
Chapter 5

Solution of Riemann Problem of

Conservation laws in van der

Waals Gas

“Mathematics reveals its secrets

only to those who approach it with

pure love, for its own beauty”.

-Archimedes

5.1 Introduction

During the recent years, the study of Riemann problem (RP) is frequently used

for theoretical and numerical study of the quasilinear hyperbolic system of partial

differential equations. It is well known that RP is a specific initial boundary value

problem having contact discontinuity for the hyperbolic system of non-linear PDEs

which is described by discontinuous initial data. However, solution of RP composed
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of elementary waves depending upon its characteristics field. The occurrence of dis-

continuities is a natural phenomenon in several areas such as photoionized gas, space

science i.e., supernova explosions, space re-entry vehicles, stellar winds, collision of

galaxies etc. Solution of RP is unique under the consideration of discontinuous ini-

tial jumps in terms of constant states which are separated into elementary waves

such as shock waves, contact discontinuities or rarefaction waves. In the area of

engineering and science, many of the researchers deal with mathematical system

which composed of quasilinear PDEs. The analytical study of non-linear hyperbolic

conservation law is interesting but leads to cumbersome task in Mathematics. In

various areas of natural science and physical science, the analytical solution of the

quasilinear hyperbolic system of partial differential equations plays a prominent role

for the qualitative characterization of many physical processes and phenomena.

The purpose of the present chapter is to provide a detailed analysis of the analytical

solution to the RP for 1-D, time dependent Euler’s equation for van der Waals gas.

The analytical solution of the RP is widely used for the understanding of Euler’s

equation because all the elementary wave properties such as rarefaction waves, shock

waves and contact discontinuities appear in the form of characteristics. The shock-

tube problem, a well known physical problem of Gasdynamics and also for the other

basic physical problems in conservation form may be well explained through RP.

The interested reader is referred to reference Courant and Friedrichs [23] for more

details related to the basic physical problem in gasdynamics. Lax [74] determined

the solution of RP for the condition when initial states consist of two constant states

which are separated by jump in flow variables. The investigation of solution of RP

in van der Waals gas is more complex than ideal gas.

A detailed discussion related to the solution of RP in van der Waals gasdynamics

model have been presented by several researchers. In past, many attempts have been
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made to analyze the classical wave properties of solution to the RP in various gasdy-

namic regimes where the basic equations are system of quasilinear hyperbolic PDEs.

The analytical solution of RP in magnetogasdynamic flow was discussed by Singh et

al.[100]. The similar technique has been utilized by Ambika et al.[95] and Nath et

al.[150] to obtain the solution of RP for nonideal gas flow and ideal polytropic dusty

gas flow respectively. By using direct approach, the solution of RP for ideal dusty

gas is analyzed by Gupta et al.[101]. The Riemann problem (RP) for magnetogas-

dynamic flow is solved by Hu et al.[98]. Pooja et al.[151] determined the (exact)

closed form solution of the generalized riemann problem (GRP) for the Chaplygin

gas equation by using the Method of Differential Constraint (DC). Pooja et al.[152]

determined the existence and uniqueness of solution to RP for nonideal magneto-

gasdynamic flow. Yang et al.[105] and Guo et al.[106] presented the solution of RP

with delta initial data for hyperbolic system. Kuila et al.[102, 103] discussed about

the Riemann solution for 1-D ideal and nonideal isentropic magnetogasdynamics

flow. Z. Shao [153] studied the Riemann problem with the initial data containing

the Dirac delta function for the isentropic relativistic Chaplygin Euler equations.

Z. Shao [154] obtained the solution of the Riemann problem for the relativistic full

Euler system with generalized Chaplygin proper energy density-pressure relation.

Z. Shao [155] and Tatsien et al.[156] investigated the nonlinear Riemann problem

with nonlinear boundary conditions for hyperbolic system of quasilinear PDE’s. By

neglecting the intermolecular forces of attraction between the particles in covolume

equations of state, Kipgen et al.[157] obtained the analytical solution of Riemann

problem for conservation laws of van der Waals reacting gases with dust particles.

By utilizing the iterative technique for the explicit solution of RP for classical gas-

dynamics have been discussed by several researchers such as[20, 108, 22, 109, 21] in

different gaseous media.

The present chapter is devoted to determine the classical solution to the RP for van



Chapter 5. Solution of Riemann Problem of Conservation laws..... 100

der Waals gasdynamics. The study is arranged as follows:

In section 2, we describe the basic equations for 1-D motion of van der Waals gas

and characteristics of the governing system. In section 3, the governing system is

reduced into conservation form and corresponding Riemann invariants have been

calculated. The classical wave solutions i.e. shock wave, simple wave and contact

discontinuity is determined in section 4, section 5 and section 6 respectively. In

section 7, the properties of elementary wave curves is discussed. Section 8, consists

of results and discussion concerning to the present investigation. Finally, in the last

section 9, conclusions of the study is presented.

5.2 Basic Equations

The governing equations for 1-D motion of unsteady planar flow of non-ideal gas

modeled by van der Waals EOS is written as

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0, (5.1)

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
= 0, (5.2)

∂E

∂t
+ v

∂E

∂x
− p

ρ2

(
∂ρ

∂t
+ v

∂ρ

∂x

)
= 0, (5.3)

where ρ and v is fluid density and particle velocity respectively. p denotes the

pressure. Here, x represents spatial coordinate and t represents time. In the above

equation (5.3), the internal energy per unit mass of the mixture is denoted by E

and defined as

E =
(p+ aρ2)(1− bρ)− a(γ − 1)ρ2

(γ − 1)ρ
, (5.4)
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where γ = Cp
Cv

, Cp and Cv represent the specific heat of gas at constant pressure

and constant volume respectively. Here, a and b are constants which represents

attractive force between the gas molecules and covolume of the gas respectively.

By using Eq.(5.4) in Eq.(5.3), we obtain

∂p

∂t
+ v

∂p

∂x
+ c2ρ

∂v

∂x
= 0, (5.5)

where, c is the sound velocity which is written as

c =

(
γp+ aρ2(γ − 2 + 2bρ)

ρ(1− bρ)

)1/2

. (5.6)

Now, governing Eqs.(5.1) to (5.3) can be rewritten in the following form

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0, (5.7)

∂v

∂t
+ v

∂v

∂x
+

1

ρ

(
∂p

∂x

)
= 0, (5.8)

∂p

∂t
+ v

∂p

∂x
+ c2ρ

∂v

∂x
= 0, (5.9)

The system of governing Equations(5.7) to (5.9) can be written in the matrix form

as

∂V

∂t
+M

∂V

∂x
= 0, (5.10)

where

V =


ρ

v

p

 , M =


v ρ 0

0 v 1
ρ

0 ρc2 v

 .
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The eigenvalues of matrix M can be obtained as

λ1 = v − c, λ2 = v, λ3 = v + c. (5.11)

The eigenvectors corresponding to distinct eigenvalues are

k1 =


−ρ
c

1

−ρc

 , k2 =


1

0

0

 , k3 =


ρ
c

1

ρc

 . (5.12)

Since all the λ′is, i = 1, 2, 3 are real and distinct and eigenvectors k′is, i = 1, 2, 3 are

linearly independent. Hence, we deduce that the modified system (5.10) is strictly

hyperbolic.

5.3 Riemann problem(RP) and Generalized Rie-

mann Invariants(GRI)

The system of equations (5.10) can be written in the following conservation form as

∂V ∗

∂t
+
∂F (V ∗)

∂x
= 0, (5.13)

where V ∗ = (ρ, ρv, ρ(v2/2 + E))tr, F (V ∗) = (ρv, p+ ρv2, v(p+ ρ(v2/2 + E))).

RP is an initial value problem for the governing model (5.10) with the following

initial boundary condition

V ∗(x, 0) = V ∗0 (x) =


V ∗−, if x < 0

V ∗+, if x > 0

. (5.14)



Chapter 5. Solution of Riemann Problem of Conservation laws..... 103

Here, V ∗− represents left constant state and V ∗+ represents right constant state which

is divided by jump discontinuity at x = 0. The explicit solution of RP (5.13) with the

initial condition (5.14) consisting of three waves corresponding to distinct eigenvalues

λ1 = v − c, λ2 = v, λ3 = v + c as represented in Figure 1. In hyperbolic system,

the characteristics fields are genuinely non-linear as ∇λjkj 6= 0 and characteristics

fields are linearly degenerate as ∇λjkj = 0. Hence, 1 and 3-characteristics fields

are genuinely non-linear and 2-characteristics field is linearly degenerate. Genuinely

non-linear characteristics field will be either rarefaction wave or shock wave and

linearly degenerate characteristics field will be contact discontinuity.

Since,

p = p(ρ, S) (5.15)

i.e. pressure is function of density and entropy.

Therefore, the Riemann invariants (Πj
1 , Π

j
2) for governing system (5.10) correspond-

ing to the jth-characteristic field can be written as:

Across 1-characteristics field, we obtain

dρ

−ρ/c
=
dv

1
=

dp

−ρc
. (5.16)

Across 3-characteristics field, we obtain

dρ

ρ/c
=
dv

1
=
dp

ρc
. (5.17)

From Eq.(5.15) and (5.16), we have

j = 1, Π1
1 = S,Π1

2 = v +
2c

(γ − 1)
(1− b)− ac

(γ − 1)
(1− b), (5.18)



Chapter 5. Solution of Riemann Problem of Conservation laws..... 104

where, b = bρ and a = aρ.

From Eq.(5.15) and (5.17), we have

j = 3, Π3
1 = S,Π3

2 = v − 2c

(γ − 1)
(1− b) +

ac

(γ − 1)
(1− b). (5.19)

Now, the one parameter families of shock waves, contact discontinuities and simple

waves will be calculated here.

Figure 5.1: Solution of Riemann problem (RP) for 1-D Euler equations

5.4 Piecewise discontinuous solution (Shock wave)

Shock waves are bounded discontinuous solutions propagating with the speed of

discontinuity σ corresponding to data which exist on both sides of jump discontinu-

ity. For shock wave, Lax entropy conditions and Rankine-Hugoniot jump conditions

[109] are satisfied. Also, the left constant state and right constant state are divided

by either rarefaction wave or shock wave or contact discontinuity i.e.,
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F (V ∗+)− F (V ∗−) = σ(V ∗+ − V ∗−), (5.20)

Hence, the R-H jump relations for system (5.10) is written as follows

− σ[ρ] + [ρv] = 0, (5.21)

− σ[ρv] + [p+ ρv2] = 0, (5.22)

− σ[ρ(v2/2 + E)] + [ρv(E + v2/2) + pv] = 0, (5.23)

where, [ρ] = ρ+ − ρ− denotes the jump in variable ρ.

For 1-shock wave, to solve (5.21)to (5.23) we obtain


σ1 = v −

√
ρ−[ρ]
ρ[ρ]

,

−[v] +
√

ρ−[p]
ρ[ρ]

[ρ] = 0.

(5.24)

For 3-shock wave, 
σ3 = v +

√
ρ+[ρ]
ρ[ρ]

,

−[v] +
√

ρ+[p]
ρ[ρ]

[ρ] = 0.

(5.25)

The Lax entropy condition is written as

λ(j−1)(V ∗−) < σ < λ(j)(V ∗−), λ(j)(V ∗+) < λ(j+1)(V ∗+), j = 1, 3. (5.26)

Using (5.24) to establish 1-shock wave curve,

S1(ρ;V−) :


σ1 = v −

√
ρ−[ρ]
ρ[ρ]

,

−[v] +
√

ρ−[p]
ρ[ρ]

[ρ] = 0.

(5.27)
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Using (5.25) to establish 3-shock wave curve

S3(ρ;V+) :


σ3 = v +

√
ρ+[ρ]
ρ[ρ]

,

−[v] +
√

ρ+[p]
ρ[ρ]

[ρ] = 0,

(5.28)

In the above R-H conditions, by introducing new variable u = v − σ and m = ρu,

we can write the above system of Equations (5.21) to (5.23) in more suitable form

as

[m] = 0, (5.29)

[p+mu] = 0, (5.30)

m

[
u2 +

2(1− b)(c2 + 2a)(γ − b)
γ(γ − 1)

+ 4a

]
. (5.31)

By using Lax entropy condition, for left shock curve i.e. 1-shock curve we obtain

σ < v− − c− which provides c− < u− and v+ − c+ < σ < v+ and therefore 0 < u+ <

c+ < u+ +σ. Now, for left shock (1-shock wave), we have u− > c− and 0 < u+ < c+

which infers that v− > σ and v+ > σ. Therefore, the shock speed is less than the

velocity of the gas on the left side of the shock wave and right side of the shock

wave. Therefore, we observe that in the case of 1-shock wave the particles move

from left state to right state across the shock wave. In same manner for 3-shock

curve, v− < σ < v− + c− and v+ + c+ < σ provided that −c− < u− < 0 and

u+ < −c− < 0. Hence, for 3-shock curve we have σ > v− and σ > v+. Therefore,

the velocity of gas on the left state of the shock wave and right state of the shock

wave is less than shock speed. Thus, we observe that in the case of 3-shock wave the

particles move from right state to left state across the shock wave. It is observed

here that for left shock and right shock wave u− and u+ are non-zero, thus the

quantity m = ρ−u− = ρ+u+ 6= 0. Therefore in the case of shock families i.e. left

shock wave and right shock wave, we have u2
− > c2

− and u2
+ < c2

+ respectively. Now,
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equation(5.31) written in the following form

u2
−+

2(1− b−)(c2
− + 2a−)(γ − b−)

γ(γ − 1)
+4a− = u2

+ +
2(1− b+)(c2

+ + 2a+)(γ − b+)

γ(γ − 1)
+4a+.

(5.32)

By using the fact u2
− > c2

− and u2
+ > c2

+, the Eq.(5.32) can be written as:

c2
−+

2(1− b−)(c2
− + 2a−)(γ − b−)

γ(γ − 1)
+ 4a− < c2

+ +
2(1− b+)(c2

2 + 2a+)(γ − b+)

γ(γ − 1)
+ 4a+.

(5.33)

Therefore, with the help of Eq.(5.33), we have c2
+ > c2

− hence u2
− > u2

+ which

infers that c+ > c− and |u−| > |u+|. Now, from Eq.(5.29) we obtain ρ+ > ρ−

and hence Eq.(5.30) implies that p+ > p−. Similarly, in the case of 3-shock wave

ρ+ < ρ− and p+ < p−. Hence both the shock families i.e. 1 and 3-shock waves are

compressive waves in nature. Now, the one parameter family of shock waves are

explicitly calculated here. For the parametrization of shock families, we define the

constants which are given as

α =
p+

p−
, β =

ρ+

ρ−
, A− = γ − 2 + 2a−, A+ = γ − 2 + 2a+,

B− = γ − 2 + 2b−, B+ = γ − 2 + 2b+.

(5.34)

For 1-shock wave, with the help of above equation we have α > 1 and β > 1.

By utilizing the Eq(5.6), we have

(
c+

c−

)2

=
α

β

(1− b−)

(1− b+)
ω, (5.35)
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where, w =

(1− b+)(1− b−) +
a+B+(1− b−)

d2
+

(1− b+)(1− b−) +
a−B−(1− b+)

d2
−

.

From Eq.(5.29), we have

u+

u−
=
ρ−
ρ+

=
1

β
. (5.36)

We obtain the following equation by using Eq.(5.34) and Eq.(5.36) in Eq.(5.30)

(
u−
c−

)2

=

(
β

β − 1

)
D, (5.37)

where,

D =
τα

γ

(
(1− b+)− B+

γ

(
d2

+

a+

+
B+

(1− b+)

)−1
)

+
1

γ

(
B−

(
d2
−

a−
+

B−

(1− b+)

)−1

− (1− b−)

)
,

where, τ =
(1− b−)

(1− b+)


(1− b+)(1− b−) +

a+B+(1− b−)

d2
+

(1− b+)(1− b−) +
a−B−(1− b+)

d2
−

 and

(
d+

d−

)2

=
α

β

(1− b−)

(1− b+)
. With the help of Equation.(5.31) we have

(
u−
c−

)2

=
β2

(β2 − 1)

[
A+ 2

α

β

(1− b−)2

(1− b+)

ω(γ − b+)

γ(γ − 1)

]
, (5.38)

where, A =
−4

γ(γ − 1)

[
d2
−

a−(1− b−)(γ − b−)
+

B−

(1− b−)2(γ − b−)

]−1

−4

[
d2
−

a−
+

B−

(1− b−)

]−1

+

4

γ(γ − 1)

[
d2
−

a+(1− b+)(γ − b+)
+

a−B−

a+(1− b−)(1− b+)(γ − b+)

]−1

+4

[
d2
−

a+

+
a−B−

a+(1− b−)

]−1

.

By comparing the Eq.(5.37) and Eq.(5.38), we have

β =
1

(A−D)

[
D − 2α

(1− b−)2

(1− b+)

ω(γ − b+)

γ(γ − 1)

]
. (5.39)
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Now, with the help of Eq.(5.39) we obtain β < α and therefore 1 < β. Hence we

have ρ− < ρ+. By utilizing above equation and relation u = v − σ, we obtain

u+ − u−
c−

= ±
(
β − 1

β

)√
Dβ

(β − 1)
, (5.40)

where,

D =
τα

γ

(
(1− b+)− B+

γ

(
d2

+

a+

+
B+

(1− b+)

)−1
)

+
1

γ

(
B−

(
d2
−

a−
+

B−

(1− b+)

)−1

− (1− b−)

)
.

Eq.(5.40) represents the variation in velocity across shock transition. Here, (+) sign

denotes for 1-shock wave and (−) sign denotes for 3-shock wave. Hence, to obtain

more explicit solution for shock curves, we utilize a new parameter η [21] which is

defined as follows,

η = − logα, (5.41)

From the Eq.(5.41), we have e−η = α =
p+

p−
> 1 therefore η ≤ 0. Hence, by

introducing this parametrization we obtain explicit formulations for shock curves

which are written as

1-shock curve:

p+

p−
= e−η, (5.42)

ρ+

ρ−
=

1

(A−D)

[
D − 2e−η

(1− b−)2

(1− b+)

ω(γ − b+)

γ(γ − 1)

]
, (5.43)

where,

D =
τe−η

γ

(
(1− b+)− B+

γ

(
d2

+

a+

+
B+

(1− b+)

)−1
)

+
1

γ

(
B−

(
d2
−

a−
+

B−

(1− b+)

)−1

− (1− b−)

)
.

u+ − u−
c−

= ±
(
β − 1

β

)√
Dβ

(β − 1)
. (5.44)
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3-shock curve:

p−
p+

= eη, (5.45)

ρ−
ρ+

=
1

(A− C)

[
C − 2eη

(1− b−)2

(1− b+)

ω(γ − b+)

γ(γ − 1)

]
, (5.46)

where,

C =
τeη

γ

(
(1− b+)− B+

γ

(
d2

+

a+

+
B+

(1− b+)

)−1
)

+
1

γ

(
B−

(
d2
−

a−
+

B−

(1− b+)

)−1

− (1− b−)

)
.

u− − u+

c+

= ±

(
β̃ − 1

β̃

)√
Cβ̃

(β̃ − 1)
, (5.47)

where,

β̃ =
1

(A− C)

[
C − 2eη

(1− b−)2

(1− b+)

ω(γ − b+)

γ(γ − 1)

]
.

5.5 Smooth solutions (Simple wave)

For describing and building up solutions of flow problems, simple waves play a funda-

mental role. In particular, simple wave is always a flow in a region which is adjacent

to a region of constant state. A simple wave zone is covered by arcs of characteristics

which carry constant values of dependent variables and hence are straight lines. In

1-D hyperbolic system of PDEs, a centered rarefaction wave is defined as simple

wave. In ith genuinely nonlinear characteristic field, the left constant state (V ∗−) and

right constant state (V ∗+) are connected through a smooth transition and concurs

with the following condition,

1. Riemann invariants are constant [108].

2. λi(V
∗
−) < λi(V

∗
+), i = 1, 3 i.e. The left characteristic of wave and right character-

istic of wave diverge.

Now, we obtained the explicit formulation for simple wave curve. Across 1-simple
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wave, Πi (Riemann Invariants), i = 1, 2 are constant i.e. Π2 = Π1

u+ +
2

(γ − 1)
c+(1−b+)− a+c+

(γ − 1)
(1−b+) = u−+

2

(γ − 1)
c−(1−b−)− a−c−

(γ − 1)
(1−b−).

(5.48)

The equation of state (EOS) for van der Waals gas is given by

p = K

(
ρ

1− bρ

)γ
− aρ2. (5.49)

From above equation, we have

p+

p−
=
c2

+

c2
−

ρ+

ρ−

1

τ
=
ρ+

ρ−

(θ+ − a+)

(θ− − a−)
, (5.50)

where,

θ− = K

(
ρ−

1− bρ−

)γ
and θ+ = K

(
ρ+

1− bρ+

)γ
.

With the help of Eq. (5.48), we obtain

u+ − u−
c−

=
(1− b−)

(γ − 1)
(a− − 2)− c+

c−

(1− b+)

(γ − 1)
(a+ − 2). (5.51)

The characteristic speed λ1 = u− c increases for 1-rarefaction wave. Hence, λ
(+)
1 ≥

λ
(−)
1 which provides u+ − u− ≥ c+ − c−. From Eq.(5.51), we have

c+ − c−
c−

≤ 1

(γ − 1)

[
(1− b−)(a− − 2)− c+

c−
(1− b+)(a+ − 2)

]
. (5.52)

Now, with the help of Eq.(5.50) and Eq.(5.52) we obtain

0 <
p+

p−
≤ 1. (5.53)
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From Eq.(5.41), we have e−η = α =
p+

p−
< 1, therefore η ≥ 0. Hence, from Eq.(5.50)

and Eq.(5.51), by introducing this parametrization, we obtain explicit formulations

for simple waves which are written as

1-simple wave:

p+

p−
= e−η, (5.54)

ρ+

ρ−
= e−η

(1− b+)

(1− b−)
τΨ, (5.55)

where,

Ψ =

(
(1− b+)(1− b−)d2

+ + a+B+(1− b−)

(1− b+)(1− b−)d2
− + a−B−(1− b+)

)
,

u+ − u−
c−

=
(1− b−)

(γ − 1)
(a− − 2)−

(
e−η

β

(1− b−)

(1− b+)
ω

)1/2
(1− b+)

(γ − 1)
(a+ − 2). (5.56)

3-simple wave:

p+

p−
= eη, (5.57)

ρ+

ρ−
= eη

(1− b+)

(1− b−)
τΨ, (5.58)

where,

Ψ =

(
(1− b+)(1− b−)d2

+ + a+B+(1− b−)

(1− b+)(1− b−)d2
− + a−B−(1− b+)

)
,

u+ − u−
c−

=
(1− b−)

(γ − 1)
(a− − 2)−

(
eη

β

(1− b−)

(1− b+)
ω

)1/2
(1− b+)

(γ − 1)
(a+ − 2). (5.59)

5.6 Contact discontinuities

The contact discontinuity originally separates two constant states with different

values of density but with the same values of pressure and particle velocity. A
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contact discontinuity is a surface through which there is no mass flux, across which,

however, density and temperature are discontinuous. In second linearly degenerate

characteristic field, the left constant state (V ∗−) and right constant state (V ∗+) are

connected through a jump discontinuity with shock speed σ2 and concurs with the

following conditions,

1. F (V ∗+)− F (V ∗−) = σ2(V ∗+ − V ∗1 ) i.e.the R-H conditions.

2. λ2(V ∗+) = λ2(V ∗−) = σ2, i.e. the parallel characteristic conditions.

p+

p−
= 1, (5.60)

ρ+

ρ−
= eη,−∞ < η <∞, (5.61)

u+ − u− = 0. (5.62)

5.7 The properties of elementary wave curves(shock

waves and rarefaction waves)

In this section, we analyze the properties of elementary waves.

Lemma 5.1. Let S1(ρ;V−) denote 1-shock and S3(ρ;V+) denote 3-shock wave corre-

sponding to characteristic fields λ1 and λ3 respectively. We consider that V− and V+

satisfy the R-H jump relations (5.21) to (5.23). Hence, the shock curves S1(ρ;V−)

and S3(ρ;V+) satisfy

v = v− − Φ(ρ−, ρ), (5.63)

where Φ(ρ−, ρ) =

√
(p− p−)

(
ρ− ρ−
ρρ−

)
, such that for 1 < γ < 2 , we obtain for

ρ > ρ−, v′ < 0 and v′′ > 0 on S1(ρ;V−), while for ρ < ρ−, v′ > 0 and v′′ < 0 on

S3(ρ;V+).
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Proof. With the help of Eq.(5.21) to (5.23), we obtain Eq.(5.63). Let µ(ρ) =

Φ(ρ−, ρ)2; hence from Eq.(5.63) we have v′ =
−µ′(ρ)

2
√
µ(ρ)

. For ρ > ρ−, v′ is negative.

It is noticed here that µ(ρ−) = µ′(ρ) = 0 and µ and µ′ are positive for ρ > ρl.

Let us assume that δ(ρ) = (µ′(ρ))2 − 2µ(ρ)µ′′(ρ) hence δ′(ρ) = −2µ(ρ)µ′′′(ρ) and

δ(ρ−) = 0. Therefore, µ′′(ρ) > 0 and µ′′′(ρ) < 0 for 1 < γ < 2 and δ′(ρ) > 0.

Further, it follows that for ρ > ρ−, δ(ρ) > δ(ρ−) = 0. Therefore, we have v′′(ρ) =

(µ′(ρ))2 − 2µ(ρ)µ′′(ρ)

4µ(ρ)3/2
> 0 for ρ > ρ− on S1(ρ;V−). In same manner, it is clear that

v′(ρ) > 0 and v′′(ρ) < 0 for 1 < γ < 2 and ρ < ρ− on S3(ρ;V+).

Lemma 5.2. If p satisfies p′ > 0 and p′′ ≥ 0, then Lax conditions hold.

Proof. In case of 1-shock, we have to prove that σ < λ1(V−) . On 1-shock, We have

ρ− < ρ and given conditions p′ > 0 and p′′ ≥ 0. Therefore, by Lagrange mean value

theorem(LMVT) ∃ a ν− ∈ (ρ−, ρ) such that p′(ν) =
p− p−
ρ− ρ−

. Therefore, p′′ ≥ 0 so

we analyze p′(ν) > p′(ρ−), which implies that p′(ρ−) <
(p− p−)ρ

ρ−(ρ− ρ−)
.

Hence,
−ρ
√

(p− p−)(ρ− ρ−)/ρρ−
(ρ− ρ−)

< −(p′(ρ−))1/2.

With the help of Eq.(5.22) and above expression, we have the following inequality

σ < λ1(V−) = v− − (p′(ρ−))1/2. For some ν+ ∈ (ρ−, ρ), we have

p′(ν+) =
p− p−
ρ− ρ−

< p′(ρ)⇒ p′(ρ) >
p− p−
ρ− ρ−

⇒

−ρ−
√

(p− p−)(ρ− ρ−)/ρρ−
(ρ− ρ−)

> −c. (5.64)

Hence, with the help of Eqs.(5.21) and (5.63), we obtain v − c < ρv − ρ−v−
ρ− ρ−

= σ ⇒

λ1(V ) < σ. Now. Eq.(5.64) shows that −

√
(p− p−)ρ−
(ρ− ρ−)ρ

< p(ρ).

For 1-shock curve, by using Eq.(5.21) and above expression we have

(v − v−)ρ

ρ− ρ−
< p′(ρ) ⇒ σ < λ2(V ). Hence, 1-shock satisfies Lax condition. In the

same manner 2-shock curve satisfies Lax condition.
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Theorem 5.3. 1-shock curve and 3-shock curve are star like with respect to (ρ−, v−)

when p = K

(
ρ

1− bρ

)γ
− aρ2, for 1 ≤ γ ≤ 2.

Proof. We have to show that any ray through the point (ρ−, v−) intersects 1-

shock at most one point i.e. we shall show that for any two rays through (ρ−, v−)

and different points (ρ−, v−) and (ρ+, v+) on 1-shock curve consisting of differ-

ent slope i.e.
v1 − v−
ρ1 − ρ−

and
v2 − v−
ρ2 − ρ−

are different. On 1-shock curve Eq.(5.63)

imply that

(
v − v−
ρ− ρ−

)2

=
p− p−

ρρ−(ρ− ρ−)
. Let g(ρ) =

p− p−
ρρ−(ρ− ρ−)

=⇒ g′(ρ) =

ρρ−(ρ− ρ−)p′(ρ)− (p− p−)(2ρρ− − ρ2
−)

ρ2
−ρ

2(ρ− ρ−)2
.

Let h(ρ) = ρρ−(ρ − ρ−)p′(ρ) − (p − p−)(2ρρ− − ρ2
−) then h(ρ−) = 0 and h′(ρ) =

ρρl(ρ − ρ−)p′′(ρ) − 2(p − p−)ρ−, therefore we have h′(ρ−) = 0. Hence, h′′(ρ) =

ρρ−(ρ− ρ−)p′′′(ρ) + (2ρρ− − ρ2
−)p′′(ρ)− 2p′(ρ)ρ−.

For 1 ≤ γ ≤ 2, we analyze that h′′(ρ) < 0. Therefore, for ρ > ρ− we have

h′(ρ) < h′(ρ−) i.e. h′(ρ) is monotonically decreasing function of ρ. But h′(ρ−) = 0⇒

for ρ > ρ− we have h(ρ) < h(ρ−) i.e. h(ρ) is decreasing function of ρ. Further,

h(ρ−) = 0 ⇒ g(ρ) is monotonically decreasing function of ρ. Hence,
v − v−
ρ− ρ−

is de-

creasing function of ρ. Therefore, from above discussion we obtain 1-shock curve is

star like with respect to (ρ−, v−). In the same manner, we can prove that 3-shock

curve is star like with respect to (ρ+, v+).

Lemma 5.4. Across 1 and 3-rarefaction waves, characteristic speed increases from

left hand state to right hand state if and only if across 1-rarefaction waves ρ ≤ ρ−

and v− ≤ v, Similarly for 3-rarefaction waves ρ ≥ ρ− and v− ≤ v.

Proof. Let us suppose that for 1-rarefaction wave, we have ρ ≤ ρ− and v− ≤

v. Since, c =

√
∂p

∂ρ
, hence

dc

dρ
=

p′′(ρ)

2c
=⇒ dc

dρ
> 0 so c(ρ) ≤ c(ρ−) i.e. c is

increasing function. Further, from above assumption we obtain that v−− c− ≤ v− c

=⇒ λ1(V−) ≤ λ1(V ). In the same manner, for 3-rarefaction wave we can obtain

λ3(V−) ≤ λ3(V ). Conversely, let us consider that for 1-rarefaction wave, λ1 increases
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from left hand state to right hand state i.e. λ1(V−) ≤ λ1(V ) =⇒ c − c− ≤ v − v−.

Across 1-rarefaction wave Riemann invariants are constant, so we have v − v− =∫ ρ−
0

c(ρ)

ρ
dρ −

∫ ρ
0

c(ρ)

ρ
dρ. Hence, c − c− ≤

∫ ρ−
0

c(ρ)

ρ
dρ −

∫ ρ
0

c(ρ)

ρ
dρ =⇒ ρ ≤ ρ− and

v− v− ≥ 0. Therefore, ρ ≤ ρ− and v− ≤ v. In same manner, for 2-rarefaction wave

we can show that ρ ≥ ρ− and v− ≤ v.

Theorem 5.5. The 1-rarefaction curve is convex and monotonic decreasing and 2-

rarefaction curve is concave and monotonic decreasing.

Proof. For 1-rarefaction wave,

v = v− +

∫ ρ−

ρ

c(ρ)

ρ
dρ, ifρ ≤ ρ−, (5.65)

dv

dρ
= − c

ρ
< 0⇒ d2v

dρ2
= −c

′

ρ
+

c

ρ2
. (5.66)

Since, p = K

(
ρ

1− bρ

)γ
− aρ2. Hence Eq.(??) ⇒ d2v

dρ2
=

2(p′(ρ))− ρp′′(ρ)

2(p′(ρ))1/2ρ2
> 0.

Therefore, v is convex for 1-rarefaction waves. In same manner, we can show that

v is concave for 2-rarefaction waves with respect to ρ.
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Figure 5.2: Density diagram for compressive waves (1-shock).
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Figure 5.3: Velocity diagram for compressive waves (1-shock).
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Figure 5.4: Density diagram for compressive waves (3-shock).
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Figure 5.5: Velocity diagram for compressive waves (3-shock).
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Figure 5.6: Density diagram for rarefaction waves (1-shock).
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Figure 5.7: Density diagram for rarefaction waves (1-shock).

5.8 Results and discussion

The classical solution of the RP for the governing model for the van der Waals

gasdynamic flow is derived here. When the parameters a− = 0.0, a+ = 0.0 which

corresponds to non-ideal gas dynamic case the results are in close agreement with

Ambika et al.[95] as well as in the absence of magnetic field strength results are same

as reported in Pooja et al.[152]. Here, the effect of attractive force between the gas

molecules and covolume of the gas appears into the solution through the parameters

a−, a+ and b−, b+ respectively. The density(ρ) and velocity(u) versus position(η)

profiles for compressive waves and rarefaction waves corresponding to different values

of parameters a and b are drawn in Fig.2 to Fig.7. From Fig 2 and Fig.4, it is noticed

that the density(ρ) versus position(η) curves for 1 and 3-shock wave for compressive

waves is convex downward. From Fig.2, we observe that the presence of covolume

of the gas i.e. b−, b+ causes to decrease the ρ (density). Also, we notice that the

increasing values of covolume of the gas i.e. b−, b+ in the presence of attractive forces

between the gas molecules (a−, a+) is to further decrease the density. Further, it
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is noticed here that the effect of non-idealness parameters b− and b+ have reverse

effect on the curves corresponding to the density for 1-shock for compressive waves.

Hence, the combined effect of covolume of the gas and attractive force between the

gas molecules on the density of shock wave is to further hastened. The solution

profiles presented in Fig.2 representing the variation of density for 1-shock show

opposite behaviour as compared to the solution profiles of Fig.4 corresponding to

3-shock. From Fig.3 and Fig.5, we obtain that the velocity(u) versus position(η)

curve is convex downward for compressive waves. From Fig.3 and Fig.5, we observe

from the results shown in the solution profiles have the same trend as compared

to the results presented in Fig.2. The density curves for 1 and 3-shock waves for

rarefaction wave is convex downward which is presented in the Fig.6 and Fig.7.

The density of 1-shock wave decreases with position(η) for rarefaction wave. From

Fig.6, we observe that the presence of intermolecular forces of attraction between

the particles (a−, a+) causes to increase the density. Also, the increasing values of

attractive forces between the gas molecules (a−, a+) in the presence of covolume

of the gas i.e. b−, b+ is to further increase the density. Further, it is noticed here

that the effect of non-idealness parameters, b− and b+ have completely different

effect on the density profile for 1-shock of rarefaction waves. Similarly, the effect

of intermolecular forces of attraction between the particles, a− and a+ have the

same effect on the density profiles for 1-shock of rarefaction waves. From Fig.7, we

obtain that the density of 3-shock wave increases with position(η) for rarefaction

wave. Further, it is noticed here that the effect of non-idealness parameters b−

and b+ have opposite effect on the density profiles for 3-shock of rarefaction waves.

Similarly, the effect of intermolecular forces of attraction between the particles a−

and a+ have the same effect on the density profiles for 3-shock of rarefaction waves.

Also, the combined effect of covolume of the gas and attractive forces between the

gas molecules causes to decrease the density (ρ) and velocity (u) of the shock wave
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to further hastened.

5.9 Conclusion

In the present study, the elementary wave solution of RP for van der Waals gasdy-

namics is analyzed. The velocity(u) and density(ρ) profiles for 1 and 3-shock wave for

compressive wave and rarefaction wave is plotted here. Velocity(u) and density(ρ)

profiles for 1 and 3-shock wave for compressive wave and rarefaction wave is con-

vex downward. Also, it is observed here that the effect of intermolecular forces of

attraction between the particles a− and a+ have the same effect on the density(ρ)

and velocity(u) profiles for rarefaction and compressive wave. Similarly, the effect

of non-idealness parameters b− and b+ have opposite effect on the density(ρ) and

velocity(u) profiles for rarefaction wave and compressive wave. Also, the presence

of intermolecular forces of attraction between the particles is to further enhance

the effect of covolume of the gas. Also, the properties of classical wave curves is

discussed.

***********


