
Chapter 4

Interaction of waves in

one-dimensional dusty gas flow

“Mathematicians do not study

objects, but the relations between

objects.”

-Henri Poincare

4.1 Introduction

The study of elementary wave interactions consist of either interaction between two

waves colliding, or one wave overtaking another, or one wave meeting a discontinuity.

Such a phenomenon frequently happens while studying the wave propagation in the

field of space science, space re-entry, astrophysical phenomenon and aerodynamics

etc. Also, the analysis of how shock waves interact with each other, as well as with

the exhaust plume of an aircraft, has been an area of great interest among scientists
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and engineers.

The propagation of waves in a medium is governed by quasilinear hyperbolic system

of PDE’s. One often encounters certain kinds of discontinuities known as acceler-

ation waves, shock waves and weak waves. The study of these waves has been of

great significance in engineering science and nonlinear science due to its application

in various field such as nuclear physics, plasma physics, geophysics, astrophysical

sciences and interstellar gas masses. In the present chapter, we use the method of

asymptotic analysis to study the evolutionary behavior of shock wave which is widely

used by many researchers e.g. Choquet-Bruhat [58], Hunter et al. [59], Majda et al.

[60] over decades. Also, the qualitative analysis of interaction of non-linear waves

can be obtained by the interaction coefficients which occur in transport equation

and these coefficients are measure the coupling strength between different type of

wave modes. The method of asymptotic analysis has been widely used to study the

propagation of weak shock waves governed by the non-linear hyperbolic system of

partial differential equations. The study of resonantly interaction of shock waves by

using “Asymptotic analysis method” for one-dimensional ideal gas flow in presence

of the solid dust particles have not been analyzed by any author till now. To ana-

lyze the evolutionary behavior of shock wave in ideal gas with dust particles is more

complex in comparison to ideal gas flow. A different kind of physical phenomenon

which occurs in various processes such as space re-entry, chemical explosion, nuclear

explosions, supersonic flow and collision of two or more galaxies are described by

mathematical model of quasilinear hyperbolic system of partial differential equa-

tions.

In last few decades many attempts have been made to analyze the asymptotic prop-

erties of shock waves in various gasdynamic regimes where the governing equation

is a system of quasilinear hyperbolic partial differential equations. The “Weakly
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non-linear geometrical acoustics theory” provides a methodical technique for deal-

ing with the interaction of non-linear high frequency small amplitude waves. The

wave propagation phenomenon with an added effect of nonlinearity have been ana-

lyzed in past but the closed form exact analytic solution of the equations governing

the motion of waves have never been obtained. In most of the literature, only ap-

proximate analytical or numerical solutions are discussed. In this context it is worth

to mention the contributions made by many authors like Hunter and Ali [132], Gun-

derson [92], He and Moodie [133], Whitham [19], Moodie et al. [134], Arora and

Sharma [135], Arora [136], D.Fusco [39].

From the physical and mathematical view point, the discussion of shock waves in

an ideal gas consisting of solid particles is a topic of great interest because of its

numerous applications such as underground explosions, interstellar masses, lunar

ash flow and explosive volcanic eruptions etc. Dusty gas is composed of small solid

particles and gas in which solid particles do not attain more than five percent of its

entire volume. In mixture of gas and solid particles, the study of shock wave has

more significance due to its wide applications in several areas such as supersonic-

vehicle in sand storms, supersonic flights in polluted air, nuclear reaction, aerospace

engineering science etc. Vishwakarma et al. [137, 138] have discussed the propa-

gation of shock wave in dusty gas with varying density. Chaturvedi et al. [115]

have discussed the evolution of weak shock wave in two-dimensional, steady su-

personic flow in dusty gas. Sharma et al. [139] have used the scheme of multiple

time scales to study the wave interaction in a non-equilibrium gas flow. Pooja et

al. [140] and Nath et al. [43] have used an asymptotic technique to analyze the

evolution of weak shock waves in non-ideal magnetogasdynamics and non-ideal ra-

diating gas flow. Singh et al. [118] have theoretically investigated the propagation

of shock wave in radiative magnetogasdynamics. Propagation of shock wave in a

mixture of gas and dust particles has been widely investigated by several authors
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such as Nath et al. [141], Nath [141],[142] and Nandkeolyar et al. [143]. Singh et al.

[116, 116, 128, 144] have studied the evolutionary behavior of shock wave in various

gasdynamic regimes. Bhattacharyya et al. [127] have discussed about the simula-

tion of Cattaneo-Christov heat flux on the flow of single and multi-walled carbon

nanotubes between two stretchable coaxial rotating disks. Seth et al. [145] have

studied the partial slip mechanism on free convection flow of viscoelastic fluid past a

nonlinearly stretching surface. Jena et al. [146] and Radha et al. [147] have applied

the methods of relatively undistorted waves and weakly nonlinear geometrical optics

to study the situations when the disturbance amplitude is finite, arbitrarily small,

and not so small in non-ideal gas flow and relaxing gas.

The main motive of the present chapter is to apply the method of resonantly inter-

acting multiple time scales to study the small amplitude high frequency waves for

one dimensional, unsteady planar flow, cylindrically symmetric flow and spherically

symmetric flow in a dusty gas. The transport equations for the amplitude of reso-

nantly interacting high-frequency waves in a dusty gas is derived. Also the existence

of weak shock waves in a dusty gas is discussed here. Further, the evolutionary

behavior of weak shock waves propagating in ideal gas flow with dust particles is

examined here.

This chapter is organized as follow: In section 2, we describe the basic equations for

the dusty gas flow. Also, we reformulate the governing equations into quasilinear

system and derive the characteristic for the system. In section 3, we use the multiple

time scale method to obtain high frequency small amplitude asymptotic solution to

the system written in section 2. The transport equations for the propagation of

shock is derived in section 4. In section 5, we investigate the conditions which ex-

plain the evolutionary behavior of shock wave for the planar and non-planar cases.

In the last section 6, we discuss the results and conclusion of the present work.
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4.2 Problem formulation and characteristics

The basic equations governing the one dimensional compressible, inviscid, unsteady

planar and non-planar flows in a dusty gas mixture following the equation of state

of Mie Grüneisen type

p =
(1− kp)ρRT

(1− Z)
, (4.1)

are written as [6, 5, 148, 43, 149]

∂ρ

∂t
+ ν

∂ρ

∂x
+ ρ

∂ν

∂x
+
mρν

x
= 0 (4.2)

ρ

(
∂ν

∂t
+ ν

∂ν

∂x

)
+

∂p

∂x
= 0, (4.3)

∂p

∂t
+ ν

∂p

∂x
+ ρc2

(
∂ν

∂x
+
mν

x

)
= 0, (4.4)

where ν is the velocity of the particle along the spatial coordinate. The symbols

ρ, p and t represent the density, pressure and time respectively. T denotes the

temperature and R is the gas constant. Here, m = 0 exhibits the planar flow,

m = 1 exhibits the cylindrically symmetric flow and m = 2 exhibits the spherically

symmetric flow. The entity Z is the volume fraction and kp is the mass fraction of

solid particles in the mixture which are defined as Z = Vsp
Vg
, kp = msp

mg
, where msp is

the total mass of the solid particles, Vsp is volumetric extension of the solid particles,

Vg is the total volume of the mixture and mg is the total mass of the mixture.

The quantity c = (Γp/((1− θρ)ρ)1/2 is the equilibrium speed of sound with

Γ = γ(1 + λβ)/(1 + λβγ), (4.5)

where

γ =
cp
cv
, λ =

kp
(1− kp)

, β =
csp
cp
. (4.6)
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Here csp is the specific heat of the solid particles, cp and cv are the specific heats

of the gas at constant pressure and at constant volume respectively. The relation

between the entities Z and kp is defined as Z = φρ , where φ =
kp
ρsp

with ρsp as

the specific density of solid particles and e is the internal energy per unit mass of

the mixture which is given by

e =
(1− Z)p

(Γ− 1)ρ
. (4.7)

Now we write equations (4.2) to (4.4) in the following matrix form

∂U

∂t
+ P

∂U

∂x
+Q = 0, (4.8)

where U = (ρ, ν, p)tr , Q = (mρν/x, 0, ρc2mν/x)tr and P is the coefficient matrix

of order 3× 3 having the components P ij ,

P 11 = P 22 = P 33 = ν,

P 13 = P 21 = P 31 = 0,

P 12 = ρ, P 23 = 1
ρ
, P 32 = ρc2 = Γp/(1− φρ).

(4.9)

Here the superscript ’tr’ represents transposition.

The eigenvalues of the matrix P are given as λ1 = ν + c, λ2 = ν, λ3 = ν − c .

Therefore, the system (4.8), which has distinct eigenvalues, is strictly hyperbolic and

has three families of characteristics corresponding to three distinct eigenvalues, out

of these three characteristics two represent waves moving in ±x directions with speed

ν±c . The remaining one characteristics exhibits the particle path propagating with

velocity ν. Now we suppose that the shock waves are propagating into an initial

back ground state U0 = (ρ0, 0, p0)tr . At constant speed ν0 = 0 , the characteristics

speeds are provided by λ1 = c0, λ2 = 0, λ3 = −c0 , where the subscript 0 indicates



Chapter 4. Interaction of waves in.... 83

the evaluation at U = U0 which is identical with an equilibrium state.

4.3 Weakly non-linear resonant waves

In this segment the multiple time scale method will be applied to obtain high fre-

quency small amplitude asymptotic solution to the system of equations (4.8) when

the attenuation time scale (τat) is large in comparison to the characteristic time

scale (τch) , it means ξ = τch/τat � 1 . Let l(i) and r(i) (i = 1, 2, 3) respectively

exhibit the left and right eigenvectors of the matrix corresponding to the eigenval-

ues λ1 = c0, λ2 = 0, λ3 = −c0 .The eigenvectors l(i) and r(i) (i = 1, 2, 3) satisfy the

normalization conditions l(i)r(j) = δij (1 ≤ i ≤ 3, 1 ≤ j ≤ 3) , where δij is Krönecker

delta. Now under the above assumptions the left and right eigenvectors are given

by

l(1) =
(

0, ρ0
2c0
, 1

2c20

)
, r(1) =

(
1, c0

ρ0
, c2

0

)
,

l(2) = (−c2
0, 0, 1) , r(2) =

(
−1
c20
, 0, 0

)
,

l(3) =
(

0, −ρ0
2c0
, 1

2c20

)
, r(3) =

(
1, −c0

ρ0
, c2

0

) . (4.10)

Now we explore the asymptotic solution of equation (4.8) as ξ → 0 in the following

form

U (x, t) = U0 + ξU1

(
x, t,

→
ϑ
)

+ ξ2U2

(
x, t,

→
ϑ
)

+O
(
ξ3
)
, (4.11)

where U1 is smooth bounded function of its arguments and U2 is bounded function in

(x, t) coordinate in a definite bounded portion containing atmost sublinear growth
→
ϑ as

→
ϑ → ±∞ Sharma and Srinivasan [139]. Here

→
ϑ = (ϑ1, ϑ2, ϑ3) is fast variable

and is symbolized as
→
ϑ =

→
θ
/
ξ, with

→
θ = (θ1, θ2, θ3), θi (1 ≤ i ≤ 3) being the

phase function of ith wave communicated with the characteristics speed λi . Now

using the Taylor’s series expansion of matrices P and Q, about the constant state U0
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in powers of ξ and using equation (4.11) in (4.8) and then substituting the partial

derivatives ∂/∂Y ( Y will either be x or t ) by ∂/∂Y + ξ−1
3∑
i=1

(∂θi/∂Y )∂/∂ϑi and

equating to zero the coefficients of ξ0and ξ1 in resulting expression, we get

3∑
i=1

(
I
∂θi
∂t

+ P0
∂θi
∂x

)
∂U1

∂ϑi
= 0, (4.12)

3∑
i=1

(
I
∂θi
∂t

+ P0
∂θi
∂x

)
∂U2

∂ϑi
= −∂U1

∂t
− P0

∂U1

∂x
− (U1.∇Q)0 −

3∑
i=1

∂θi
∂x

(U1.∇P )0

∂U1

∂ξi
,

(4.13)

where ∇ is the gradient operator with regard to the dependent variable U , I is the

identity matrix of order 3× 3. Now all the phase functions θi (1 ≤ i ≤ 3) propitiate

the Eikonal equation:

det

(
I
∂θi
∂t

+ P0
∂θi
∂x

)
= 0, (4.14)

where 〈det〉 represents the determinant. Now we consider a simplest phase function

given as

θi (x, t) = x− λit, 1 ≤ i ≤ 3 . (4.15)

We infer from equation (4.12) that for all phase functions θi, the derivative terms

∂U1

∂ϑi
are parallel to the right eigenvectors r(i) of the matrix P0, thus we have

U1 =
3∑
i=1

σi (x, t, ϑi) r
(i), (4.16)

where the scalar function σi = (li · U1), is recognized as wave amplitude that de-

pends on the ith fast variable ϑi . The wave which forms here, whether it is an

oscillatory wave or a pulse, is based on dependency of σi on ϑi. Let us suppose that
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σi (x, t, ϑi) has zero mean value with regard to the fast variable ϑi, it means

lim
T→∞

1

2T

T∫
−T

σi (x, t, ϑi)dϑi = 0. (4.17)

We utilize the equation (4.16) in equation (4.13) which gives the following relation-

ship for U2

U2 =
3∑
j=1

mjr
(j). (4.18)

Further, utilizing equation (4.18) in equation (4.13) and pre-multiplying the resulting

expression by l(i) yields the system of decoupled inhomogeneous first order PDEs

which are given as

3∑
j=1

(λi − λj)
∂mi

∂ϑj
= −∂σi

∂t
−λi

∂σi
∂x

− l(i)(U1 · ∇Q)0 −
3∑
j=1

l(i)(U1 · ∇P )0

∂U1

∂ϑj
, 1 ≤ i ≤ 3.

(4.19)

Now the term,
∂

∂t
+ λ

i

∂

∂x
, which exhibits the ray derivative, is denoted by

dσi
ds

,

hence the equation (4.19) may be recast as

3∑
j=1

(λi − λj)
∂mi

∂ϑj
= −dσi

ds
−βiσi − Ωi

iiσi
∂σi
∂ϑi

−
∑
j,k

Ωi
jkσj

∂σk
∂ϑk

= Hi (x, t, ϑ1, ϑ2, ϑ3) , 1 ≤ i ≤ 3.

(4.20)

The ith characteristics in equation (4.20) is provided by
•
ϑ = (λi − λj) for i 6= j,

•
ϑ = 0,

•
mi = Hi.

Therefore, we determine the asymptotic average of equation (4.20) along the charac-

teristics and then supplicate to the sub linearity of U2 in ϑ, which ensures that there

is no secular term in equation (4.13). In view of equation (4.20) we have, along the
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characteristics, ϑi are stable and the asymptotic mean value of
•
m vanishes which

implies that the wave amplitude σi (1 ≤ i ≤ 3) propitiating the succeeding system

of coupled integro-differential equations:

∂σi
∂t

+λi
∂σi
∂x

+ βiσi + Ωi
iiσi

∂σi
∂ϑi

+
∑
i 6=j 6=k

Ωi
jk lim
T→∞

1

2T

T∫
−T

σj [ϑi + (λi − λj) s]
∧
σk [ϑi + (λi − λj) s] ds = 0,

(4.21)

where
∧
σk = ∂σk

∂ϑk
and the coefficient βi and Ωi

jk are written as

βi = l(i)
(
ri · ∇Q

)
0
, Ωi

jk = l(i)
(
r(j) · ∇P

)
0
r(k). (4.22)

Now we have to determine the coefficients βi which vanish for plane waves (m = 0),

therefore in this case the governing system does not contain any source term. Fur-

ther, in the absence of dust particles, equation (4.21) changes to the same equation

as discussed in Ref.[60]. Furthermore the interaction coefficients Ωi
jk are asymmetric

in j and k which quantify the coupling strength between jth and kth wave modes

where j 6= k that can produce a ith wave (i 6= j 6= k). The interaction coefficients

Ωi
jk for i = j = k assign to the non-linear self-interaction. Here for genuinely non-

linear waves the interaction coefficients are non-zero and zero for linearly degenerate

waves. Also it is noticed that if each of the coupling coefficients Ωi
jk (i 6= j 6= k) are

zero or the integral in equation (4.21) becomes zero, then we conclude that the wave

do not resonate and equation (4.21) detracts to the uncoupled system of Burger’s

equations. Now from the equation (4.20), in the governing system, the coefficients

βi and Ωi
jk provide the qualitative picture of the nonlinear interaction procedure and

it can be demonstrated by the formulae as given in equation (4.22).
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Therefore these coefficients are written as

β1 = mc0
2x

, β2 = 0 , β3 = −mc0
2x

,

Ω1
23 = −Ω3

21 = 1
2c0ρ0(1−φρ0)

= α1 (say) ,

Ω2
13 = −Ω2

31 =
−2c30φρ0+c30(1−Γ)

ρ0(1−φρ0)
= α2 (say) ,

Ω1
32 = Ω3

12 = Ω2
22 = 0 ,

Ω1
11 = −Ω3

33 = c0(1+Γ)
ρ0(1−φρ0)

= α3 (say) .

(4.23)

Now after some simplification the resonant equation (4.21) can be written as

∂σ1

∂t
+ c0

∂σ1

∂x
+
mc0

2x
σ1 + α3σ1

∂σ1

∂ϑ1

+ lim
T→∞

1

2T

T∫
−T

k

(
x, t,

ϑ1 + θ

2

)
σ3 (x, t, θ) dθ = 0,

(4.24)

∂σ2

∂t
= 0, (4.25)

∂σ3

∂x
− c0

∂σ3

∂t
− mc0

2x
σ3 − α3σ3

∂σ3

∂ϑ3

− lim
T→∞

1

2T

T∫
−T

k

(
x, t,

ϑ3 + θ

2

)
σ1 (x, t, θ) dθ = 0.

(4.26)

Here k is kernel which is written as

k

(
x, t,

ϑ+ θ

2

)
=

α1

2

∂σ2

∂ϑ2

(
x, t,

ϑ+ θ

2

)
. (4.27)

In equation (4.24), the integral average term shows the contribution to the wave

amplitude σ1 as a result of the nonlinear interactions of the wave field σ2 with the

wave field σ3. Equivalently from equation (4.26) the integral average term shows the

contribution to the wave amplitude σ3 as a result of the nonlinear interaction of the
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wave field σ2 with the wave field σ1. The nonlinear term proportional to σ1σ1
′ and

σ3σ3
′ in (4.24) and (4.26) account for self-interaction which generate higher harmon-

ics leading to the distortions of the wave profile and consequent shock formation.

The result is that the two acoustic wave fields σ1 and σ3 exhibit a strong effect from

the nonlinearity present in the system under study. More detailed analysis may be

presented on the similar lines as given in Sharma and Srinivasan [139].

Let us consider that the initial value of σi at time t = 0 given by σ0
i (x, ϑi). Further

from equation (4.25) we obtain σ2 (x, t, ϑ1) = σ0
2 (x, ϑ1) . Therefore the system of

equations (4.24) to (4.26) reconstruct to the pair of equations for the wave field σ2

and wave field σ3 which connect through the linear integral operator containing the

kernel which is given by

k (x, t, ϑ) =
α1

2

∂σ2

∂ϑ2

(x, ϑ) . (4.28)

Now if the initial data σ0
i (x, ϑ) are periodic function of period 2π of the phase

variable ϑ , the pair of resonant asymptotic equations are written as

∂σ1

∂t
+ c0

∂σ1

∂x
+
mc0

2x
σ1 +α3σ1

∂σ1

∂ϑ1

+
1

2π

π∫
−π

k

(
x, t,

ϑ1 + θ

2

)
σ3 (x, t, θ) dθ = 0, (4.29)

∂σ3

∂t
− c0

∂σ3

∂x
−mc0

2x
σ3−α3σ3

∂σ3

∂ϑ3

− 1

2π

π∫
−π

k

(
x, t,

ϑ3 + θ

2

)
σ1 (x, t, θ) dθ = 0. (4.30)

The kernel k appearing in equations (4.29) and (4.30) is given by the equation (4.28).
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4.4 Non-linear geometrical acoustics solution

The approximate asymptotic solution of the form (4.11) of the system of equation

(4.2) to (4.4) or (4.8) satisfy the small amplitude oscillating initial data given by

U (x, 0) = U0 + ξU0
1 (x, x/ξ) +O

(
ξ2
)
, (4.31)

which is non-resonant when the functions U0
1 (x, x/ξ) are smooth with a compact

support [60]. In fact the expression (4.11), with U1 as provided by equation (4.16),

is uniformly valid to the leading order if the shock waves are present in the solution.

Further, the characteristics equations are written as

dϑi
dx

=
α3σi
c0

,
dt

dx
=

ei
c0

, (4.32)

where ei is either +1 or -1 for i = 1 and i = 3 respectively.

Thus in view of equation (4.31) the decoupled equations (4.29) and (4.30) may be

recast as

dϑi
dx

= −mσi
2x

. (4.33)

Now equation (4.33) produces on integration along the rays, si = x − ei c0 t =

constant

σi = σ0
i (si, τi)

(
x

si

)−m/2

, (4.34)

where the function σ0
i is derived from the initial data (4.31) and the fast variable τi

parameterizes the set of characteristics curves which are given in equation (4.32).

Therefore, one can derive from equation (4.32),

τi = ϑi − eiα3σ
0
i (si, τi)B

(m)
i (t) , (4.35)
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where B
(m)
i (t) =

t∫
0

(
1 + eic0t

si

)−m/2

dt. Here we infer that the wave amplitude

decays as which is similar to corresponding classical gasdynamic case Hunter and

Keller [59]. In view of and the initial data given by equation (4.31), one can find

the solution of the system of equations (4.8) as

ρ (x, t) =ρ0 + ξ
(
σ0

1 (s1, τ1) (x/(x− c0t))
−m/2 + σ0

3 (s3, τ3) (x/(x+ c0t))
−m/2)

− ξ

c2
0

σ0
2 (x, x/ξ) +O

(
ξ2
)
,

(4.36)

ν (x, t) =ξ

(
c0

ρ0

σ0
1 (s1, τ1) (x/(x− c0t))

−m/2 − c0

ρ0

σ0
3 (s3, τ3) (x/(x+ c0t))

−m/2
)

+O
(
ξ2
)
,

(4.37)

p (x, t) =p0 + ξ
(
c2

0σ
0
1 (s1, τ1) (x/(x− c0t))

−m/2 + c2
0σ

0
3 (s3, τ3) (x/(x+ c0t))

−m/2)
+O

(
ξ2
)
.

(4.38)

Now let us suppose that the fast variable τi given by equation (4.35), may be written

at t = 0 , τi = x/ξ . Therefore, with the help of solution (4.36) to (4.38) at t = 0

i.e. the initial values of σi (1 ≤ i ≤ 3) are written as

σ0
1 (x, τ1) =

ρ0

2c0

ν0
1 (x, τ1) +

1

2c2
0

p0
1 (x, τ1) , (4.39)

σ0
2 (x, τ1) = −c2

0ρ
0
1 (x, x/ξ) + p0

1 (x, x/ξ) , (4.40)

σ0
3 (x, τ1) = − ρ0

2c0

ν0
1 (x, τ3) +

1

2c2
0

p0
1 (x, τ3) . (4.41)

Therefore we have obtained the complete solution of the system of equations (4.8) in

view of equation (4.31) which is given by equations (4.36) to (4.41). Further if there

is any multi valued overlap in the given solution then it has to be dealt by introducing

shock waves into the solution. Now by using the Rankine-Hugoniot jump conditions,
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shock wave is introduced into the solution to prohibit the multi-valuedness.

4.5 Shock waves

The shock location ϑsi may be obtained from the following relation Hunter and Keller

[59],

dϑsi
dt

=
1

2
Ωi
ii

(
σ

(−)
i + σ

(+)
i

)
, (i = 1, i = 3), (4.42)

which is the shock speed in the t− ϑi plane, where σ
(−)
i and σ

(+)
i exhibit the value

of the σi just ahead and behind the shock wave serially. Furthermore, we have

σ
(−)
i = 0 in the undisturbed region for the shock front. Now by using the equation

(4.42) and (4.34) and leaving the superscripts on ϑsi and σ
(+)
i in equation (4.42) we

obtain

dϑi
dt

=
α3

2
eiσ

0
i (si, τi)

(
x

si

)−m/2

. (4.43)

Further, using the equation (4.35) and equation (4.43) we obtain the following rela-

tion between ei and t on the shock,

B
(m)
i (t) = −

(
2ei

α3(σ0
i )

2

) τi∫
0

σ0
i (t′) dt′. (4.44)

Hence because of equation (4.35), equation (4.44) provide the following equation

which negotiate the shock path parametrically.

ϑi = τi −
2

σ0
i

τi∫
0

σ0
i (t) dt. (4.45)

Now we conclude that if σ0
i (0) 6= 0 then shock forms immediately right from the

origin [60, 136]. The approximation between τi and t is provided as
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τi ∼ −
(
α3

2

)
eiσ
∗
iB

(m)
i (t) ; σ∗i = σ0

i |τi =0, hence

ϑi ∼
(
α3

2

)
eiσ
∗
iB

(m)
i (t) . Now it is indicating that the shock moves with velocity

α3

2
eiσ
∗
i

(
x
si

)−m/2

, which is totally same as equation (4.43). We also consider the case

when only outgoing waves are generated from the source, that is compression, is

followed by rarefaction implying σ0
i (τi) → 0 as τi → τ ∗i which shows that in the

surroundings of the wavelet τi = τ ∗i , the wavelets will never approach the shock

and the shock is asymptotic to ϑi ∼ τ ∗i + Dei

√
2α3B

(m)
i , where

D =

(
−ei

τ∗i∫
0

σ0
i (t′) dt′

)1/2

, and from equation (4.34), the amplitude is approxi-

mated as

σi ∼
√

2

α3

D

(
1 +

eic0t

si

)−m/2

 t∫
0

(
1 +

eic0t
′

si

)−m/2

dt′


−1/2

. (4.46)

The effect of dust particles enters into the expression for amplitude through the

parameter α3 and c0. From the relation (4.46) we infer that the amplitude is inversely

proportional to α3 . Also, the amplitude σi varies according to (α3)−1/2. Also an

increase in α3 causes to decrease the wave amplitudes. An increase in the dust

particle density causes to decrease the wave amplitude which causes to enhance the

wave decay process. Further, it is observed here that the decreasing (increasing)

values of the mass fraction of dust particles causes to enhance (slow down) the

amplitude of the shock waves, as a result the shock formation distance increases

(decreases) i.e. the shock formation is delayed (early). Also, the amplitude has been

computed to see the effect of dust particles which is presented in the Table 1. It is

clear from the Table 1 that the presence of dust particles have same influence on the

wave amplitude as reported qualitatively. Further, in the absence of dust particles

our results are in close agreement to the results as reported in [19]. It is clear from
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the equation (4.46) that in the absence of dust particles, shock waves decay like ≈


t−1/2, if m = 0

t−3/4, if m = 1

t−1(log)−1/2, if m = 2.

. (4.47)

We obtained that shock waves decay like t−1/2 for planar flow. In same manner

shock waves decay like t−3/4 and t−1(log t)−1/2 for cylindrically symmetric flow and

spherically symmetric flow respectively. Hence in case of non-planar flows, the shock

formation distance increases in comparison to the corresponding planar flows. Also,

the results obtained here are similar to the results as reported in [149].

4.6 Results and Conclusion

The present study uses the multiple time scales method to derive the small amplitude

high frequency asymptotic solution for the system of nonlinear partial differential

equations characterizing one-dimensional compressible unsteady, planar and nonpla-

nar flows in a dusty gas. The theory of weakly non-linear geometrical acoustics is

utilized to examine the resonant interaction of waves and to analyze the evolution

of shock wave in a dusty gas flow. The transport equations for the wave amplitude

along the rays for the dusty gas flow, comprising of a system of inviscid Berger’s equa-

tions with known kernel, has been derived. The qualitative analysis of non-linear

wave interaction process and self-interaction of non-linear waves which exist in the

system under study can be made by using the coefficients occurring in the transport

equations. In our discussion the Euler equations reduces to a pair of asymptotically

resonant equations for the fields of acoustic wave. The nonlinear interaction of the



Chapter 4. Interaction of waves in.... 94

wave fields and self-interactions which generate higher harmonics leading to the dis-

tortions of the wave profile and consequent shock formation has been discussed. A

non-resonant multiwave mode matter has been discussed by Hunter and Keller [59].

Here it is obtained that the wave fields do not get across with each other which is

connected with the particle path way, however they interact with an acoustic wave

field to yield resonant contribution regarding the other acoustic wave fields. The

acoustic wave fields may or may not get across to each other but in either case their

entire contribution towards the entropy field must be zero. We require a suitable

value of φ , to assess the influence of dust particles, which enters into the solution

through the parameter c0. Now any change in value of φ, affects the velocity, pres-

sure and density of the high frequency small amplitude type waves. It is clear from

equations (4.36) to (4.38) that the increasing values of φ, causes the density, velocity

and pressure of the high frequency small amplitude waves to increase. Also, we have

discussed here about the presence of shock and their position in the dusty gas. It is

noticed from equation (4.35) that in a contracting piston motion having cylindrical

symmetry, if the initial wave amplitude exceeds a critical value then the shock forms

before the focus, but in case of spherical symmetry, a shock is always formed before

the formation of focus, does not matter how small be the initial wave amplitude.

The existence of shock wave in a dusty gas is also discussed here. Therefore, we

conclude that for nonplanar flows the formation of shock wave delays in comparison

to the similar cases of the planar flows. Also, the decreasing (increasing) values of

the mass fraction of dust particles causes to increase (decrease) the amplitude of the

shock waves, as a result the shock formation distance increases (decreases) i.e. the

shock formation is delayed (early). Also, the results obtained here are similar to the

results as reported in [149].
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       0.1         0.05     1.39587     10.7903488   14.7759488 

       0.1         0.1     1.39223     10.77965228   14.7253477 

       0.1         0.5     1.36556     10.70230137   14.4457068 

       0.2         0.05     1.39587     10.77689045   14.7261661 

       0.2         0.1     1.39223     10.75707175   14.5132022 

       0.2         0.5     1.36556     10.58033799    13.9716292 

       0.4         0.05     1.39587      10.74662136    14.5476528 

       0.4         0.1     1.39223      10.69203578    14.3121624 

       0.4         0.5     1.36556      10.37485453    12.86823074 

       0.6        0.05      1.39587      10.68405753     14.2726328 

       0.6         0.1     1.39223      10.57655768     13.76453187 

       0.6         0.5     1.36556      10.11834066     11.841303255 

         1m      2m      

                 Computed            pk                 

 

Table 1: Wave amplitudes for non-planar flow for different value of  pk  and   


