
Chapter 3

The propagation of weak shock

waves in non-ideal gas flow with

radiation

“The only way to learn

mathematics is to do

mathematics.”

-Paul Halmos

3.1 Introduction

The analysis of asymptotic behaviour of the shock front location and the distribu-

tion of flow parameters in the shock wave zone is of great scientific and physical

applications in the field of nuclear science, plasma physics, astrophysics, geophysics

and interstellar gas masses etc. At very high temperature, the processes connected

with emission dominant or absorption dominant of radiation influences the motion
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of gas as it may cause change of composition of gas. The occurrence of discontinu-

ities is a natural process in several areas such as photo ionized gas, space science,

space re-entry vehicles, supernova explosions, collision of galaxies, stellar winds etc.

Heat transfer is a special area of thermal engineering that concerns the conversion

and exchange of thermal heat between physical system. As we know, heat trans-

fer is classified into three mechanism such as thermal radiation, thermal convection

and thermal conduction. Here, we study the heat transfer by thermal radiation in

non-ideal gas flow. Heat transfer through radiation takes place in the form of elec-

tromagnetic waves mainly the infrared medium.

At the high temperature and too low density, the behaviour of idealness of the gas

will not remain valid and the gas is governed by non-ideal gas model. The study of

shock wave in non-ideal gas has gained importance in several industrial applications

such as nuclear reactions, chemical processes, aerospace engineering and science etc.

The investigation of shock related phenomena in non-ideal radiating gas is more

complex phenomena than ideal gas. Therefore, in the presence of radiative heat

transfer the flow takes place at high temperature and behaviour of idealness is no

more valid. Hence, due to the effect of non-idealness parameter in the radiative gas

flow produces significant result.

The investigation of asymptotic solution of the system of quasilinear hyperbolic

PDE’s plays important role to yield useful information for the understanding the

complex physical phenomenon involved. By utilizing the theory of progressive wave

analysis, the propagation of weakly non-linear waves have been discussed by several

researchers in different gaseous media. The method of asymptotic analysis has been

widely applied to study the propagation of weak shock waves modeled as the hyper-

bolic system of PDE’s. Hunter and Keller [59] used the ray method to obtain weakly

nonlinear high frequency wave solution of hyperbolic system. Fusco [37], Germain

[38], Fusco and Engelbrecht [39], Sharma et al. [40], Singh et al. [41] and Nath
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et al.[42, 43] have utilized the asymptotic technique to study the non-linear wave

propagation in various gaseous media. Most of the physical phenomena occuring

in the nature are determined with the help of mathematical models in terms of the

hyperbolic system of PDE’s [110, 19]. Choquet-Bruhat [111] have used the pertur-

bation method to derive the shockless solution of hyperbolic system of PDE’s based

on single phase function.

A detailed discussion related to the propagation of discontinuous waves under the

influence of radiation have been investigated by several researchers. In past, many

attempts have been made to analyze the asymptotic properties of weak shock waves

in various gasdynamic regimes where the governing equation is a system of quasilin-

ear hyperbolic PDE’s. The study of shock related phenomenon in non-ideal gas in

the presence of radiative heat transfer or magnetic field was discussed by Nath et al.

[112, 113, 114]. Singh et al. [70] have investigated the growth and decay behaviour

of weak shock waves in an inviscid fluid with an added effect of magnetic field.

Chaturvedi et al. [115] have analyzed the problem of weak shock waves in dusty gas

using the method of wavefront analysis. Singh et al. [116] have applied the method

of wavefront analysis to determine the propagation of weak shock waves in non-ideal

gas with thermal radiation. By utilizing the perturbation theory, Pai and Hsieh [117]

have discussed about an isentropic flow of a radiating gas approximated with opti-

cally thin limit. Singh et al. [118] used the perturbation technique to investigate the

problem of propagation of weak shock waves in non-uniform medium with an added

effect of radiation and magnetic field. Singh et al. [116] have studied the effect of

thermal radiation on the propagation of weak shock waves in magnetogasdynamics.

Singh et al. [119] have used an analytical approach to find an exact solution for

the problem of weak shock waves in an ideal fluid with generalized geometry. Singh

et al. [120] have investigated the problem of propagation of planar and non-planar

weak shock waves in a non-ideal medium and obtained the analytical expression for
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the shock formation distance. Seth et al. [121, 122, 122, 123, 124] have analyzed the

effect of radiative heat transfer in Unsteady MHD free convection flow and heat and

mass transfer flow with Hall effects. Also, Seth et al. [125, 126] and Bhattacharyya

et al. [127] have studied the hydromagnetic natural convection casson fluid flow, en-

tropy generation in hydromagnetic nanofluid flow and Cattaneo-Christov heat flux

on the flow of single and multi-walled carbon nanotubes by using numerical and

analytical approaches. The evolutionary behaviour of acceleration waves in different

gaseous media is presented by Singh et al. [128, 129].

In all the above research works, the effect of radiation on the growth and decay

process of the weak shock wave for the planar and non-planar non-ideal gas flow

by using asymptotic approach have not been studied by any of the authors. The

motive of the present study is to analyze the propagation of weak shock waves in

the non-ideal radiating gas flow. The effect of radiation on the evolutionary process

of the weak shock waves in non-ideal gas flow is also studied. Also, the influence of

non-idealness on the decay process of weak shock wave is discussed. An asymptotic

approach is utilized to investigate the propagation of weakly non-linear waves in

non-ideal gas with radiation. Also the medium is considered to be sufficiently hot

and radiative transfer equation is approximated under optically thin conditions. An

evolution equation is derived here which describes the wave phenomenon in high

frequency domain. Further, the behaviour of disturbances in the form of sawtooth

wave obeying the non-ideal gas law under the influence of radiative transfer is an-

alyzed. The effect of non-idealness parameter and radiation on the wave profiles

is discussed here. Also, the length and velocity of sawtooth wave in both planar

flow and cylindrically symmetric flow have been discussed here. In this theoretical

work, we discuss the effect of radiation on the evolution of Half-N wave in non-ideal

gas because the study of the effect of radiation plays an important role in energy

transport over vast distances encountered between stellar objects, and can modify
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the shock process.

This chapter is organized into section as: In second section, we determine the gov-

erning equations of motion and obtain the characteristics of the fundamental system

of PDEs. In third section, we discuss the asymptotic solution of governing system of

PDEs and obtain the shock formation time in case of compressive waves. The anal-

ysis described in section three is used to analyze the behaviour of acceleration waves

which is presented in fourth section. In fifth section, we obtain the R-H conditions

for weak shock waves. The evolutionary behavior of sawtooth wave is discussed in

section six. The results and conclusion of this work is given in section seven and

eight respectively.

3.2 Problem Formulation and Characteristics

The equations governing the motion of one-dimensional unsteady planar flow and

non planar flow of a non-ideal radiating gas may be presented as below [7, 9]

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
+
mρv

x
= 0, (3.1)

∂v

∂t
+ v

∂v

∂x
+ ρ−1 ∂p

∂x
= 0, (3.2)

∂p

∂t
+ v

∂p

∂x
+ ρc2

[
∂v

∂x
+
mv

x

]
+ (γ − 1)R = 0. (3.3)

where ρ and p stand for the fluid density and pressure respectively, x and t are the

spatial coordinate and time respectively, v is the fluid velocity along the x− axis, c

is the sound velocity which is defined as c =

(
γp

ρ(1− bρ)

)1/2

, with γ as adiabatic

index and b is the non-idealness parameter. Here R represents the rate of energy
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loss by the gas per unit volume through radiation which is expressed as

R = 4kΩ(T 4 − T 4
0 ), (3.4)

where k is the Planck absorption co-efficient, Ω is the Stefan-Boltzmann constant

and T0 is constant state temperature. The effect of thermal radiation is approx-

imated under the optically thin limit. The parameter m takes value 0 and 1 for

planar and cylindrically symmetric flows respectively. Now the system of equations

(3.1) to (3.3) are represented in the following matrix form as

∂V

∂t
+ P

∂V

∂x
+Q = 0, (3.5)

where P is matrix of order 3× 3, V and Q are column vectors, written as

V =


ρ

v

p

 , P =


v ρ 0

0 v 1
ρ

0 ρc2 v

 , Q =


mρv
x

0

(γ − 1)R + mρc2v
x

 . (3.6)

Now system (3.5) can be represented as

V i
t + P ijV j

x +Qi = 0, i, j = 1, 2, 3. (3.7)

The eigenvalues of the matrix P can be written as

λ1 = v + c, λ2 = v − c, λ3 = v. (3.8)
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The left eigenvector and right eigenvector corresponding to the eigenvalue v + c of

the matrix P are

lT =


0

ρc

1

 , r =


1

c
ρ

c2

 , (3.9)

where a superscript means transposition. Since the eigenvalues given by (3.8) are

real and distinct and corresponding eigenvectors are linearly independent, therefore

the above system of equations (3.7) will be strictly hyperbolic.

3.3 Progressive Wave Solutions

In this section, we discuss the asymptotic solution of Eq.(3.7) which represents the

properties of progressive waves. The asymptotic expansion of the matrix V may be

written in the following form

V i(x, t) = V i
0 + θV i

1 (x, t, ω) +O(θ2), (3.10)

where V i
0 is constant solution of Eq.(3.7) which is known and satisfies the condition

Bi(V0) = 0. The other terms of Eq.(3.10) describe the nature of progressive wave.

The preference of the parameter θ depends on the physical problem considered. Now

we determine θ = τch/τa � 1, where τch is the characteristic time scale of the medium

and τa is the attenuation time scale. The variable ω is represented as ω = f(x, t)/θ,

which is known as fast variable, where f(x, t) is phase function which determines

the wave front. It may be observed here that the condition θ � 1 corresponds to

the high frequency wave propagation where the attenuation frequency of the signal

is very small as compared to the characteristic frequency of the medium [130].

Now, by introducing the Taylor’s series expansion of P ij and Qi in the neighborhood
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of known uniform solution V i
0 and utilizing Eq.(3.10), we obtain

P ij = P ij
0 + θ

(
∂P ij

∂V k

)
0

V k
1 +O(θ2), (3.11)

Qi = θ

(
∂Qi

∂V k

)
0

V k
1 +O(θ2). (3.12)

Now by using the Eqs.(3.10) to (3.12) in Eq. (3.7) and equating to zero the coefficient

of θ0 and θ1, we obtain the equations which are written as

(
P ij

0 − λδij
) ∂V j

1

∂ω
= 0, (3.13)

(
P ij

0 − λδij
) ∂V j

2

∂ω
+

(
∂V i

1

∂t
+ P ij

0

∂V j
1

∂x

)
f−1
x +V k

1

(
∂P ij

∂V k

)
0

∂V j
1

∂ω
+f−1

x V k
1

(
∂Qi

∂V k

)
0

= 0.

(3.14)

Here δij is the Krönecker delta, λ = −ft/fx, and the subscript 0 shows that the

quantity involved is calculated at constant state V0. From Eq.(3.13), the character-

istic polynomial is written as λ2(λ2 − c2
0) = 0, where the eigenvalues ±c0 of P0 are

non-zero. The left and right eigenvectors of P0 corresponding to eigenvalue λ = c0,

are written with the subscript 0 from Eq.(3.4). Now from Eq.(3.13) we observe that

∂V1

∂ω
is collinear to r0, hence V1 can be expressed as

V1(x, t, ω) = β(x, t, ω)r0 + S(x, t), (3.15)

which describes the solution of Eq.(3.13). Here β(x, t, ω) is the amplitude factor

which is to be calculated and the components of the vector S i.e. Si are constants

of integration and are not of the nature of progressive wave. So it may be equated

to zero. Also the phase function i.e. f(x, t) is written in the following form

ft + c0fx = 0, (3.16)
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and if f(x, 0) = x− x0, then

f(x, t) = (x− x0)− c0t. (3.17)

Now, premultiplying Eq.(3.14) by li and after using Eq.(3.16) in resulting expression

we have the following equation for β, which is used to analyze the evolution of the

disturbance

∂β

∂τ
+ A0β

∂β

∂ω
+B0β = 0, (3.18)

where
∂

∂t
+ c0

∂

∂x
, is the ray derivative which is taken along the ray direction.

Here

A0 = rk0

(
∂(v + c)

∂V k

)
0

=
(γ + 1)c0

2ρ0(1− bρ0)
> 0, (3.19)

B0 = (li0r
i
0)−1

0

(
(lj0r

k
0)
∂Qi

∂V k

)
0

=
mc0

2x
+

Λ

c2
0(ρ0(1− bρ0))

, (3.20)

where Λ = 8k(γ − 1)α, represents the effect of thermal radiation with α = σ0(γ −

1)T 4
0 , as the Boltzmann number representing the rate of convective energy flux to

the black body heat flux. Here, the quantity

(
Λ

c2
0ρ0(1− bρ0)

)−1

, has the dimen-

sion of time and it can be taken as having the attenuation time τa characterizing

the medium. Eq.(3.18) is hyperbolic in nature and its characteristics curve can be

written as

ω = ω0 + τA0

(
−Λ

c2
0ρ0(1− bρ0)

exp

[
−Λθ

c2
0ρ0(1− bρ0)

])
φ(x0, ω0), (m = 0)

(3.21)

ω = ω0+

A0φ(x0, ω0)
x0

c0

exp

[
Λx0

c3
0ρ0(1− bρ0)

](
−1 + erf

[
Λ

c3
0ρ0(1− bρ0)

])
(

x0

Π(x0 + c0τ)

)1/2(
Λ(x0 + c0τ)

c3
0ρ0(1− bρ0)

) .(m = 1)

(3.22)
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Further, the existence of an envelope of the characteristics given by Eq. (3.21)

and Eq. (3.22) provide the information about the shock formation. Therefore, the

characteristics satisfying the condition
∂φ

∂ω0

< 0, i.e. τ > 0, will generate the shock

wave. The time when first shock is formed in case of compressive waves can be

written as

τsh = min

(
−Λ

c2
0ρ0(1− bρ0)

exp

[
−Λτ

c2
0ρ0(1− bρ0)

]
| ∂φ
∂ω0

|
)−1

,

(for plane flow)

(3.23)

τsh = min

x0

c0

 1

x0

[
A0

x
1/2
0 π1/2

Λ
c20ρ0(1− bρ0) exp

[
Λx0

B1

]
|
∂φ

∂ω0
|
(
−1 + erf

[
Λ

B1

])]−1/2

− 1

,

(for cylindrically symmetric flow) (3.24)

where B1 = c3
0ρ0(1− bρ0).

3.4 Acceleration Waves

In this section, the analysis presented in section 3 is used to analyze the behaviour

of acceleration waves. We represent the acceleration front by the curve f(x, t) =

0. Velocity is continuous across acceleration front but its derivatives admit jump

discontinuities. Now, in the neighbourhood of the acceleration front the velocity v

can be written as

v = θv1(x, t, ω) +O(θ2). (3.25)
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Here, v1 = 0 and v1 = O(ω), for ω < 0 and ω > 0 respectively. From Eq.(3.15), v1

is an element of column vector V1. So, we obtain

β(x, t, ω) =


0, if ω < 0,

ωα(x, t) +O(ω2), if ω > 0,

(3.26)

where α =

(
ρ0

c0

σ

)
with σ =

[
∂v

∂x

]
, represents the jump in velocity gradient across

the acceleration front.

In view of Eq.(3.26), Eq.(3.18) results in the following Bernoulli-type ordinary dif-

ferential equation at the front f(x, t) = 0, i.e. ω = 0,

dσ

dt
+B0σ + Π0σ

2 = 0. (3.27)

Here, Π0 =
(γ + 1)

2(1− bρ0)
and B0 =

mc0

2x
+

Λ

c2
0ρ0(1− bρ0)

.

The solution of differential equation Eq.(3.27) for m = 0 and m = 1 respectively, is

obtained as

σ =

σ0 exp

[
−Λt

c2
0ρ0(1− bρ0)

]
1 + σ0Π0

c2
0ρ0(1− bρ0)

Λ

(
1− exp

[
−Λt

c2
0ρ0(1− bρ0)

]) ,

(m = 0), (3.28)

σ =

σ0

(
1 +

c0t

x0

)−1/2

exp

[
−Λt

c2
0ρ0(1− bρ0)

]
1 + σ0Π0x

1/2
0

(
πc0ρ0(1− bρ0)

Λ

)1/2

exp

[
Λx0

B1

]
erfc

[
Λx0

B1

]1/2

∗K
,

(m = 1), (3.29)
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where, B1 = c3
0ρ0(1− bρ0) and K =

1−
erfc

[
Λ(x0 + c0t)

B1

]1/2

erfc

[
Λx0

B1

]1/2

.

3.5 Weak Shock

The aforementioned analysis represents that after a finite time a compressive pulse

always culminates into shock wave, however it may be weak initially. The flow

variables ahead of the shock wave are represented by the subscript 0 and behind of

the shock wave are represented by the subscript 1. Now by introducing the shock

strength parameter δ =
(ρ1 − ρ0)

ρ0

, flow and field variables satisfy the following

Rankine-Hugoniot conditions

ρ1 = ρ0(1 + δ), v1 =
δG

(1 + δ)
, p1 = p0 +

δ

(1 + δ)
ρ0G

2, (3.30)

where the shock velocity G and shock strength parameter δ are related by

G2 =
2c2

0(1 + δ)

2(1− bρ0δ)− δ(γ − 1)(1 + bρ0)
. (3.31)

For a weak shock wave δ � 1, the first approximation of Eq. (3.30) and Eq. (3.31)

yield

ρ1 = ρ0(1 + δ), v1 = c0δ, p1 = p0(1 + γδ), (3.32)

G = c0

(
1 +

Π0δ

2

)
. (3.33)
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3.6 Behaviour of weak shock wave in the form of

sawtooth wave

The sawtooth wave (half N-wave) is generated after traveling the long distance from

the body moving with supersonic speed [19]. As a result the shock wave propagated

initially becomes sufficiently weak and one may utilize the weak shock wave relations

Eq.(3.32) [33]. Therefore we consider that the shock wave is sufficiently weak at the

beginning and analyze the advancement of disturbance which is represented in the

shape of half N-wave depicted in Fig.3.1. In the beginning, the left segment of the

half N-wave placed at point x0 and travels with speed c0 in the medium at rest

however the right segment of half N-wave placed initially at point xs which moves

faster. Let us consider that L0 is the initial length of the half N-wave. By hiding

the subscript 1, we denote v and c by the state at the rear side of the shock, whose

position at time t is given as:

xs(t) = x0 + c0t+ L(t),

where L(t) represents the length of the half N-wave at any time t. Then

G =
dxs
dt

= c0 +
dL

dt
. (3.34)

Now, with the help of Eq. (3.32) and Eq. (3.33), we have

G = c0 +
vΠ0

2
. (3.35)

In the half N-wave, the fluid velocity v with constant
∂v

∂x
can be written as

v = σL(t). (3.36)
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Here, σ =

(
∂v

∂x

)
x−x0=c0t

, is the slope of half N-wave at any time t which is given by

Eq.(3.28) and Eq. (3.29). Now by introducing Eq.(3.36) in Eq.(3.35) and comparing

the resulting expression with Eq.(3.34), we get the following equation

dL

dt
=
σLΠ0

2
. (3.37)

Let us consider that σ0, L0 and G0 represent the value of σ, L and G at time t = 0

respectively. Further, when we solve the Eq.(3.35) and Eq.(3.36) at time t = 0, we

obtain the following relation

σ0 =
2(G0 − c0)

L0Π0

. (3.38)

Now, with the help of Eq.(3.28) and Eq.(3.37) we obtain the length of sawtooth

wave in the following form

L = L0

[
1 +

Π0σ0c
2
0ρ0(1− b)
Λ

(
1− exp

[
−Λt

c2
0ρ0(1− b)

])]1/2

,

(m = 0), (3.39)

L = L0

[
1 + Π0σ0tx

−1/2
0

(
1 + σ0Π0

(
πc0ρ0(1− b)

Λ

)1/2

exp

[
Λx0

B1

]
erfc

[
Λx0

B1

]1/2

∗K

)]1/2

,

(m = 1), (3.40)

where K =

1−
erfc

[
Λ(x0 + c0t)

B1

]1/2

erfc

[
Λx0

B1

]1/2

 and b = bρ0.

Further, by utilizing the Eqs.(3.28), (3.39) and (3.40) in Eq.(3.36), the velocity

of half N-wave is given by
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v

v0

=

exp

[
−Λt

c2
0ρ0(1− b)

]
[
1 +

Π0σ0c
2
0ρ0(1− b)
Λ

(
1− exp

[
−Λt

c2
0ρ0(1− b)

])]1/2
,

(m = 0), (3.41)

v

v0

=

exp

[
−Λt

c2
0ρ0(1− b)

](
1 +

c0t

x0

)−1/2

[
1 + Π0σ0tx

−1/2
0

(
1 + σ0Π0

(
πc0ρ0(1− b)

Λ

)1/2

exp

[
Λx0

B1

]
erfc

[
Λx0

B1

]1/2

K

)]1/2
,

(m = 1). (3.42)

3.7 Results and discussion

The length and velocity curves of the sawtooth wave (Half N- wave) for planar and

cylindrically symmetric flows are given by Eq.(3.39) to Eq.(3.42). Corresponding

computed values are presented in Figs. 3.2 to 3.7 for different values of parameters

of non-idealness and radiative heat transfer. Here, we have used MATHEMATICA

11.1 to compute the values. The effect of radiation and non-idealness enters into

the solution through the parameters Λ and b respectively. It is noticed here that

the length of half N-wave increases faster with respect to time in planar flow as

compared to cylindrically symmetric flow.

Fig. 3.2 and Fig. 3.3 represent the variation of length of half N-wave for planar and

cylindrically symmetric flows respectively under the effect of non-idealness parame-

ter and radiation. We observe that the presence of non-idealness parameter causes

to enhance the length of half N-wave. The effect of increasing values of non-idealness
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Figure 3.1: Formation and decay of Sawtooth wave (Half N-wave)
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parameter is to further increase the length of half N-wave i.e. it will enhance the

process of decay of shock wave. The curves 3 and 4 represent that the effect of non-

idealness parameter causes to increase the length of half N-wave faster as compared

to in case of radiative transfer. Further, the effect of non-idealness is to destabilize

the shock wave whereas the effect of radiation is to stabilize the shock wave in due

course of time.

Fig. 3.4 and Fig. 3.5 represent the velocity of sawtooth wave for planar and cylin-

drically symmetric flow respectively under the effect of non-idealness parameter and

radiation. The velocity of half N-wave decreases faster with time in cylindrically

symmetric flow as compared to planar flow. It is noticed here that the effect of in-

creasing values of non-idealness parameter is to decrease the velocity of half N-wave,

i.e. it will enhance the process of decay of shock wave. We observe that the addition

of radiation effect accelerates the decay of half N-wave. The combined effect of ra-

diation and non-idealness causes the decaying process of the shock wave to further

hastened.

Fig. 3.6 and Fig. 3.7 represent the effect of radiation on the length and velocity of

sawtooth wave in the presence of non-idealness parameter b = 0.4 for planar and

cylindrically symmetric flows respectively. We note that the effect of increasing val-

ues of radiation parameter is to decrease the length of half N-wave whereas the same

effect gives a decreasing trend in the velocity of sawtooth wave. Hence, the radiation

has the stabilizing effect on the shock. Further, the study of the effect of interaction

of non-idealness of the gas and radiative heat transfer is of special interest to the

physicist working in the area of space science, astrophysics and high temperature

gas dynamic phenomenon. Further, in the absence of radiative heat transfer results

obtained here agree closely with the earlier results [41]. Also, it is found that the

result obtained in this study for b̄ = 0 is in close agreement with the result presented

in the literature [131] in the absence of magnetic field.
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Figure 3.2: Length L/L0 of sawtooth wave (Half N-wave) with respect to time
t for planar flow.
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Figure 3.3: Length L/L0 of sawtooth wave (Half N-wave) with respect to time
t for cylindrically symmetric flow.
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Figure 3.4: Variation of velocity v/v0 of sawtooth wave (Half N-wave) with
respect to time t for planar flow.
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Figure 3.5: Variation of velocity v/v0 of sawtooth wave (Half N-wave) with
respect to time t for cylindrically symmetric flow.
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Figure 3.6: Length L/L0 of sawtooth wave (Half N-wave) with respect to time
t in the presence of non-idealness parameter b = 0.4.
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Figure 3.7: Velocity v/v0 of sawtooth wave (Half N-wave) with respect to time
t in the presence of non-idealness parameter b = 0.4.
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3.8 Conclusion

The method of progressive wave analysis is used to study the main features of weakly

non-linear waves propagating in a compressible, inviscid non-ideal radiating gas flow.

Here, a sufficiently weak shock is taken at the front and we analyze the motion of the

weak shock wave in the form of sawtooth wave(half-N wave). Further, an evolution

equation is derived which describes the propagation of disturbance in high frequency

domain and determine the condition for the formation of shock wave at a finite time.

For the effect of radiation, the radiative transfer equation is approximated under the

optically thin limit. We analyze the length and velocity of sawtooth(half N-wave)

for planar and cylindrically symmetric flows in non-ideal radiating gas. We observed

that the effect of increasing values of non-idealness parameter is to further increase

the length of half N-wave i.e. it will enhance the process of decay of shock wave. We

analyzed that the effect of increasing values of radiation parameter is to decrease

the length of half N-wave whereas the same effect gives a decreasing trend in the

velocity of sawtooth wave. Further,the length of half N-wave increases faster with

respect to time in planar flow as compared to cylindrically symmetric flow. The

effect of increasing values of non-idealness parameter is to decrease the velocity of

half N-wave, i.e. it will enhance the process of decay of shock wave. The velocity of

half N-wave decreases faster with time in cylindrically symmetric flow as compared

to planar flow. The addition of radiation effect accelerates the decay of half N-wave.

We observe here that the combined effect of non-idealness and radiation causes

to further enhance the decay process of sawtooth wave. Hence, the non-idealness

parameter is to destabilize the shock wave whereas the effect of radiation is to first

destabilize the shock and then stabilize the shock in due course of time. Further, the

results obtained here were validated with the earlier works existing in the literature.
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