r0, ψ0)
r0

a0

[(
r0 + a0τ

r0

)1/2

− 1

]
. (6.26)

Here, η(r0, ψ0) = P |τ=0, ψ0 =
F |τ=0

ε
and r = r|τ=0. Further, we ensure about

the formation of shock wave by the Eq.(6.25) and Eq.(6.26) which provides the

existence of an envelope of characteristics curves. From above discussion it is clear

that the shock formation is confirmed for only those characteristics which satisfy

the condition τ > 0, i.e.
∂η

∂ψ0

< 0. The time of shock formation for planar and

cylindrical compressive waves can be obtained as
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Case I: For planar wave (n = 0),

τshf = min

[
A0|

∂η

∂ψ0

|
]−1

. (6.27)

Case II: For cylindrically symmetric wave(n = 1),

τshf = min

 r0

a0


a0 + 2r0A0|

∂η

∂ψ0

|

2r0A0|
∂η

∂ψ0

|


2

− 1


 . (6.28)

Here, the minimum value is determined on a suitable domain of the quantities r0

and ψ0.

6.4 Acceleration Waves

By using the above analysis, we analyze the acceleration waves for the governing

system of Eqs. (4.12) to (4.15). We consider that the acceleration front is denoted

by the curve F (r, t) = 0, across which the velocity is continuous but it’s first and

higher order derivatives admit jump discontinuities. Further, in the neighbourhood

of the acceleration front the velocity v can be expressed by the expansion

v = εv1(r, t, ψ) +O(ε2). (6.29)

Here v1 = 0 for ψ < 0 and v1 = O(ψ) for ψ > 0. With the help of Eq.(6.13), we

obtained that v1 is an element of column vector V1. Therefore, we have

P (r, t, ψ) =


0, if ψ < 0,

ψα(r, t) +O(ψ2), if ψ > 0,

(6.30)
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where α =

(
a0

c0

ω

)
with ω =

[
∂v

∂r

]
, denotes the jump in velocity gradient across the

acceleration front.

Further, with the help of Eq.(6.22) and Eq.(6.30) at the front ψ = 0, the resulting

equation becomes Bernoulli-type ordinary differential equation which can be written

in the following form

dω

dt
+B0ω + Λ0ω

2 = 0. (6.31)

Here, Λ0 =
1

2µ
(Γ(1 + Z0) + 3µ+ Z0 − 2) and B0 =

na0

2r
.

The solution of ordinary differential equation Eq.(6.31) is obtained as

Case I: For planar flow (n = 0),

ω =
w0

(1 + w0Λ0t)
. (6.32)

Case II: For cylindrically symmetric flow (n = 1),

ω =
ω0(

1 +
a0t

r0

)1/2

φ

, (6.33)

where, φ =

1 +
2Λ0

a0r0

((
1 +

a0t

r0

)1/2

− 1

)
ω0

 and ω0 = ω|t=0.

6.5 Weak shock

With the help of previous analysis, it is obvious that in the beginning compression

pulse may be weak but after a finite time it culminates into a shock wave. The flow

and field variables before the shock wave and after the shock wave are denoted by
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the subscript 0 and subscript ∗ respectively. These flow and field variables satisfy

the R-H jump condition for magnetogasdynamic flow with dust particles, written as

ρ∗ = ρ0(1 + δ), v∗ =
δU

(1 + δ)
, p∗ = p0 +

δ

(1 + δ)
ρ0U

2 − h0δ(2 + δ), h∗ = h0(1 + δ)2.

(6.34)

Here, δ =
(ρ∗ − ρ0)

ρ0

, represents the shock strength parameter and U represents the

the shock velocity. The shock strength parameter (δ) and shock velocity (U) are

related by

U2 =

2(1 + δ)

[
C2

0 + d2
0

(
(1− Z0δ)(1 +

δ

2
)− (Γ− 1)δ

2
(1 + Z0)

)]
2(1− Z0δ)− δ(Γ− 1)(1 + Z0)

, (6.35)

where, Z0 = θρ0.

Hence , δ � 1 for weak shock wave. Therefore, by the first approximation of

Eq.(6.35) we obtained

U = a0

(
1 +

δΛ0

2

)
. Subsequently, Eq. (6.34) yield the first approximation as

ρ∗ = ρ0(1 + δ), v∗ = a0δ, p∗ = p0(1 + Γδ(1 + Z0)), h∗ = h0(1 + 2δ). (6.36)

6.6 Decay of progressive wave in the form of half

N-wave (sawtooth profile)

In this section, we determined the velocity and length of sawtooth wave (half N-

wave). By traveling a long distance from the body moving with supersonic speed,

sawtooth wave is originated Whitham[19]. Hence, sawtooth wave becomes suffi-

ciently weak in the beginning therefore one may apply the R-H jump relation from

Eq.(6.36) Zierep [33]. Further, we analyze the advancement of disturbance in the
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shape of sawtooth wave (half N-wave) which is represented in Fig.1.

The left segment of sawtooth wave was situated initially at point r0 and travels with

magnetosonic speed a0 in the medium at rest and right segment of sawtooth wave

was placed initially at point rs0 moves faster. In the beginning, let us suppose that

l0 is the length of sawtooth wave (half N-wave). By suppressing the subscript ∗, let

us represent v and a by the state at the rear side of the shock wave which is placed

at time t as:

rs(t) = r0 + a0t+ l(t),

where, at any time t, l(t) denotes the length of the sawtooth wave (half N-wave).

Hence,

U =
drs
dt

= a0 +
dl

dt
. (6.37)

Further, with the help of Eq.(6.36) we obtain

U = a0 +
vΛ0

2
. (6.38)

The particle velocity v at the rear of the weak shock heading the sawtooth profile

(half N-wave) can be expressed as [33]:

v = l(t)ω, (6.39)

where, ω =

(
∂v

∂r

)
r−r0=a0t

, represents the slope of half N-wave(sawtooth wave) at

any time t which is obtained by Eq.(6.32) and (6.33).

Now, with the help of Eq.(6.38) and Eq.(6.39) and comparing the resulting expres-

sion with Eq.(6.37), we have

dl

dt
=
ωlΛ0

2
. (6.40)
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It is noticed here that ω0, l0 and U0 denote the value of ω, l and U at time t = 0

respectively. Also, by solving the Eq.(6.38) and Eq.(6.39) at time t = 0, we obtained

ω0 =
2(U0 − a0)

l0Λ0

. (6.41)

Hence, with the help of Eq.(6.40), Eq.(6.32) and Eq.(6.33) we get the length of half-

N wave.

Case I: For planar flow (n = 0),

l

l0
= (1 + ω0Λ0t)

1/2. (6.42)

Case II: For cylindrically symmetric flow (n = 1),

l

l0
=

1 +
2Λ0

a0r0

((
1 +

a0t

r0

)1/2

− 1

)
ω0


1/2

. (6.43)

By utilizing Eq.(6.32) and Eq.(6.33) and substituting in Eq.(6.40), the velocity of

sawtooth wave (half-N wave) can be written as:

Case I: For planar flow (n = 0),

v

v0

= (1 + ω0Λ0t)
−1/2. (6.44)

Case II: For cylindrically symmetric flow (n = 1),

v

v0

=

(
r0

r0 + a0t

)1/2

1 +
2Λ0

a0r0

((
1 +

a0t

r0

)1/2

− 1

)
ω0


−1/2

, (6.45)
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where, v0 = v|t=0 i.e. value of v which is determined at t = 0.

6.7 Results and discussion

In the present study, we discuss the growth and decay of half N-wave (sawtooth

wave) for different values of dusty gas parameters and axial magnetic field. The

effect of small solid particles and axial magnetic field present in the solution appear

through the parameters kp, β and µ. Eq.(6.42) represents the length and Eq.(6.45)

represents velocity of half N-wave (sawtooth wave) for planar and non-planar case.

Let us consider two cases to explain about the solution, the first one is planar case

and another one is cylindrically symmetric case. The velocity and length profile for

half N-wave are depicted in Figure 2 to 9. The values of constants r0, l0, U0 and ω0

are taken as 1 in calculations. Also, for case kp = 0 and β = 0.0, i.e. in the absence

of small solid particles the results are in close agreement with earlier results [40].

Figure 2 and 3 denote the variation of length of half N-wave for planar flow under

the influence of axial magnetic field and small solid particles. From Figure 2(a), it

is observed that the effect of mass fraction of solid particles(kp) decreases the length

of sawtooth wave (half N-wave). Further, it is obtained here that the influence of

increasing values of kp is to slow down the decay of sawtooth profile which is due to,

when a discontinuity passage through the dusty gas, the process of decay is slowed

down by the particles(dust particles) of large inertia. Also, the presence of the dust

particle in the medium contribute to shock strength. Figure 2(b) represents the

effect of β (ratio of specific heat of solid particles and specific heat of gas at constant

pressure) on the length of sawtooth wave (half N-wave) for planar case. The effect

of increasing value of β is to further decrease the length of half N-wave i.e. it will

slow down the decay process. From Figure. 2(a) and 2(b), it is noticed here that the



Chapter 6. On the evolution of magnetic shock.... 141

Figure 6.1: Formation and decay of Sawtooth wave (Half N-wave)
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influence of kp is to slow down the decay process of shock wave faster in comparison

to the case of β. Figure.3 depicts the variation of length of half N-wave under the

effect of mass fraction of solid particles and axial magnetic field for planar case. The

increasing value of magnetic field enhances the length of sawtooth profile. It is clear

that the effect of axial magnetic field causes to increase the growth rate of sawtooth

wave (Half N-wave) as compared to in the absence of magnetic field (µ = 1.0), i.e. it

will increase the decay process of shock wave. It is analyzed here that the influence

of mass fraction of solid particles (kp) causes to slow down the decay process faster

in the presence of axial magnetic field. Further, we obtained that under the coupling

effect of dusty gas and axial magnetic field the decaying process of shock wave is

slowed down in comparison to ideal gas. Figure.4 and Figure.5 depict the influence of

kp, β and µ on the length of half N-wave for cylindrically symmetric flow. Hence, it is

analyzed here that the decay process of sawtooth wave (Half N-wave) enhances with

respect to time in case of planar symmetry as compared to cylindrically symmetric

flow.

Figure.6 and 7 denote the the variation of velocity of sawtooth wave for planar case

under the influence of axial magnetic field and small solid particles. From Figure

6(a), it is observed that the effect of mass fraction of solid particles(kp) increases

the velocity of sawtooth wave. It is noticed here that the influence of increasing

values of kp is to slow down the decay of sawtooth profile. Figure 6(b) represents

the effect of β (ratio of specific heat of solid particles and specific heat of gas at

constant pressure) on the velocity of half N-wave for planar symmetry. The effect

of increasing values of β is to further increase the velocity of half N-wave, i.e. it will

slow down the decay process. From Figures. 6(a) and 6(b), it is noticed here that the

influence of kp is to slow down the decay process of shock wave faster in comparison

to the case of β. Figure.7 depicts the variation of velocity of half N-wave under the

effect of mass fraction of solid particles and axial magnetic field for planar case. The
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Figure 6.2: Variation of Length of sawtooth profile (l/l0) for different value of
mass fraction of solid particles (kp) and time(t) with γ = 1.67, β = 1.0, Z0 = 0.01

and µ = 1.0 for planar flow.

increasing values of axial magnetic field decreases the velocity of sawtooth profile.

It is clear that the effect of axial magnetic field causes to increase the growth rate of

sawtooth wave (Half N-wave) as compared to in the absence of axial magnetic field

(µ = 1.0), i.e. it will increase the decay process of shock wave. It is analyzed here

that the influence of mass fraction of solid particles (kp) causes to slow down the

decay process faster in the presence of axial magnetic field. Further, the influence of

axial magnetic field causes to slow down the decay process in the presence of mass

fraction of solid particles (kp). Figures. 8 and 9 represent the variation of velocity

of sawtooth wave (Half N-wave) for cylindrically symmetric flow under the influence

of axial magnetic field and small solid particles. It is observed here that the velocity

of sawtooth wave (Half N-wave) decreases faster with respect to time in non-planar

flow in comparison to planar flow.
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Figure 6.3: Variation of Length of sawtooth profile (l/l0) for different value of
β and time(t) with γ = 1.67, kp = 0.4, Z0 = 0.01 and µ = 1.0 for planar flow.

6.8 Conclusion

In the present study, the method of progressive wave approach is utilized to in-

vestigate the asymptotic solution of weakly non-linear wave moving in an inviscid,

compressible magnetogasdynamic flow with small solid particles. Also, we analyze

the effect of mass fraction of solid particles (kp), ratio of specific heat of solid par-

ticles and specific heat of gas at constant pressure (β) and axial magnetic field (µ)

on the evolution of sawtooth wave (Half N-wave) for planar flow and cylindrically

symmetric flow. Under the combined effect of axial magnetic field and small solid

particles (dusty gas), the length and velocity for shock wave is analyzed. For deter-

mining the evolution of disturbance in high frequency domain, an evolution equation

is derived here. Further, the condition for time of first wave breaking for planar and

non planar flow has been computed. It is observed here that the presence of mass
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Figure 6.4: Variation of Length of sawtooth profile (l/l0) for different value of
kp and µ with respect to time(t) with γ = 1.67, Z0 = 0.01, and β = 1.0 for planar

flow.

fraction of solid particles (kp) and β both causes to slow down the decay process

since the presence of the dust particle in the medium contribute to shock strength.

Also, it is obtained that the effect of axial magnetic field causes to increase the

growth rate of sawtooth wave (Half N-wave) as compared to in the absence of axial

magnetic field. The effect of axial magnetic field causes to slow down the decay pro-

cess in the presence of mass fraction of solid particles (kp). Further, it is observed

here that the decay process of sawtooth wave (Half N-wave) enhances with respect

to time in case of planar flow as compared to cylindrically symmetric flow.
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Figure 6.5: Variation of Length of sawtooth profile (l/l0) for different value of
mass fraction of solid particles (kp) and time(t) with γ = 1.67, β = 1.0, Z0 = 0.01

and µ = 1.0 for cylindrically symmetric flow.



Chapter 6. On the evolution of magnetic shock.... 147

β=0.0

β=0.2

β=0.4

β=0.6

β=0.8

0 1 2 3 4
0.5

1.0

1.5

2.0

2.5

3.0

Time[t]⟶

Le
ng
th
[l/
l 0
]⟶

Figure 6.6: Variation of Length of sawtooth profile (l/l0) for different value of
β and time(t) with γ = 1.67, kp = 0.4, Z0 = 0.01 and µ = 1.0 for cylindrically

symmetric flow.
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Figure 6.7: Variation of Length of sawtooth profile (l/l0) for different value of
kp and µ with respect to time(t) with γ = 1.67, Z0 = 0.01, and β = 1.0 for

cylindrically symmetric flow.
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Figure 6.8: Variation of Velocity of sawtooth profile (v/v0) for different value of
mass fraction of solid particles (kp) and time(t) with γ = 1.67, β = 1.0, Z0 = 0.01

and µ = 1.0 for planar flow.
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Figure 6.9: Variation of Velocity of sawtooth profile (v/v0) for different value of
β and time(t) with γ = 1.67, kp = 0.4, Z0 = 0.01 and µ = 1.0 for planar flow.
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Figure 6.10: Variation of Velocity of sawtooth profile (v/v0) for different value
of kp and µ with respect to time(t) with γ = 1.67, Z0 = 0.01, and β = 1.0 for

planar flow.
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Figure 6.11: Variation of Velocity of sawtooth profile (v/v0) for different value of
mass fraction of solid particles (kp) and time(t) with γ = 1.67, β = 1.0, Z0 = 0.01

and µ = 1.0 for cylindrically symmetric flow.
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Figure 6.12: Variation of Velocity of sawtooth profile (v/v0) for different value
of β and time(t) with γ = 1.67, kp = 0.4, Z0 = 0.01 and µ = 1.0 for cylindrically

symmetric flow.
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Figure 6.13: Variation of Velocity of sawtooth profile (v/v0) for different value
of kp and µ with respect to time(t) with γ = 1.67, Z0 = 0.01, and β = 1.0 for

cylindrically symmetric flow.
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